The Landscape of Computing Symmetric n-Variable Functions with 2n Cards

Suthee Ruangwises The University of Electro-Communications, Tokyo, Japan

CiE 2023 - Batumi, Georgia July 24, 2023

Introduction

Secure Multi-Party Computation

- Alice and Bob want to know if they both like each other.
 - No one wants to confess first.
- Needs a protocol that only distinguishes between the two cases: they both like each other, and anything else.

Secure Multi-Party Computation

- Each having a bit *a* and *b* of either 0 or 1.
- Needs a protocol that computes $a \wedge b$ without leaking unnecessary information.
 - If a player's bit is 1, he/she inevitably knows other player's bit.
 - If a player's bit is 0, he/she should know nothing about other player's bit.

Card-based Protocols

- Protocols using physical cards
- Does not require computer
- Uses only small, portable objects
- Easy for observers to verify the correctness and security, even for nonexperts
- Suitable for teaching purpose

The Five-Card Trick

- Developed by den Boer in 1989, beginning of the study in card-based cryptography.
- Uses five cards: three identical & cards and two identical
 cards.
- Encodes 0 by ♣♥ and 1 by ♥♣.

The Five-Card Trick

- Each player is given one * and one *, with another * (helping card) faced down on the middle of table.
- Alice places her cards encoding *a* to the left of the middle card.
- Bob places his cards encoding b to the right of the middle card.

Then, we swap the fourth and the fifth cards.

Observe the cyclic rotation of the deck.

The Five-Card Trick

- We obscure the initial position of the cards by shuffling the deck into a random uniform cyclic permutation.
 - i.e. a permutation uniformly chosen from $\{id, (12345), (12345)^2, (12345)^3, (12345)^4\}$
- Can distinguish the case a = b = 1 from other cases.

The Four-Card Trick

 Later, in 2012, Mizuki et al. showed that the AND function can be computed with four cards, using no helping card.

Other Functions

- Besides the AND function, protocols to compute other Boolean functions have also been developed.
- In 2009, Mizuki and Sone developed a fourcard XOR protocol.

Other Functions

- As each input bit is encoded by two cards, computing an *n*-variable function requires at least 2*n* cards.
- Any *n*-variable symmetric function can be computed with 2n + 2 cards (Nishida et al., 2015).
- We are interested in optimal protocols that use exactly 2n cards.

Properties of Protocols

- Number of shuffles as low as possible
- Committed format output is in the same format as input (♣♥ for 0 and ♥♣ for 1)

• A Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}^n$ is called symmetric if

 $f(x_1, \dots, x_n) = f(x_{\sigma(1)}, \dots, x_{\sigma(n)})$ for any x_1, \dots, x_n and any permutation $(\sigma(1), \dots, \sigma(n))$ of $(1, \dots, n)$.

• Note that the output value only depends on the sum $\sum_{i=1}^{n} x_i$.

• Denote an n-variable symmetric Boolean function by S_X^n for some $X \subseteq \{0, ..., n\}$.

•
$$S_X^n = \begin{cases} 1, & \text{if } \sum_{i=1}^n x_i \in X; \\ 0, & \text{otherwise} \end{cases}$$

• E.g. $x_1 \wedge \cdots \wedge x_n$ is denoted by $S_{\{n\}}^n$.

- If f is computable by a number of cards,
 - Negating all variables in f is also computable by the same number of cards.
 - \circ So is the negation of f.
- We can classify all *n*-variable symmetric functions into several NPN-equivalence classes.
- S_X^n is in the same class as $S_{\{0,\dots,n\}-X}^n$ and $S_{\{n-x|x\in X\}}^n$.

Summary of Protocols

Two Variables

- Eight functions
- Three classes
- Trivial (constant), AND, XOR

Two Variables

Function	Name	Protocol	Comm itted?	#Shuf- fles	Other Functions in the Same Class
S_{ϕ}^{3}	Constant	trivial			$S^3_{\{0,1,2\}}$
$S^{3}_{\{1\}}$	XOR	Mizuki-Sone, 2009	>	I	$S^3_{\{0,2\}}$
$S^{3}_{\{2\}}$	AND	Mizuki et al., 2012	X	2	$S^3_{\{0\}}, S^3_{\{0,1\}}, S^3_{\{1,2\}}$

 No four-card committed-format AND protocol with finite number of shuffles (Koch et al., 2015)

Three Variables

- I6 functions
- Six classes (one is trivial)
- Fully solved in 2023.

