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Biological networks
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context

The modelisation of neurological networks starts in the 40s (McCulloch
1943)
The modelisation of gene regulatory networks starts in the 60s (Kauffman
1969, Thomas 1973)
Both are applications of automata networks.



4/24

Biological networks Automata networks Parallelisation Tangential cycles Conclusion

context

extracted from D. PA Cohen et al. “Mathematical modelling of molecular pathways enabling tumour cell
invasion and migration”. In: PLoS computational biology 11.11 (2015), e1004571.
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Automata networks
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Definitions
Let Σ be an alphabet. An Automata Network (AN) is a function
F : Σn → Σn, for some n ∈ N.

Example : Σ = {0, 1}, n = 3.
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fa(x) = xb ∨ ¬xc
fb(x) = xa

fc(x) = xb
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Update schedule : ({a, b}, {c})
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fb(x) = xa

fc(x) = xb
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Definitions
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fa(x) = xb ∨ ¬xc
fb(x) = xa

fc(x) = xb

The limit dynamics of F is the subgraph of the dynamics that contains
only the configurations x such that F k(x) = x for some k ∈ N∗.
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Examples
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Updated in parallel.

fa(x) = ¬xb ∨ xc
fb(x) = xa

fc(x) = xb
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Examples
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Update schedule ({a}, {b}, {c}).

fa(x) = ¬xb ∨ xc
fb(x) = xa

fc(x) = xb
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Examples
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Updated in parallel

fa(x) = ¬xa ∨ xb
fb(x) = xa
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Examples
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Update schedule ({b}, {a})

fa(x) = ¬xa ∨ xb
fb(x) = xa
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I Automata networks are dynamical systems

I Deciding if a network has a given attractor is NP-complete

I Various update schedules increase the combinatorial complexity of the
objects

I We would like to reduce this complexity in some cases
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Parallelisation
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Parallelization algorithm
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b
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({h}, {a, c, d, e}, {b})

fa(x) = xa ∨ xd ∨ ¬xh
fb(x) = ¬xa
fc(x) = xb

fd(x) = xc

fe(x) = xa

fh(x) = xe
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Parallelization algorithm
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({h}, {a, c, d, e}, {b})

fa(x) = xa ∨ xd ∨ ¬θh
fb(x) = ¬θa
fc(x) = xb

fd(x) = xc

fe(x) = xa

fh(x) = xe
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Parallelization algorithm
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Parallelization algorithm
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Parallelization algorithm
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({a, b, c, d, e, h})

f ′a(x) = xa ∨ xd ∨ ¬xe
f ′b(x) = ¬(xa ∨ xd ∨ ¬xe)
f ′c(x) = xb

f ′d(x) = xc

f ′e(x) = xa

f ′h(x) = xe
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I Our contribution is an algorithm that simplifies the result of the
parallelization.

I It operates following simple rules:

I if two automata have the same local function (up to an operation) then
we remove one of them,

I if an automaton has no influence over the network we remove it.

I In the worst case, running this algorithm requires solving a polynomial
amount of CoNP-complete problems.
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Size reduction algorithm
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f ′a(x) = xa ∨ xd ∨ ¬xe
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f ′e(x) = xa
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Size reduction algorithm
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({a, c, d, e})

f ′a(x) = xa ∨ xd ∨ ¬xe
f ′c(x) = ¬xa
f ′d(x) = xc

f ′e(x) = xa
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Size reduction algorithm

a

d
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({a, c, d})

f ′a(x) = xa ∨ xd ∨ ¬xc
f ′c(x) = xa

f ′d(x) = ¬xc
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Tangential cycles
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Tangencial cycles: definitions

Definition
Tangencial cycles are ANs composed of cycles which intersect on a segment
called the tangent.

Despite their simple definition, the behavior of tangencial cycles is mostly
not understood.
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Tangencial cycles: examples
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({h}, {a, c, d, e}, {b})

fa(x) = xa ∨ xd ∨ ¬xh
fb(x) = ¬xa
fc(x) = xb

fd(x) = xc

fe(x) = xa

fh(x) = xe
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Tangencial cycles: examples
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({a, c, d, e})

f ′a(x) = xa ∨ xd ∨ ¬xe
f ′c(x) = ¬xa
f ′d(x) = xc

f ′e(x) = xa
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Tangencial cycles: results

I Bloc sequential tangencial cycles taken through our algorithm always
result in smaller parallel tangencial cycles.

I This implies that a complete characterisation of the parallel case is
also a complete characterisation of the bloc-sequential cases.

For example, the attractors of double disjunctive cycles are characterised in
parallel (M. Noual. “Updating Automata Networks”. PhD thesis. École
Normale Supérieure de Lyon, 2012). Our contribution extends this result
to the bloc-sequential case.
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Conclusion
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In conclusion,

I ANs are dynamical systems, we want to understand their limit
behaviour

I We are looking for cases where we can count attractors in polynomial
time

I Counting has nontrivial solutions even in the simplest families we know

In the future,

I We want to find more families that can be counted in polynomial time

I Candidates include intersections of more cycles, and chains of cycles

Thank you!
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