Impact of Quantum Computing to Cryptography Part II

Ludovic Perret (ludovic.perret@lip6.fr)

Sorbonne University/CNRS Co-founder of CryptoNext Security

Computability in Europe 2023, 24th-28th July 2023, Batumi, Georgia

Introduction & Organization of the Tutorial

Post-Quantum Cryptography

Cryptosystems secure both against classical and quantum adversaries

Part I. Cryptography in the era to quantum technologies

Part II. On the use of quantum algorithms in cryptanalysis

Polynomial System Solving over Finite Fields (PoSSoq)

q, size of field *n*, nb. of variables *m*, nb. of equations

PoSSo_q

Input. non-linear polynomials $p_1, \ldots, p_m \in \mathbb{F}_q[x_1, \ldots, x_n]$ **Question.** Find – if any – $(z_1, \ldots, z_n) \in \mathbb{F}_q^n$ such that:

$$\begin{cases} p_1(z_1,\ldots,z_n)=0\\ \vdots\\ p_m(z_1,\ldots,z_n)=0 \end{cases}$$

Outline

- PoSSo_q and Gröbner bases
- Algebraic cryptanalysis of LWE with Binary Errors
- Polynomial System Solving (PoSSoq) in the Quantum Setting

Outline

Algebraic Cryptanalysis

- PoSSo_q and Gröbner bases
- 3 Algebraic cryptanalysis of LWE with Binary Errors
- Polynomial System Solving (PoSSoq) in the Quantum Setting

Algebraic cryptanalysis

General approach to asses the security of post-quantum schemes

Idea

- □ **Model** a cryptosystem as a set of algebraic equations over a finite field (PoSSo_q problem)
- □ Try to **solve** this system and/or **estimate** the difficulty of solving
 - N. Courtois, J. Ding, J.-C. Faugère, P.A. Fouque, H. Gilbert, L. Goubin, W. Meier, J. Patarin, I. Semaev, A. Shamir, B.-Y. Yang, ...

Algebraic cryptanalysis

Multivariate : intrinsic tool Code-based : important tool Lattice-based : alternative tool for asympt. hardness Hash-based : minor impact

- 3 Algebraic cryptanalysis of LWE with Binary Errors
- Polynomial System Solving (PoSSoq) in the Quantum Setting

Linear system	Non-linear system
$ (\ell_1(x_1,\ldots,x_n)=0) $	$\int p_1(x_1,\ldots,x_n)=0$
{	
$\left(\ell_m(x_1,\ldots,x_n)=0 \right)$	$\int p_m(x_1,\ldots,x_n)=0$
$V = \operatorname{Vec}_{\mathbb{F}_q} \left(\ell_1, \ldots, \ell_m \right)$	$\mathcal{I} = \langle p_1, \ldots, p_m \rangle$
Gauss reduction of V	Gröbner basis $\mathcal I$

□ A monomial is a power product of the variables, i.e. an element of the form $x_1^{\alpha_1} \cdots x_n^{\alpha_n} (x_1 x_2 x_3^{10} \text{ or } x_1 x_2^2 x_3)$

Definition [B. Buchberger'1965]

Let \prec be a mon. ordering (LEX or DRL) and $\mathcal{I} \subseteq \mathbb{F}_q[x_1, \ldots, x_n]$. $G \subset \mathcal{I}$ is a Gröbner basis iff:

 $\forall f \in \mathcal{I} \quad \exists g \in G \text{ such that } \text{LeadingMon}_{\prec}(g) \mid \text{LeadingMon}_{\prec}(f).$

□ A monomial is a power product of the variables, i.e. an element of the form $x_1^{\alpha_1} \cdots x_n^{\alpha_n} (x_1 x_2 x_3^{10} \text{ or } x_1 x_2^2 x_3)$

Definition [B. Buchberger'1965]

Let \prec be a mon. ordering (LEX or DRL) and $\mathcal{I} \subseteq \mathbb{F}_q[x_1, \ldots, x_n]$. $G \subset \mathcal{I}$ is a Gröbner basis iff:

