Physical Zero-Knowledge Proof for Ball Sort Puzzle

Suthee Ruangwises
The University of Electro-Communications,
Tokyo, Japan

CiE 2023 - Batumi, Georgia
July 24, 2023

Introduction

Ball Sort Puzzle

- A popular logic puzzle in smartphone apps

Foct
Ball Sort Master - Puzzle Game
Kasur Games
$4.6 \star$

陠国
Ball Sort Puzzle - Egg Sort Apollo Game Studio
4.7 *

Ball Sort Puzzle - Color Games
EasyFun Game
4.7 *

Ball Sort: Color Sorting Games Suga Technology
$4.8 \star$

Color Ball Sort Puzzle
Sonatgame
4.5 *

Ball Games Color Sorting Games Peachu Pacha Games 3.8 *

Ball Sort Puzzle

- Given several bins containing balls of n colors, and some empty bins
- Has to sort the balls by color, i.e. make each bin containing balls of single color

Ball Sort Puzzle

- Each bin works like a stack (LIFO: last-in first-out order).
- Player can pick only the top ball of a bin, and put it on top of another non-full bin.
- Another restriction is that, if the destination bin is not empty, the color of its top ball must be the same as the moved ball.

Ball Sort Puzzle

- Very recently, Ito et al. (FUN 2022) showed that determining if a ball sort puzzle instance is solvable within t moves is NP-complete.
- Or even whether it is solvable at all is also NP-complete.
- Solvable if and only if its corresponding water sort puzzle instance is solvable.

Zero-Knowledge Proof

- Paimon creates a difficult Ball Sort Puzzle and challenges her friend Venti to solve it.
- He can't solve it and doubts whether it really has a solution.
- Paimon needs to convince him that her puzzle has a solution without revealing it.
- She needs a zero-knowledge proof (ZKP).

Zero-Knowledge Proof

- Interactive proof between a prover P and a verifier V.
- Completeness: If P knows the solution, then P can convince V.
- Soundness: If P doesn't know the solution, then P can't convince V.
- Zero-knowledge: V learns nothing about P's solution.

Card-based Protocols

- Does not require computer
- Uses only small, portable objects
- Easy for observers to verify the correctness and security, even for nonexperts
- Suitable for teaching purpose

Card-based ZKP for Logic Puzzles

- Sudoku
- Makaro
- Kakuro
- Akari
- Takuzu

- Juosan

Hashiwokakero Masyu
Numberlink
Yajilin
Ripple Effect Hitori

- Numberlink
- etc.

Our Contribution

- Develop a ZKP for the ball sort puzzle
- Allowing P to show that he/she knows the solution with t moves
- The first card-based ZKP protocol for interactive puzzle (where a solution involves moving object, not just a written answer)

Our Protocol

Our Protocol

- The key idea is that we fill empty spaces with "dummy balls" with number 0 .

Our Protocol

- Also, put a dummy ball with number 0 above each bin.
- Put a dummy ball with number $n+1$ under each bin.

Our Protocol

- Moving a ball to another bin is equivalent to swapping it with a dummy ball.

0	0	0	0
2	a_{x}^{3}	0	0
I	2	I	$b_{y} 0$
3	2	I	3
4	4	4	4

0	0	0	0
2	a_{x}^{3}	0	0 b_{y-1}
I	2	I	b_{y}^{0}
3	2	I	3 b_{y+1}
4	4	4	4

Moving a Ball

- Conditions to check
- $1 \leq a_{x} \leq n$
- $a_{x-1}=0$
- $b_{y}=0$
- $b_{y-1}=0$
- either $b_{y+1}=a_{x}$ or $b_{y+1}=n+1$
- Then, swap a_{x} with b_{y}.
－ 0 回回

$$
1 \text { 田回回 }
$$

$$
2 \text { 回回 }
$$

$$
3 \text { 回回 }
$$

$$
4 \text { 田 }
$$

Moving a Ball

- Conditions to check
- $1 \leq a_{x} \leq n$
- $a_{x-1}=0$
- $b_{y}=0$
- $b_{y-1}=0$
either $b_{y+1}=a_{x}$ or $b_{y+1}=n+1$
- Then, swap a_{x} with b_{y}.

$$
\begin{array}{ll}
a_{x} & \boxed{?}\lceil\square \square ? \\
b_{y+1} & \square ? \square
\end{array}
$$

pile-shifting shuffle

Pile-Shifting Shuffle

\square pile-shifting shuffle

$$
\begin{array}{ll}
a_{x} & \square ⿴ 囗 \\
b_{y+1} & \square ?
\end{array}
$$

Chosen Pile Cut Protocol

- Allows P to select a pile of cards he/she wants without revealing to V which one.
- Developed by Koch and Walzer (2020).
- P applies it twice, choosing the column and then the card.

Future Work

Future Work

- Develop a card-based ZKP for water sort puzzle
- Similar puzzle with more restrictive rules
- Consecutive balls with the same color are connected and must be moved together.

Questions and Comments

