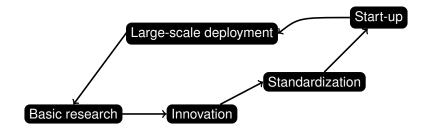
Impact of Quantum Technologies to Cryptography Tutorial – Part I

Ludovic Perret (ludovic.perret@lip6.fr)

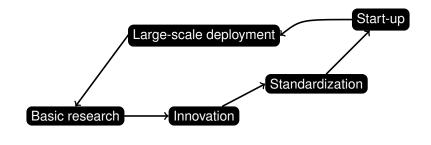
Sorbonne University/CNRS Co-founder of CryptoNext Security

Computability in Europe 2023, 24th-28th July 2023, Batumi, Georgia



Introduction & Organization of the Tutorial

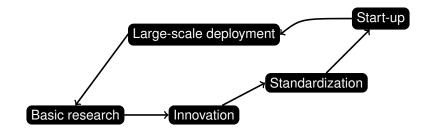
Post-Quantum Cryptography


Cryptosystems secure both against classical and quantum adversaries

Introduction & Organization of the Tutorial

Post-Quantum Cryptography

Cryptosystems secure both against classical and quantum adversaries



Part I. Cryptography in the era to quantum technologies

Introduction & Organization of the Tutorial

Post-Quantum Cryptography

Cryptosystems secure both against classical and quantum adversaries

Part I. Cryptography in the era to quantum technologies

Part II. On the use of quantum algorithms in cryptanalysis

Part III. A zoom on the design of post-quantum signature schemes

Cryptography Warm-Up

3 Transition toward quantum-resistant infrastructure

Outline

Cryptography Warm-Up

Quantum Impact

3) Transition toward quantum-resistant infrastructure

The basic goal of cryptography

Secure communication

internet, phone line, ...

Alice

Bob

Information security objectives

confidentiality	keeping information secret from all but those
	who are authorized to see it
integrity	ensuring information has not been altered
	by unauthorized or unknown means
authentication	corroborating the source of information
anonymity	concealing the identity of an entity involved
	in some process
non-repudiation	preventing the denial of previous
	commitments or actions
etc	

Cryptography in the old time

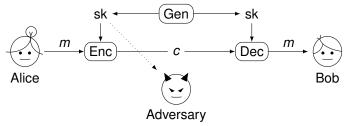


Figure: Enigma machine

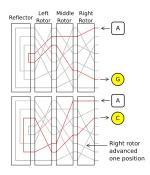


Figure: Enigma principle

Cryptography in the old time

Figure: Enigma machine

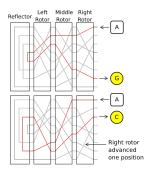


Figure: Enigma principle

Reputed unbreakable

The rise of computers

Figure: Alan Turing

Figure: Turing's computer

Full cryptanalysis of Enigma (and similar mechanical machines)

Technology took cryptography down

How to formalize security ?

Figure: Claude Shannon

Intuition. Attacker should not be able to compute any information about *m*

Definition

An encryption scheme is **perfectly secret** (or Information Theoretically Secure, ITS) if for every random variable *M*, every message $m \in \mathcal{M}$ and every ciphertext $c \in C$ with Pr(C = c) > 0:

 $\Pr(M = m) = \Pr(M = m | C = c)$

A perfectly secure scheme: one-time pad

Description

□ Let $\ell \in \mathbb{N}$ be a parameter and \oplus denotes component-wise XOR Message space $\mathcal{M} = \{0, 1\}^{\ell}$ Key space $\mathcal{K} = \{0, 1\}^{\ell}$

 \Box Vernam's cipher: Enc(K, m) = $m \oplus K$ and Dec(K, c) = $c \oplus K$

Figure: Red phone

- One-time pad is perfectly secret!
- Each key cannot be used more than once!
- Key is as long as the message
- One time-pad is optimal in the class of perfectly secret schemes

Problems

□ the plaintexts and keys may be extremely long

Problems

the plaintexts and keys may be extremely long

ldea

- Design ciphers that work on small blocks
- Expand the encryption key from a fixed-size secret-key

ldea

- Design ciphers that work on small blocks
- Expand the encryption key from a fixed-size secret-key

Description

$$\begin{array}{lll} {\sf Enc}_{{\cal K}}(m) & := & {\sf Enc}({\cal K},m): \{0,1\}^{\lambda} \times \{0,1\}^n \to \{0,1\}^n \\ {\sf Enc}_{{\cal K}}^{-1}(c) & := & {\sf Dec}_{{\cal K}}(c) = {\sf Dec}({\cal K},c): \{0,1\}^{\lambda} \times \{0,1\}^n \to \{0,1\}^n \end{array}$$

