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Firstly, we introduce and greatly extend the Big Five phenomenon
of Reverse Mathematics.

Secondly, we discuss the very different logical and mathematical
limits of this extension. (chasm, abyss)

Thirdly, we may discuss foundational implications, though . . .
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Kohlenbach’s higher-order RM uses the richer language of all finite
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reduced. E.g. discontinuous functions on R are directly available.
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0

RCAω
0 makes use of the language of finite types: n ∈ N or n0,

f ∈ NN or f 1, Y : NN → N or Y 2, et cetera.

RCA0 and RCAω
0 prove the same second-order sentences (ECF).

RCAω
0 has axioms for primitive recursion and induction (variation

of RCA0), axiom of function extensionality, and QF-AC1,0:

(∀f 1)(∃n0)(Y (f , n) = 0) → (∃G 2)(∀f 1)(Y (f ,G (f )) = 0),

which guarantees that second-order codes denote third-order functions.

Real numbers and ‘=R’ defined as in RCA0; R → R-functions are
NN → NN-functions extensional relative to ‘=R’.
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The Biggest Five

Real analysis has been studied in second-order RM, mostly for
continuous functions.

Coding continuous functions (on Baire space and the reals) does
not change the RM of the Big Five (Kleene, Kohlenbach, Normann,

Sanders).

Recently, Dag Normann and I have obtained a plethora of
equivalences (over RCAω

0 ) between:

second-order Big Five systems

third-order theorems about (slightly) discontinuous functions.

These third-order theorems are called second-order-ish for obvious
reasons. A similar phenomenon does not exist for first- and
second-order theorems (AFAIK).
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The following are equivalent to WKL0 over RCA0:

A continuous function on [0, 1] is bounded.

A bounded continuous function on [0, 1] has a supremum.

A continuous function on [0, 1] attains a maximum.

Cousin’s lemma for continuous functions.

There is no mathematical need to restrict to continuity here!
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The following third-order thms are equivalent to WKL0 over RCAω
0 :

A regulated function on [0, 1] is bounded.

A bounded Baire 1 function on [0, 1] has a supremum.

A upper semi-continuous function on [0, 1] attains a max.

A bounded quasi-continuous function on [0, 1] has a sup.

Cousin’s lemma for quasi-continuous functions.

Regulated means: the left and right limits exist.
Baire 1 means: pointwise limit of continuous functions.
Upper semi-continuity means: . . . (Baire).
Quasi-continuity means: . . . (Baire and Volterra).

WILD: there are 2c non-measurable quasi-continuous functions and
2c non-Borel bounded and measurable quasi-continuous functions.
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The following are equivalent to ACA0 over RCA0:

Let F : C → R be continuous where C ⊂ [0, 1] is an
RM-closed set. Then supx∈C F (x) exists.

Let F : C → R be continuous where C ⊂ [0, 1] is an
RM-closed set. Then F attains a maximum value on C .

Jordan decomposition theorem restricted to codes.

There is no mathematical need to restrict to continuity here!
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Cousin’s lemma for effectively Baire 2 functions.

Baire 1 means: pointwise limit of continuous functions.

Baire 2 means: pointwise limit of Baire 1 functions.

Effectively Baire 2 means: iterated limit of double sequence of
continuous functions (≈ second-order codes for Baire 2).

Baire (1905) notes that Baire 2 functions can be represented as
iterated limits.
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Π1
1-comprehension

These third-order thms are equivalent to Π1
1-CA0 over RCAω

0 + X :

For any x ∈ NN, any bounded Σ1,x
1 -class in Q+ has a

supremum.

A bounded effectively Baire 2 f : [0, 1] → R has a supremum.

For n ≥ 2, a bounded and effectively Baire n f : [0, 1] → R
has a supremum.

Effectively Baire 2 means: iterated limit of double sequence of
continuous functions (≈ second-order codes for Baire 2).