Three Variables

Function	Name	Protocol	Comm itted?	#Shuf- fles	Other Functions in the Same Class
S_{ϕ}^{3}	Constant	trivial	$S^3_{\{0,1,2,3\}}$		
$S^{3}_{\{1,3\}}$	XOR	Mizuki-Sone, 2009	~	2	$S^3_{\{0,2\}}$
$S^{3}_{\{3\}}$	AND	Mizuki, 2016	X	5	$S^3_{\{0\}}, S^3_{\{0,1,2\}}, S^3_{\{1,2,3\}}$
		Isuzugawa et al., 2021	X	2	
$S^{3}_{\{0,3\}}$	Equality	Shinagawa-Mizuki, 2019	X		$S^{3}_{\{1,2\}}$
		R-Itoh, 2021	~	2	
$S^{3}_{\{2,3\}}$	Majority	Toyoda et al., 2021	X	2	$S^3_{\{0,1\}}$
$S^{3}_{\{1\}}$	-	Shikata et al., 2023	X	3	$S^3_{\{2\}}, S^3_{\{0,1,3\}}, S^3_{\{0,2,3\}}$

Four Variables

- 32 functions
- Ten classes (one is trivial)
- Eight currently have protocols (two of them are Las Vegas protocols)
- Two open problems

Four Variables

Function	Name	Protocol	Comm itted?	#Shuf- fles	Other Functions in the Same Class
S_{ϕ}^{3}	Constant	trivial			$S^3_{\{0,1,2,3\}}$
$S^{3}_{\{1,3\}}$	XOR	Mizuki-Sone, 2009	~	3	$S^3_{\{0,2,4\}}$
$S^{3}_{\{4\}}$	AND	Mizuki, 2016	X	5	$S^3_{\{0\}}, S^3_{\{0,1,2,3\}}, S^3_{\{1,2,3,4\}}$
$S^{3}_{\{0,4\}}$	-	R-Itoh, 202 I	~	3	$S^3_{\{1,2,3\}}$
$S^{3}_{\{2\}}$	-		X	3	$S^3_{\{0,1,3,4\}}$
$S^{3}_{\{1\}}$	-	Shikata et al., 2023	X	≈7	$S^3_{\{3\}}, S^3_{\{0,1,2,4\}}, S^3_{\{0,2,3,4\}}$
$S^{3}_{\{1,2\}}$	-		X	≈8	$S^3_{\{2,3\}}, S^3_{\{0,1,4\}}, S^3_{\{0,2,4\}}$
$S^{3}_{\{0,3\}}$	Div3	R, 2023	X	4	$S^3_{\{1,4\}}, S^3_{\{0,2,3\}}, S^3_{\{1,2,4\}}$
$S^{3}_{\{3,4\}}$	Majority	Open problem			$S^3_{\{0,1\}}, S^3_{\{0,1,2\}}, S^3_{\{2,3,4\}}$
$S^{3}_{\{0,2\}}$	-				$S^3_{\{2,4\}}, S^3_{\{0,1,3\}}, S^3_{\{1,3,4\}}$

More than Four Variables

- In 2022, Shikata et al. proved that there exists a 2n-card protocol to compute any n-variable symmetric function with $n \ge 8$.
- Limits the open problems to n = 4,5,6,7.

More than Four Variables

- *n* = 5
 - 64 functions, 20 classes
 - 7 solved, 13 open
- *n* = 6
 - 128 functions, 36 classes
 - 10 solved, 26 open
- *n* = 7
 - 256 functions, 72 classes
 - 14 solved, 58 open

More than Four Variables

- The number of NPN-equivalence classes is the number of n-bead black-white reversible strings.
- Follows the sequence A005418 in OEIS.
- 1, 2, 3, 6, 10, 20, 36, 72, 136, 272, 528, 1056, ...

Questions and Comments