#### Physical Zero-Knowledge Proof for Ball Sort Puzzle

#### Suthee Ruangwises The University of Electro-Communications, Tokyo, Japan

CiE 2023 - Batumi, Georgia July 24, 2023

#### Introduction



#### • A popular logic puzzle in smartphone apps





Ball Sort Master - Puzzle Game Kasur Games 4.6 ★





Ball Sort Puzzle - Color Games EasyFun Game 4.7 ★





Color Ball Sort Puzzle Sonatgame 4.5 ★





Ball Sort Puzzle – Egg Sort Apollo Game Studio 4.7 ★





Ball Sort: Color Sorting Games Suga Technology 4.8★





Ball Games Color Sorting Games Peachu Pacha Games 3.8 ★



- Given several bins containing balls of n colors, and some empty bins
- Has to sort the balls by color, i.e. make each bin containing balls of single color





- Each bin works like a stack (LIFO: last-in first-out order).
  - Player can pick only the top ball of a bin, and put it on top of another non-full bin.
- Another restriction is that, if the destination bin is not empty, the color of its top ball must be the same as the moved ball.















- Very recently, Ito et al. (FUN 2022) showed that determining if a ball sort puzzle instance is solvable within t moves is NP-complete.
  - Or even whether it is solvable at all is also NP-complete.
- Solvable if and only if its corresponding water sort puzzle instance is solvable.

# Zero-Knowledge Proof

- Paimon creates a difficult Ball Sort Puzzle and challenges her friend Venti to solve it.
- He can't solve it and doubts whether it really has a solution.
- Paimon needs to convince him that her puzzle has a solution *without revealing it*.
- She needs a zero-knowledge proof (ZKP).

# Zero-Knowledge Proof

- Interactive proof between a prover P and a verifier V.
- **Completeness:** If *P* knows the solution, then *P* can convince *V*.
- Soundness: If *P* doesn't know the solution, then *P* can't convince *V*.
- Zero-knowledge: V learns nothing about P's solution.

# **Card-based Protocols**

- Does not require computer
- Uses only small, portable objects
- Easy for observers to verify the correctness and security, even for nonexperts
- Suitable for teaching purpose

## Card-based ZKP for Logic Puzzles

- Sudoku
- Makaro
- Kakuro
- Akari
- Takuzu
- Juosan
- 8
   1
   4
   6
   3
   3
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
   1
- Numberlink
- etc.

# **Our Contribution**

- Develop a ZKP for the ball sort puzzle
- Allowing P to show that he/she knows the solution with t moves
- The first card-based ZKP protocol for interactive puzzle (where a solution involves moving object, not just a written answer)



• The key idea is that we fill empty spaces with "dummy balls" with number 0.







- Also, put a dummy ball with number 0 above each bin.
- Put a dummy ball with number n + 1 under each bin.







 Moving a ball to another bin is equivalent to swapping it with a dummy ball.





| 0 | 0       | 0 | 0                                 |
|---|---------|---|-----------------------------------|
| 2 | $a_x^3$ | 0 | 0                                 |
| I | 2       |   | <b>0</b><br><i>b</i> <sub>y</sub> |
| 3 | 2       |   | 3                                 |
| 4 | 4       | 4 | 4                                 |

| 0 | $\begin{vmatrix} 0 \\ a_{x-1} \end{vmatrix}$ | 0 | 0                                                                 |
|---|----------------------------------------------|---|-------------------------------------------------------------------|
| 2 | $\begin{vmatrix} 3 \\ a_x \end{vmatrix}$     | 0 | $     \begin{array}{c}       0 \\       b_{y-1}     \end{array} $ |
|   | 2                                            |   | <b>0</b><br><b>b</b> <sub>y</sub>                                 |
| 3 | 2                                            |   | $     \begin{array}{c}       3 \\       b_{y+1}     \end{array} $ |
| 4 | 4                                            | 4 | 4                                                                 |



# Moving a Ball

- Conditions to check
  - $1 \le a_x \le n$
  - $a_{x-1} = 0$
  - $b_y = 0$
  - $b_{y-1} = 0$
  - either  $b_{y+1} = a_x$  or  $b_{y+1} = n+1$
- Then, swap  $a_x$  with  $b_y$ .







# Moving a Ball

- Conditions to check
  - $1 \le a_x \le n$

$$\circ a_{x-1} = 0 \checkmark$$

• 
$$b_y = 0$$

$$b_{y-1} = 0 \checkmark$$

 $\circ$  either  $b_{y+1} = a_x$  or  $b_{y+1} = n+1$ 

• Then, swap  $a_x$  with  $b_y$ .





#### **Pile-Shifting Shuffle**





# **Chosen Pile Cut Protocol**

- Allows *P* to select a pile of cards he/she wants without revealing to *V* which one.
- Developed by Koch and Walzer (2020).
- *P* applies it twice, choosing the column and then the card.

#### Future Work



## **Future Work**

- Develop a card-based ZKP for water sort puzzle
  - Similar puzzle with more restrictive rules
  - Consecutive balls with the same color are connected and must be moved together.

#### **Questions and Comments**