 $\forall f \in \mathcal{I} \quad \exists g \in G \text{ such that } \text{LeadingMon}_{\prec}(g) \,|\, \text{LeadingMon}_{\prec}(f).$

 $\Box \ x_1^{\alpha_1} \cdots x_n^{\alpha_n} \prec_{\text{LEX}} x_1^{\beta_1} \cdots x_n^{\beta_n} \text{ if the first left-most nonzero entry of } \beta - \alpha \text{ is positive}$

$$x_1 x_2 x_3^{10} \prec_{\text{LEX}} x_1 x_2^2 x_3$$

 $\Box \ x_1^{\alpha_1} \cdots x_n^{\alpha_n} \prec_{\text{DRL}} x_1^{\beta_1} \cdots x_n^{\beta_n} \text{ if } \sum_{i=1}^n \alpha_i < \sum_{i=1}^n \beta_i \text{ , or } \\ \sum_{i=1}^n \alpha_i = \sum_{i=1}^n \beta_i \text{ and the right-most nonzero entry of } \beta - \alpha \text{ is negative}$

$$x_1 x_2 x_3^{10} \succ_{\text{DRL}} x_1 x_2^2 x_3$$

□ A monomial is a power product of the variables, i.e. an element of the form $x_1^{\alpha_1} \cdots x_n^{\alpha_n} (x_1 x_2 x_3^{10} \text{ or } x_1 x_2^2 x_3)$

Definition [B. Buchberger'1965]

Let \prec be a mon. ordering (LEX or DRL) and $\mathcal{I} \subseteq \mathbb{F}_q[x_1, \ldots, x_n]$. $G \subset \mathcal{I}$ is a Gröbner basis iff:

 $\forall f \in \mathcal{I} \quad \exists g \in G \text{ such that } \text{LeadingMon}_{\prec}(g) \mid \text{LeadingMon}_{\prec}(f).$

Definition

Let
$$\mathbb{F}_q \subseteq \mathbb{L}$$
 and $\mathcal{I} = \langle p_1, \dots, p_m \rangle \subset \mathbb{F}_q[x_1, \dots, x_n]$ be an ideal.

$$V_{\mathbb{L}}(\mathcal{I}) = V_{\mathbb{L}}(p_1, \ldots, p_m) = \{ \mathbf{z} \in \mathbb{L}^n \mid p_i(\mathbf{z}) = 0, \forall i, 1 \leq i \leq m \},\$$

is the \mathbb{L} -variety associated to \mathcal{I} .

Solution Usually, we want $\mathbb{L} = \mathbb{F}_q$, field equations $x_1^q - x_1, \ldots, x_n^q - x_n$ implicitly added

□ A monomial is a power product of the variables, i.e. an element of the form $x_1^{\alpha_1} \cdots x_n^{\alpha_n} (x_1 x_2 x_3^{10} \text{ or } x_1 x_2^2 x_3)$

Definition [B. Buchberger'1965]

Let \prec be a mon. ordering (LEX or DRL) and $\mathcal{I} \subseteq \mathbb{F}_q[x_1, \ldots, x_n]$. $G \subset \mathcal{I}$ is a Gröbner basis iff:

 $\forall f \in \mathcal{I} \quad \exists g \in G \text{ such that } \text{LeadingMon}_{\prec}(g) \mid \text{LeadingMon}_{\prec}(f).$

Property

Let $\mathcal{I} = \langle p_1, \dots, p_m \rangle \subset \mathbb{F}_q[x_1, \dots, x_n]$ be a polynomial ideal. If $\# V(\mathcal{I}) = 1$, then – for any admissible monomial ordering – the (reduced) Gröbner basis *G* of \mathcal{I} is as follows:

$$\{x_1 - a_1, \ldots, x_n - a_n\}$$
, with $(a_1, \ldots, a_n) \in (\overline{\mathbb{F}_q})^n$.

Zero-dimensional strategy

Zero-dimensional strategy

Computing a Gröbner basis

B. Buchberger.

"An Algorithm for Finding the Basis Elements of the Residue Class Ring of a Zero Dimensional Polynomial Ideal", PhD thesis, 1965.

J.-C. Faugère.

"A New Efficient Algorithm for Computing Gröbner Bases (F4).