Baire (1905) notes that Baire 2 functions can be represented as
iterated limits.
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The Biggest Five phenomenon of higher-order RM

Recently, Dag Normann and I have obtained a plethora of
equivalences (over RCAω

0 ) between:

second-order Big Five systems

third-order theorems about (slightly) discontinuous functions.

These third-order theorems are called second-order-ish for obvious
reasons.

There are a gazillion variations of the previous examples, as there
are a gazillion function classes with gazillion different definitions.

There are however hard limits to the Biggest Five phenomenon,
with interesting consequences.
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Abyss? Abyss!

In ordinal analysis, the difference between the systems Π1
1-CA0 and

Π1
2-CA0 has been described as an abyss or chasm by Michael

Rathjen and Per Martin-Löf.

The difference between Π1
1-CA0 and Z2 is therefore galactic in

nature (about 12 parsecs?)

Slight variations of the aforementioned second-order-ish theorems
are not provable in RCAω

0 + Z2 and stronger systems.

The mathematical difference between the original and the variation
is infinitesimal.
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The difference between Π1
1-CA0 and Z2 is therefore galactic in

nature (about 12 parsecs?)

Slight variations of the aforementioned second-order-ish theorems
are not provable in RCAω

0 + Z2 and stronger systems.

The mathematical difference between the original and the variation
is infinitesimal.



Introduction The Biggest Five of Reverse Mathematics The abyss

Abyss? Abyss!

In ordinal analysis, the difference between the systems Π1
1-CA0 and

Π1
2-CA0 has been described as an abyss or chasm by Michael

Rathjen and Per Martin-Löf.
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The abyss and Π1
1-CA0

This third-order thm is equivalent to Π1
1-CA0 over RCAω

0 + X :

An effectively Baire 2 function F : [0, 1] → [0, 1] has a supremum.

This third-order thm is not provable in RCAω
0 + X + Z2:

A Baire 2 function F : [0, 1] → [0, 1] has a supremum.

Baire 1 means: pointwise limit of continuous functions.

Baire 2 means: pointwise limit of Baire 1 functions.

Effectively Baire 2 means: iterated limit of double sequence of
continuous functions (≈ second-order codes for Baire 2).

Nota Bene: AC is not the problem!
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The abyss and arithmetical comprehension

The following is equivalent to ACA0 over RCAω
0 :

Jordan decomposition theorem restricted to quasi-continuity.

The following is not provable in RCAω
0 + Z2:

Jordan decomposition theorem restricted to cliquishness.

Every cliquish function is the sum of two quasi-continuous
functions (on the reals).

f : [0, 1] → R is quasi-continuous if for all ϵ > 0,N ∈ N, x ∈ [0, 1],
there is (a, b) ⊂ B(x , 1

2N
) with (∀y ∈ (a, b))(|f (x)− f (y)| < ϵ).

f : [0, 1] → is cliquish if for all ϵ > 0,N ∈ N, x ∈ [0, 1], there is
(a, b) ⊂ B(x , 1

2N
) such that (∀y , z ∈ (a, b))(|f (z)− f (y)| < ϵ).
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The abyss and weak König’s lemma

This third-order thm is equivalent to WKL0 over RCAω
0 :

A bounded Baire 1 function F : [0, 1] → R has a supremum.

This third-order thm is not provable in RCAω
0 + Z2:

A regulated function F : [0, 1] → R has a supremum.

Classically, regulated functions are Baire 1, but this fact is only
provable in certain strong systems.

Many similar results: the classical hierarchy of function classes
looks very different in weak (and some strong) systems.
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On Kleene’s arithmetical quantifier ∃2

The above was obtained based on the RM of Kleene’s ∃2:
(∃E )(∀f ∈ NN)(E (f ) = 0 ↔ (∃n ∈ N)(f (n) = 0)). (∃2)

The system RCAω
0 + (∃2) is L2-conservative over ACA0.

Over RCAω
0 , the following are equivalent to (∃2):

the existence of a discontinuous R → R-function (Kohlenbach).

the existence of a R → R-function that is not regulated.

the existence of a R → R-function that is not semi-continuous.

the existence of a R → R-function that is not Riemann integrable.

the existence of a R → R-function that is not Baire 1.

the existence of a R → R-function that is not effectively Baire 2.