 $\forall K, \forall m : \mathsf{Dec}_{\kappa}(\mathsf{Enc}_{\kappa}(m)) = m$

Description

$$\begin{array}{lll} {\sf Enc}_{{\cal K}}(m) & := & {\sf Enc}({\cal K},m): \{0,1\}^{\lambda} \times \{0,1\}^n \to \{0,1\}^n \\ {\sf Enc}_{{\cal K}}^{-1}(c) & := & {\sf Dec}_{{\cal K}}(c) = {\sf Dec}({\cal K},c): \{0,1\}^{\lambda} \times \{0,1\}^n \to \{0,1\}^n \end{array}$$

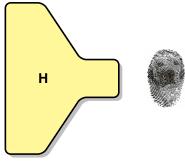
$\forall K, \forall m : \mathsf{Dec}_{K}(\mathsf{Enc}_{K}(m)) = m$

Data Encryption Standard (DES)

- Defined by US National Bureau of Standards, 1976
- □ Key length : 56 bits
- Block-size : 64 bits
- Complete deprecation, National Institute of Standards (NIST), 2017

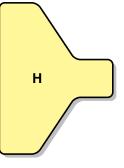
Advanced Encryption Standard (AES)

- Defined by NIST, 2001
- open call for proposals, competitive process
- □ Key length : 128/192/256 bits
- □ block-size : 128 bits
- Widely deployed


Hash functions

Hash functions compute fingerints

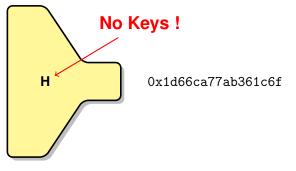
Various uses


Hash functions

Hash functions compute fingerints

Various uses

0x1d66ca77ab361c6f


Hash functions

Hash functions compute fingerints

Various uses

Public-key cryptography

Limitations of symmetric cryptography

- Key-distribution needs physical meeting
- The number of keys for k users is $\Theta(k^2)$

Public-key cryptography

anyone can lock it

the key is needed to unlock

Diffie and Hellman, 1976

- The concept, no implementation
- A protocol for key-exchange

Diffie-Hellman (DH) key-exchange

 (\mathbb{G},\cdot) a finite cyclic group; $\langle g
angle = \mathbb{G}$

$$y_b = g^b$$

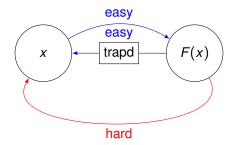
Alice

 $\downarrow K_a = y_b^a$

 $\downarrow \\ K_b = y_a{}^b$

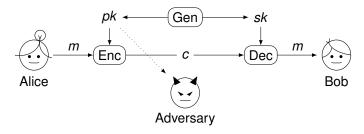
Bob

Eve

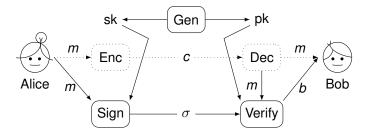

 $K_a = y_b{}^a = (g^b)^a = g^{ab} = (g^a)^b = y_a{}^b = K_b$

Computational security

Discrete Logarithm problem


- \Box Given a cyclic group (\mathbb{G}, g) and $y \in \mathbb{G}$
- **\Box** Find integer *s* such that $y = g^s$
- Assumption. It should be computationally difficult to find s from y
- How to choose $\mathbb{G} : \mathbb{G} = (\mathbb{Z}/n\mathbb{Z}^{\times}, \cdot)$ for some integer *p* or elliptic curves
- Security level. Base-2 logarithm of the complexity of the best algorithm
 - Symmetric cryptography : security level given by the bit-size of the secret-key, typically 128/192/256
 - Public-key cryptography : same, more tricky analysis

Trapdoor function: is easy to compute, difficult to inverse without special information, the *"trapdoor"*.


Trapdoor function: is easy to compute, difficult to inverse without special information, the *"trapdoor"*.

- A Public-Key Encryption (PKE) scheme can be constructed from any trapdoor permutation
- Key-Encapsulation Mechanism (KEM) : key-exchange using a PKE

Trapdoor function: is easy to compute, difficult to inverse without special information, the "*trapdoor*".

 A Digital Signature Scheme (DSS) can be constructed from any trapdoor permutation.

Trapdoor function: is easy to compute, difficult to inverse without special information, the *"trapdoor"*.

FactorizationGiven two primes p and q.easy to compute $N = p \times q$ hard to get p and q from N(factorization)

Key Size (Bits) Comparison

AES	RSA (N)/DH(p)	ECC (order q)
56	512	112
80	1024	160
112	2048	224
128	3072	256
192	7680	384
256	15360	512

□ Factorization Record, RSA829 [Boudot, Thomé, Gaudry, Heniniger, Zimmermann, 2020].