Journal of Pure and Applied Algebra, 1999.

J.-C. Faugère.

"A New Efficient Algorithm for Computing Gröbner bases Without Reduction to Zero (F5)."

ISSAC, 2002.

C. Eder, J.-C. Faugère.

"A Survey on Signature-Based Gröbner Basis Computations". ArXiv, April 2014.

Figure: Bruno Buchberger

Gröbner basis & Linear algebra

Macaulay matrix $\mathcal{M}_{D,m}^{\text{acaulay}}$ of degree D

- \Box homogeneous $p_1, \ldots, p_m \in \mathbb{F}_q[x_1, \ldots, x_n]$
- \Box \prec monomial ordering (LEX or DRL)
- \Box $t_{i,j}$ monomials of degree $D \deg(f_i)$

Gröbner basis & Linear algebra

Lazard's theorem

Let $p_1, \ldots, p_m \in \mathbb{F}_q[x_1, \ldots, x_n]$ be a zero-dimensional (homogeneous) system. For *D* big enough, the row-echelon form of $\mathcal{M}_{D,m}^{\mathrm{acaulay}}(p_1, \ldots, p_m)$ contains a Gröbner basis.

Complexity is driven by the maximal degree D_{reg} reached.

Regular/Semi-Regular Sequence [Bardet, Faugère, Salvy, Yang, MEGA'2003]

Let $p_1, \ldots, p_m \in \mathbb{F}_q[x_1, \ldots, x_n]$ be quadratic homogeneous polynomials. The system is *regular* (resp. *semi-regular*) if $m \leq n$ (resp. m > n) and its Hilbert series is:

$$\frac{(1-z^2)^m}{(1-z)^n} = \sum_{i \ge 0} h_i \, z^i.$$

- \square h_i rank defects of $\mathcal{M}_{i,m}^{\text{acaulay}}$
- \mathbb{R} D_{reg} is the index of the first coeff. \leqslant 0 of the Hilbert series.
- ${\tt I}$ Extension to non-homogeneous polynomials \rightarrow homogeneous components of highest degree

Regular/Semi-Regular Sequence [Bardet, Faugère, Salvy, Yang, MEGA'2003]

Let $p_1, \ldots, p_m \in \mathbb{F}_q[x_1, \ldots, x_n]$ be quadratic homogeneous polynomials. The system is *regular* (resp. *semi-regular*) if $m \leq n$ (resp. m > n) and its Hilbert series is:

$$\frac{(1-z^2)^m}{(1-z)^n} = \sum_{i \ge 0} h_i \, z^i.$$

- \mathbb{R} h_i rank defects of $\mathcal{M}_{i,m}^{\text{acaulay}}$
- \mathbb{I} D_{reg} is the index of the first coeff. \leq 0 of the Hilbert series.
- ${\tt I}{\tt S}{\tt S}$ Extension to non-homogeneous polynomials \to homogeneous components of highest degree

Example (n = 5, m = 6, d = 2**)**

$$1 + 5x + 9x^2 + 5x^3 - 4x^4 + \dots$$

Regular/Semi-Regular Sequence [Bardet, Faugère, Salvy, Yang, MEGA'2003]

Let $p_1, \ldots, p_m \in \mathbb{F}_q[x_1, \ldots, x_n]$ be quadratic homogeneous polynomials. The system is *regular* (resp. *semi-regular*) if $m \leq n$ (resp. m > n) and its Hilbert series is:

$$\frac{(1-z^2)^m}{(1-z)^n} = \sum_{i \ge 0} h_i \, z^i.$$

- \mathbb{R} h_i rank defects of $\mathcal{M}_{i,m}^{\mathrm{acaulay}}$
- \mathbb{I} D_{reg} is the index of the first coeff. \leqslant 0 of the Hilbert series.
- ${\tt I}{\tt S}{\tt S}$ Extension to non-homogeneous polynomials \to homogeneous components of highest degree
- Regular sequence exists
- Randomly sampled instances of PoSSo_q behave as regular/semi-regular sequences
- □ Existence of semi-regular sequence is open (Fröberg's conjecture)