. . .

The following is not provable in RCAω
0 + (∃2) + Z2:

There is a R → R-function that is not Baire 2.
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Exploring the abyss: the uncountability of R

Cantor’s first set theory paper (1874): uncountability of R.

Cantor’s theorem: there is no surjection from N to [0, 1].

NIN: there is no injection from [0, 1] to N.

NBI there is no bijection from [0, 1] to N.

Many many many (third-order) mainstream theorems imply NIN or
NBI. However, NIN and NBI cannot be proved in RCAω

0 + Z2 and
stronger (higher-order) systems (see Normann-Sanders, JSL, 2022).
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What causes this abyss?

A function class is second-order-ish if its definition allows one to
approximate f (x) for all x ∈ R given only f (q) for all q ∈ Q.

Examples: continuity, quasi-continuity, effectively Baire 2, Baire 1.

Non-examples: regulated, cliquish, Baire 2, upper semi-continuity.

Theorems about second-order-ish function classes can generally be
proved from second-order axioms.

Theorems about NON-second-order-ish function classes generally
cannot be proved from second-order axioms (alone).

Classically, regulated functions are Baire 1 but this fact is only
provable in strong systems.

Many similar results: the classical hierarchy of function classes
looks very different in weak (and some strong) systems.
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The state of the art

Recently, Dag Normann and I have obtained a plethora of
equivalences (over RCAω

0 or extensions) between:

(a) second-order Big Five systems

(b) third-order theorems about (slightly) discontinuous functions.

The theorems in (b) are called second-order-ish for obvious reasons.

There are a gazillion possible equivalences, warranting the name
the Biggest Five phenomenon.

Slight variations or generalisations of the theorems in (b) imply
NIN and cannot be proved in RCAω

0 + Z2 and stronger systems.

Similar results for WWKL, Vitali’s covering lemma, and Kleene’s (∃2).

Many equivalences for NIN and basic properties of regulated
functions. Same for basic properties of measure and category and
semi-continuity (Baire, Volterra, . . . ).
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Foundational musings

Non-second-order-ish mathematics exhibits a number of interesting
phenomena that are ‘miniature’ versions of well-known
observations in set theory, including:

the mercurial nature of the cardinality of R,

basic properties of the Lebesgue measure and integral,

the special role of the Axiom of Choice,

the asymmetry between measure and category.
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the mercurial nature of the cardinality of R:
ZFC cannot prove the Continuum Hypothesis.
RCAω

0 + Z2 cannot prove: there is no injection from R to N.

basic properties of the integral

ZF cannot prove that
∫
[0,1]

f dλ = 0 implies f (x) = 0 a.e. for

f : [0, 1] → [0, 1] for the Lebesgue integral.

RCAω
0 + Z2 cannot prove

∫ 1

0
f (x)dx = 0 implies f (x) = 0 a.e.

for f : [0, 1] → [0, 1] for the Riemann integral.

the special role of the Axiom of Choice: countable AC versus
NCC (see arxiv https://arxiv.org/abs/2006.01614 or JLC).

basic properties of measure (zero) and category.
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the mercurial nature of the cardinality of R:
ZFC cannot prove the Continuum Hypothesis.
RCAω

0 + Z2 cannot prove: there is no injection from R to N.

basic properties of the integral

ZF cannot prove that
∫
[0,1]

f dλ = 0 implies f (x) = 0 a.e. for

f : [0, 1] → [0, 1] for the Lebesgue integral.

RCAω
0 + Z2 cannot prove

∫ 1

0
f (x)dx = 0 implies f (x) = 0 a.e.

for f : [0, 1] → [0, 1] for the Riemann integral.

the special role of the Axiom of Choice: countable AC versus
NCC (see arxiv https://arxiv.org/abs/2006.01614 or JLC).

basic properties of measure (zero) and category.
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Thanks!
Questions?
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