Cupping computably enumerable degrees simultaneously

Wu Guohua joint with Hong Hanh Tran

Nanyang Technological University, Singapore

CiE 2023, Batumi

Basics:

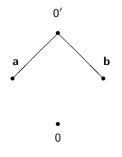
- Computable (decidable) sets,
- Computably enumerable (semi-decidable) sets
- Turing reduction and Turing degrees
- A c.e. degree is a Turing degrees containing some c.e. sets
- C.e. degrees form a upper-semi-lattice: given c.e. degrees
 - given c.e. degrees a and b, $a \lor b$, the supremum of a and b always exists (but not for $a \land b$, the infimum)

- Friedberg-Muchinik theorem, Sacks' theorems: splitting and density, Lachlan's nonsplitting theorem
- High/Low hierachy,
- Cups (to 0') and Caps (to 0), Cuppable and Cappable

Sacks' splitting and Lachlan's nonsplitting

Sacks' Splitting Theorem:

There are incomparable c.e. degrees **a** and **b** with $\mathbf{a} \lor \mathbf{b} = \mathbf{0}'$.



Sacks' Density Theorem:

The c.e. degrees are dense.

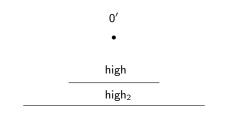
Lachlan's nonsplitting Theorem (Harrington versioin):

There is an incomparable c.e. degrees c such that 0' is not splittable above c.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Turing Jump - $A' = \{e : \Phi_e^A(e) \text{ converges}\}$

- If $A \equiv_T B$, then $A' \equiv_T B'$.
- The jump of $\mathbf{0}$ is $\mathbf{0}'$.
- ' is monotonic.



Cuppable/Noncuppable

Definition:

A c.e. degree a is cuppable if there is an incomplete c.e. degree c such that $a \lor c = 0'.$

Continuity of Cupping (Ambos-Spies, Lachlan and Soare):

Given two incomplete, incomputable c.e. degrees a and b with $a \lor b = 0'$, there exists a c.e. degree c < b such that $a \lor c = 0'$.

Definition:

A c.e. degree \mathbf{a} is plus-cupping if every nonzero c.e. degree \mathbf{c} below \mathbf{a} is cuppable.

Theorem (Yates):

There are incomputable c.e. degrees which are noncuppable.

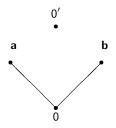
Corollary:

Plus-cupping degrees and noncuppable degrees form minimal pairs.

Here nonzero c.e. degrees \mathbf{a} and \mathbf{b} form a minimal pair if $\mathbf{a} \wedge \mathbf{b} = \mathbf{0}$.

Minimal pairs, Cappable/Noncappable

Lachlan and Yates first proved the existence of minimal pairs.



Continuity of Capping (Harrington and Soare):

Given two incomplete, incomputable c.e. degrees a and b with $a \wedge b = 0$, there exists a c.e. degree c > b such that $a \wedge c = 0$.

Definition:

A c.e. degree c is cappable if c is either 0 or a part of a minimal pair.

We have seen that plus-cupping and noncuppable degrees are cappable.

Equivalent Charaterizations: A c.e. degree **a** is noncappable if and only if one of the following is true

- ▶ a is low-cuppable
- a is promptly simple

The ideal M of Cappable degrees and the quotient structure R/M

Theorem (Ambos-Spies, Jockusch, Shore and Soare, 1984):

In R, the computably enumerable degrees, cappable degrees form an ideal and noncappable degrees form a strong filter.

Denote this ideal as M.

Consider the quotient structure R/M.

There are no minimal pairs in this structure, as noncappable degrees form a strong filter in R.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Open: dense?

Note that noncuppable degrees for another ideal in R, denoted as NCup.

Consider the quotient structure R/NCup.

Question: Are there minimal pairs in R/NCup?

Answer: YES

It was first proved by Li, Wu and Yang around 2006.

But, all nonzero elements are cuppable, in R/NCup, of course.

Theorem (Li, Wu and Yang, 2006):

There are two incomplete cuppable degrees a and b such that no incomplete degree can cup both a and b to 0'.

That is, a and b themselves are cuppable, but they cannot be cupped to $\mathbf{0}'$ simultaneously.

▶ [a] and [b] form a minimal pair in R/NCup, as for any [c] below both [a] and [b], if [c] \neq [0], then c is cuppable and we can let e incomplete with $e \lor c = 0'$, and this e cups both a and b to 0', which is impossible by our choice of a and b.

Proof idea: Construct c.e. sets (incomplete incomputable) A, B, C, D and partial computable functionals Γ and Δ such that

- C cups A to \emptyset' via $\Gamma: \ \emptyset' = \Gamma^{C \oplus A}$
- *D* cups *B* to \emptyset' via Δ : $\emptyset' = \Delta^{D \oplus B}$
- For any c.e. W_e, if Φ_e^{A⊕W_e} = Ψ_e^{B⊕W_e} = Ø', then there is a partial computable functional Ω_e such that Ø' = Ω_e^{W_e}.

We cannot construct A (via C) without B (via D) as we are constructing C incomplete:

• C cups A to
$$\emptyset'$$
 via $\Gamma: \, \emptyset' = \Gamma^{C \oplus A}$

► For any c.e. W_e , if $\Phi_e^{A \oplus W_e} = \Psi_e^{B \oplus W_e} = \emptyset'$, then there is a partial computable functional Ω_e such that $\emptyset' = \Omega_e^{W_e}$.

To make *C* incomplete, we need to enumerate numbers into *A* from time to time, and this can cause the computation $\Phi_e^{A \oplus W_e}(x)$ to change, and before the next agreement, *x* may enter \emptyset' , and lead to $\Omega_e^{W_e}(x) = 0 \neq \emptyset'(x)$.

Luckily, we have *B*-side to help us to record \emptyset' , to make sure that after we put a number into *A*, if \emptyset' changes at *x*, W_e must have a corresponding change, as $\Psi_e^{B \oplus W_e}(x)$ changes and *B* has no change.

We introduce an auxiliary set L to force changes from W_e .

▶ If $\Phi_e^{A \oplus W_e} = \Psi_e^{B \oplus W_e} = L \oplus \emptyset'$, then there is a partial computable functional Ω_e such that $\emptyset' = \Omega_e^{W_e}$.

Theorem (with Tran):

For each $n \ge 1$, there are n + 1 c.e. degrees $\mathbf{a}_0, \mathbf{a}_1, \cdots, \mathbf{a}_n$, such that any n many of them are simultaneously cuppable, but no incomplete c.e. degree can cup all of them to $\mathbf{0}'$ simultaneously.

In this paper, we provide a detailed proof for n = 2:

There are c.e. degrees $\mathbf{a}, \mathbf{b}, \mathbf{c}$ such that any two of them are simultaneously cuppable, but no incomplete c.e. degree can cup all of them to $\mathbf{0}'$ simultaneously.

We were able to prove that the diamond lattice can be embedded into R/NCup preserving 0 and 1.

The paper will be out soon.

• Embedding of N_5 , and perhaps M_3 .

Many algebraic questions are not attacked. Of course, we can consider model-theoretic properties of this structure.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Almost deep degrees form an ideal of R.

Thanks!