Regular/Semi-Regular Sequence [Bardet, Faugère, Salvy, Yang, MEGA'2003]

Let $p_1, \ldots, p_m \in \mathbb{F}_q[x_1, \ldots, x_n]$ be quadratic homogeneous polynomials. The system is *regular* (resp. *semi-regular*) if $m \leq n$ (resp. m > n) and its Hilbert series is:

$$\frac{(1-z^2)^m}{(1-z)^n} = \sum_{i \ge 0} h_i \, z^i.$$

- \mathbb{R} h_i rank defects of $\mathcal{M}_{i,m}^{\text{acaulay}}$
- $^{\mbox{\tiny ISS}}$ $D_{\rm reg}$ is the index of the first coeff. \leqslant 0 of the Hilbert series.
- $\ensuremath{\,\cong}$ Extension to non-homogeneous polynomials \rightarrow homogeneous components of highest degree
- Existence of semi-regular sequence is open (Fröberg's conjecture)
 Finding one explicit example

Macaulay matrix $\mathcal{M}_{D,m}^{\text{acaulay}}$ of degree *D* \mathfrak{M} Regularity \approx algebraic independence of Macaulay matrices \mathfrak{M} Trivial syzygies $p_i p_j = p_j p_i$.

 \Box Let $p_1, \ldots, p_m \in \mathbb{F}_q[x_1, \ldots, x_n]$ be a regular sequence ($n \leq m$).

$$D_{
m reg} = rac{\sum_{i=1}^{m} (d_i - 1) + 1}{2}$$

 \Box $D_{reg} = (n+1)$ for n = m quadratic polynomials.

 \Box Let $p_1, \ldots, p_n, p_{n+1} \in \mathbb{F}_q[x_1, \ldots, x_n]$ be a semi-regular sequence.

$$D_{\rm reg} = (n+1)/2.$$

Asymptotic Expansion [Bardet, Faugère, Salvy, Yang, MEGA'2003] Let $p_1, \ldots, p_m \in \mathbb{F}_q[x_1, \ldots, x_n]$ be a semi-regular system of $m = C \cdot n$ quadratic equations with C > 1 a constant :

$$D_{\mathrm{reg}} \approx \left(\frac{C}{2} - \frac{1}{2} - \sqrt{C(C-1)} \right) n.$$

Global picture [Bardet, Faugère, Salvy, Research Report, 2003]

Let $p_1, \ldots, p_m \in \mathbb{F}_q[x_1, \ldots, x_n]$ be a semi-regular system of *m* quadratic equations:

- solution poly-time complexity if $m = \binom{n+2}{2}$ (Linearization bound)
- solution poly-time complexity if $m = \binom{n+1}{2}$
- sub-exponential complexity if $m = \tilde{O}(n)$
- series exponential complexity if m = O(n) or m = n + Cst

Hybrid approach for solving $PoSSo_q$

PoSSoq

Input. Quadratic non-linear polynomials $p_1, \ldots, p_m \in \mathbb{F}_q[x_1, \ldots, x_n]$ **Question.** Find $(z_1, \ldots, z_n) \in \mathbb{F}_q^n$ such that:

$$p_1(z_1,\ldots,z_n)=0,\ldots,p_m(z_1,\ldots,z_n)=0.$$

L. Bettale, J.-C. Faugère, L. P.

"Solving Polynomial Systems over Finite Fields: Improved Analysis of the Hybrid Approach". ISSAC 2012

Algorithm

For $\mathbf{a} \in \mathbb{F}_q^k$

Specialize variables

 $V \leftarrow V_{\mathbb{F}_q}(\tilde{\mathbf{p}})$

$$\tilde{\mathbf{p}} \leftarrow (\tilde{p}_1(x_1, \dots, x_{n-k}, \mathbf{a}), \dots, \tilde{p}_m(x_1, \dots, x_{n-k}, \mathbf{a}))$$

Solve the sub-systems

If $V \neq \emptyset$ then return $\{(v, \mathbf{a}) \in \mathbb{F}_q^{n-k} \times \mathbb{F}_q^k | v \in V\}$.

Hybrid approach for solving $PoSSo_q$

AlgorithmFor $\mathbf{a} \in \mathbb{F}_q^k$
Specialize variables $\tilde{\mathbf{p}} \leftarrow (\tilde{p}_1(x_1, \dots, x_{n-k}, \mathbf{a}), \dots, \tilde{p}_m(x_1, \dots, x_{n-k}, \mathbf{a}))$ $V \leftarrow V_{\mathbb{F}_q}(\tilde{\mathbf{p}})$ Solve the sub-systems
If $V \neq \emptyset$ then return $\{(v, \mathbf{a}) \in \mathbb{F}_q^{n-k} \times \mathbb{F}_q^k | v \in V\}.$

Intuition

$$\Box$$
 $D_{reg} = (n + 1)$ for $m = n$ quadratic polynomials.

$$\Box$$
 $D_{reg} = (n+1)/2$ for $m = n+1$ quadratic polynomials.

Hybrid approach for solving $PoSSo_q$

Algorithm

For $\mathbf{a} \in \mathbb{F}_q^k$ Specialize variables

$$\begin{split} \tilde{\mathbf{p}} &\leftarrow (\tilde{p}_1(x_1, \dots, x_{n-k}, \mathbf{a}), \dots, \tilde{p}_m(x_1, \dots, x_{n-k}, \mathbf{a}) \\ V &\leftarrow V_{\mathbb{F}_q}(\tilde{\mathbf{p}}) \quad \boxed{\text{Solve the sub-systems}} \\ \text{f } V &\neq \emptyset \text{ then return } \{(v, \mathbf{a}) \in \mathbb{F}_q^{n-k} \times \mathbb{F}_q^k | v \in V \}. \end{split}$$

Complexity

Assuming semi-regularity of the sub-systems, the asymptotic complexity is:

$$O\left(2^{\left(1.38-0.63\omega\,\log_2(q)^{-1}
ight)n\cdot\omega}
ight),$$
 with $2\leqslant\omega\leqslant 3$ and $\log(q)\ll n.$

Asymptotic gain : $O(2^{0.62\omega n})$.

Outline

Algebraic Cryptanalysis

PoSSo_q and Gröbner bases

Algebraic cryptanalysis of LWE with Binary Errors

Polynomial System Solving (PoSSoq) in the Quantum Setting

LWE with Binary Errors

q : size of field n : nb. of variables m : nb. of samples

D. Micciancio, C. Peikert. "Hardness of SIS and LWE with Small Parameters". CRYPTO'13.

BinaryErrorLWE

Input. a random matrix $G \in \mathbb{F}_q^{n \times m}$ and $\mathbf{c} \in \mathbb{F}_q^m$. **Question.** Find – if any – a secret $(\mathbf{s}_1, \dots, \mathbf{s}_n) \in \mathbb{F}_q^n$ such that:

error =
$$\mathbf{c} - (\mathbf{s}_1, \dots, \mathbf{s}_n) \times G \in \{0, 1\}^n$$

Hardness Results

✓ Solving BinaryErrorLWE with $m = n\left(1 + \Omega(1/log(n))\right)$ allows to solve Gap-SVP in the worst-case

Polynomial-time algorithm if $m = O(n^2)$

Algebraic Modelling

BinaryErrorLWE

Input. a random matrix $G \in \mathbb{F}_q^{n \times m}$, and $\mathbf{c} \in \mathbb{F}_q^m$. **Question.** Find – if any – $(\mathbf{s}_1, \dots, \mathbf{s}_n) \in \mathbb{F}_q^n$ such that:

$$\mathbf{c} - (\mathbf{s}_1, \dots, \mathbf{s}_n) \times G = \mathbf{error} \in \{0, 1\}^n.$$

m linear equations in *n* variables over \mathbb{F}_q with binary noise.

Algebraic Modelling

BinaryErrorLWE

Input. a random matrix $G \in \mathbb{F}_q^{n \times m}$, and $\mathbf{c} \in \mathbb{F}_q^m$. **Question.** Find – if any – $(\mathbf{s}_1, \dots, \mathbf{s}_n) \in \mathbb{F}_q^n$ such that:

$$\mathbf{c} - (\mathbf{s}_1, \dots, \mathbf{s}_n) \times G = \mathbf{error} \in \{0, 1\}^n.$$

m linear equations in *n* variables over \mathbb{F}_q with binary noise.

Arora-Ge Modelling

Let
$$P(X) = X(X - 1)$$
:

$$f_1 = P(c_1 - \sum_{j=1}^n s_j G_{j,1}) = 0, \dots, f_m = P(c_m - \sum_{j=1}^n s_j G_{j,m}) = 0.$$

m quadratic equations in *n* variables over \mathbb{F}_q .

Until Now

 $P(X) \in \mathbb{F}_q[X]$ be vanishing on the errors.

Arora-Ge Modelling

Solving <code>BinaryErrorLWE</code> \equiv

$$f_1 = P(c_1 - \sum_{j=1}^n x_j G_{j,1}) = 0, \dots, f_m = P(c_m - \sum_{j=1}^n x_j G_{j,m}) = 0.$$

Arora-Ge Algorithm

BinaryErrorLWE: *m* quadratic equations in *n* variables over \mathbb{F}_q .

✓ **Linearisation** \mapsto polynomial-time algo. when $m = O(n^2)$.

Solving BinaryErrorLWE with Gröbner Bases

Assumption

We assume that the systems occurring in the Arora-Ge modelling are semi-regular.

Rank condition on the Macaulay matrices.

Solving BinaryErrorLWE with Gröbner Bases

Asymptotic Expansion

Let $f_1, \ldots, f_m \in \mathbb{F}_q[x_1, \ldots, x_n]$ be a semi-regular system of $m = C \cdot n$ quadratic equations with C > 1:

$$D_{\mathrm{reg}} \approx \left(\frac{C}{2} - \frac{1}{2} - \sqrt{C(C-1)} \right) n.$$

Theorem

Under the semi-regularity assumption:

If $m = n \left(1 + \frac{1}{\log(n)} \right)$, one can solve BinaryErrorLWE in $\mathcal{O}\left(2^{3.25 \cdot n}\right)$.

If $m = 2 \cdot n$, BinaryErrorLWE can be solved in $\mathcal{O}(2^{1.02 \cdot n})$.

If $m = \mathcal{O}(n \log \log n)$, one can solve BinaryErrorLWE in $\mathcal{O}\left(2^{\frac{3n \log \log n}{8 \log \log n}}\right)$.

Outline

Algebraic Cryptanalysis

- PoSSo_q and Gröbner bases
- 3 Algebraic cryptanalysis of LWE with Binary Errors

Polynomial System Solving (PoSSoq) in the Quantum Setting

Boolean Polynomial System Solving (PoSSo2)

PoSSo₂

Input. quadratic polynomials $p_1, \ldots, p_m \in \mathbb{F}_2[x_1, \ldots, x_n]$ **Question.** Find – if any – $(z_1, \ldots, z_n) \in \mathbb{F}_2^n$ such that:

$$p_1(z_1,\ldots,z_n)=0,\ldots,p_m(z_1,\ldots,z_n)=0$$

□ PoSSo₂ remains NP-hard

Solving PoSSo2 – Classical setting

- Optimized exhaustive search in 4 log₂ 2ⁿ [C. Bouillaguet, C.-Mou Cheng, T. Chou, R. Niederhagen, B-Y. Yang, SAC, 2013]
- BooleanSolve O(2^{0.792n}) [M. Bardet, J.-C. Faugère, B. Salvy, P-J. Spaenlehauer, JoC, 2013], regularity assumption on the input
- Polynomial approximation, O^{*}(2^{0.6943 n}) [I. Dinur, SODA, 2021], no assumption

Boolean Polynomial System Solving (PoSSo2)

Overview

[Schwabe-Westerbaan, SPACE, 2016]

Given
$$\mathbf{p} = (p_1, \dots, p_m) \in \mathbb{F}_2[x_1, \dots, x_n]^m$$
, *F* is the function that returns 1 if $\mathbf{p}(\mathbf{x}^*) = \mathbf{0}$.

Boolean Polynomial System Solving (PoSSo₂)

Solving PoSSo2 – Quantum setting

- Quantum exhaustive search in O(2^{n/2}mn²) [Schwabe-Westerbaan, SPACE, 2016]
- Reduction to quantum linear system solving (HHL) [Chen-Gao, Journal of Systems Science and Complexity, 2018]

Solving PoSSo₂ with probability $\ge 1 - \epsilon$ in:

 $\tilde{O}(\operatorname{poly}(n)\kappa^2\log(1/\epsilon)),$

 κ condition number of a certain (Macaulay) matrix.

 Condition number κ is exponential in the hamming weight of the solution [Ding-Gheorghiu-Gilyén-Hallgren-Li, ArXiv, 2021]

Algorithms beating the quadratic speed-up ?

Key Ideas - BooleanSolve

1/ Combine exhaustive search and Gröbner basis-like computation

L. Bettale, J.-C. Faugère and L. P.

"Solving Polynomial Systems over Finite Fields: Improved Analysis of the Hybrid Approach". ISSAC '12.

R

M. Bardet, J.-C. Faugère, B. Salvy, P.-J. Spaenlehauer. "On the Complexity of Solving Quadratic Boolean Systems". J. Complexity, 2013.

BooleanSolve (k < n)

For
$$\mathbf{a} \in \mathbb{F}_2^k$$

 $\tilde{\mathbf{p}}_{\mathbf{a}} \leftarrow (p_1(x_1, \dots, x_{n-k}, \mathbf{a}), \dots, p_m(x_1, \dots, x_{n-k}, \mathbf{a}))$

If p
_a is consistent

Linear algebra computation with $\omega = 2$ (Las-Vegas variant)

Find $\tilde{\mathbf{z}} = (\tilde{z}_1, \dots, \tilde{z}_{n-k}) \in \mathbb{F}_2^{n-k}$ such that

$$\tilde{p}_a(\tilde{z}) = p(a, \tilde{z}) = 0.$$

Exhaustive search for the remaining variables

Key Ideas - BooleanSolve

2/ Checking consistency with linear algebra

Hilbert's Nullstallensatz

Let $p_1, \ldots, p_m \in \mathbb{F}_2[x_1, \ldots, x_n]$ and $\mathbf{M} = \mathcal{M}_{D,m}^{\text{acaulay}}$ be the corresponding Boolean Macaulay matrix for a large enough degree *D*. It holds that the **linear system**

 $\mathbf{u} \cdot \mathbf{M} = (0, 0, \dots, 0, 1)$ has a solution

 \Leftrightarrow non-linear system $p_1 = 0, \dots, p_m = 0$ has no solution in \mathbb{F}_2^n .

Key Ideas - BooleanSolve

M. Giesbrecht , A. Lobo and B. D. Saunders. "Certifying Inconsistency of Sparse Linear Systems". ISSAC, 1997.

GLS algorithm – Complexity (Las-Vegas)

It checks the consistency of an $N \times N$ matrix over \mathbb{F}_q with :

- \Box $O(N \log N)$ evaluations of black-boxes and
- □ additional $O(N^2 \log^2 N \log \log N)$ operations.

Proven fast linear algebra in quadratic-time

QuantumBooleanSolve

BooleanSolve (k < n)

For $\mathbf{a} \in \mathbb{F}_2^k$ $\square \tilde{\mathbf{p}}_{\mathbf{a}} \leftarrow (\tilde{p}_1(x_1, \dots, x_{n-k}, \mathbf{a}), \dots, \tilde{p}_m(x_1, \dots, x_{n-k}, \mathbf{a}))$

If p
_a is consistent

Solution with $\omega = 2$ (Las-Vegas variant)

□ Find $\tilde{\mathbf{z}} = (\tilde{z}_1, \dots, \tilde{z}_{n-k}) \in \mathbb{F}_2^{n-k}$ such that

$$\tilde{p}_a(\tilde{\boldsymbol{z}}) = p(\boldsymbol{a},\tilde{\boldsymbol{z}}) = \boldsymbol{0}.$$

Exhaustive search for the remaining variables

QuantumBooleanSolve (k < n)

 $\hfill \begin{tabular}{ll} \hline \hfill \begin{tabular}{ll} \begin{tabular}{ll} \hline \hfill \begin \begin{tabular}{ll} \hline \hfill \begin{ta$

Quantum circuit for Giesbrecht-Lobo-Saunders algorithm

□ Find $\tilde{\mathbf{z}} = (\tilde{z}_1, \dots, \tilde{z}_{n-k}) \in \mathbb{F}_2^{n-k}$ such that $\tilde{\mathbf{p}}_{\mathbf{a}}(\tilde{\mathbf{z}}) = \mathbf{p}(\mathbf{a}, \tilde{\mathbf{z}}) = \mathbf{0}$ with Schwabe-Westerbaan quantum exhaustive search

QuantumBooleanSolve

QuantumBooleanSolve (k < n)

□ Find $\mathbf{a} \in \mathbb{F}_2^k$ such that $\tilde{\mathbf{p}}_a$ is **consistent** with a Grover-like search ^{IN} Quantum circuit for Giesbrecht-Lobo-Saunders algorithm

□ Find $\tilde{\mathbf{z}} = (\tilde{z}_1, ..., \tilde{z}_{n-k}) \in \mathbb{F}_2^{n-k}$ such that $\tilde{\mathbf{p}}_{\mathbf{a}}(\tilde{\mathbf{z}}) = \mathbf{p}(\mathbf{a}, \tilde{\mathbf{z}}) = \mathbf{0}$ with Schwabe-Westerbaan quantum exhaustive search

Complexity $(m = n, k = \gamma n)$

Under a regularity assumption, QuantumBooleanSolve has complexity :

$$O(2^{rac{k}{2}} imes (2^{2F_{lpha}(\gamma)+\epsilon)n})=O(2^{(rac{1-\gamma}{2}+2F_{lpha}(\gamma)+\epsilon)n}),$$

where $\gamma = 1 - \frac{k}{n}$, $F_{\alpha}(\gamma) = -\gamma \log_2(D^D(1-D)^{(1-D)})$ with $D = M(\frac{1}{\gamma})$, and

$$M(x) = -x + \frac{1}{2} + \frac{1}{2}\sqrt{2x^2 - 10x - 1 + 2(x+2)\sqrt{x(x+2)}}.$$

QuantumBooleanSolve

Complexity ($m = n, k = \gamma n$)

Under a regularity assumption, QuantumBooleanSolve has complexity :

$$O(2^{\frac{k}{2}} \times (2^{2F_{\alpha}(\gamma)+\epsilon)n}) = O(2^{(\frac{1-\gamma}{2}+2F_{\alpha}(\gamma)+\epsilon)n}),$$

where $\gamma = 1 - \frac{k}{n}$, $F_{\alpha}(\gamma) = -\gamma \log_2(D^D(1-D)^{(1-D)})$ with $D = M(\frac{1}{\gamma})$, and

$$M(x) = -x + \frac{1}{2} + \frac{1}{2}\sqrt{2x^2 - 10x - 1 + 2(x+2)\sqrt{x(x+2)}}.$$

BooleanSolve

$$O(2^{0.462 n})$$
 for solving PoSSo₂

Square root of
$$O(2^{n \cdot \frac{0.792}{2}}) = O(2^{0.396n})$$

QuantumMQSolve

Generalization for any q > 3

Complexity $(m = n, k = \gamma n)$

$$H(p) = -p \log_2(p) - (1 - p) \log_2(1 - p), \text{ and}$$

$$M^q(x) = x - \frac{1}{2} - \sqrt{x(x - 1)}.$$

$$F^q_\alpha(\gamma) = \left(\gamma + M^q(\alpha/\gamma)\right) H\left(\frac{\gamma}{\gamma + M^q(1/\gamma)}\right).$$

For any $\epsilon > 0$, QuantumMQSolve has expected complexity:

$$O(2^{(\log_2(q)\frac{1-\gamma}{2}+2F^q_\alpha(\gamma)+\epsilon)n}).$$

The asymptotic complexity is:

$$O\left(2^{\left(2.76-2.48\log_2(q)^{-1}\right)n}
ight)$$
, assuming $\log(q)\ll n$.