Limitation of public-key cryptography

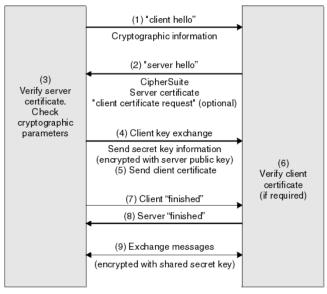
□ It is order of magnitude slower than secret-key cryptography

Limitation of public-key cryptography

□ It is order of magnitude slower than secret-key cryptography

Hybrid encryption (KEM/DEM paradigm)

- Use public-key cryptography to exchange keys
- □ then secret-key cryptography for protecting large traffic


Hybrid encryption (KEM/DEM paradigm)

- Use public-key cryptography to exchange keys
- □ then secret-key cryptography for protecting large traffic

confidentiality	block cipher (AES128)	
integrity	Hash functions (SHA2/SHA3)	
authentication	Message Authentication Code (MAC)	
	symmetric-key primitive	
	can be constructed from a hash function	
authentication	Certificate	
	public-key primitive	
	roughly public-key +signature by a TTP	

SSL Client

SSL Server

Cryptography is a commodity

Cryptography Warm-Up

Transition toward quantum-resistant infrastructure

Quantum threat to secret-key cryptography (1/2)

Grover's algorithm

 $\frac{\pi}{4}$

$$\Box F: \{0,1\}^n \to \{0,1\}$$

 $\frac{2^n}{F^{-1}(1)}$

□ Find
$$\mathbf{x}^* \in \{0, 1\}^n$$
 such that $F(\mathbf{x}^*) = 1$

evaluations of F as a quantum circuit

Quantum threat to secret-key cryptography (1/2)

□ Given $(m, c = \text{Enc}(K, m)) \in \{0, 1\}^n \times \{0, 1\}^n$ □ $F : \{0, 1\}^\lambda \rightarrow \{0, 1\}$ is the function that returns 1 if $c = \text{Enc}(K^*, m)$.

Quantum threat to secret-key cryptography (1/2)

□ Given $(m, c = \text{Enc}(K, m)) \in \{0, 1\}^n \times \{0, 1\}^n$ □ $F : \{0, 1\}^\lambda \rightarrow \{0, 1\}$ is the function that returns 1 if $c = \text{Enc}(K^*, m)$.

Impact

Quantum exhaustive search in $O(\sqrt{2^{\lambda}})$ calls to F

- Exponential speedup toward classical approaches
- ullet pprox double the key-length

Resource estimates

V. Gheorghiu, M. Mosca.

"Benchmarking the Quantum Cryptanalysis of Symmetric, Public-Key and Hash-Based Cryptographic Schemes." arXiv.org 2019.

Quantum threat to secret-key cryptography (1/2)

□ Given $(m, c = \text{Enc}(K, m)) \in \{0, 1\}^n \times \{0, 1\}^n$ □ $F : \{0, 1\}^\lambda \rightarrow \{0, 1\}$ is the function that returns 1 if $c = \text{Enc}(K^*, m)$.

Impact

Quantum exhaustive search in $O(\sqrt{2^{\lambda}})$ calls to F

- Exponential speedup toward classical approaches
- ullet pprox double the key-length

Resource estimates

V. Gheorghiu, M. Mosca.

"Benchmarking the Quantum Cryptanalysis of Symmetric, Public-Key and Hash-Based Cryptographic Schemes." arXiv.org 2019.

Quantum threat to secret-key cryptography (2/2)

Beyond Grover

 M. Kaplan, G. Leurent, A. Leverrier, M. Naya-Plasencia.
 "Breaking Symmetric Cryptosystems Using Quantum Period Finding." CRYPTO 2016.

Simon's problem

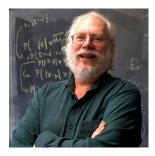
$$\Box F: \{0,1\}^n \to \{0,1\}$$

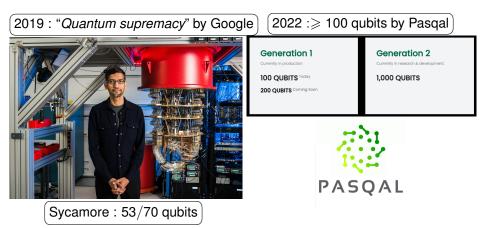
□ Find $\mathbf{s} \in \{0, 1\}^n$ such that $F(\mathbf{x} \oplus \mathbf{s}) = F(\mathbf{x})$

quantum polynomial-time

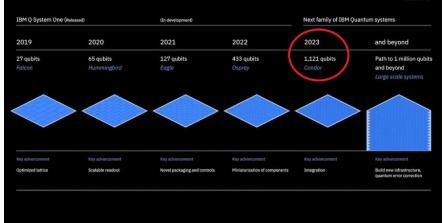
Quantum threat to public-key cryptography

(Large) Quantum computers will be able break current public-key cryptography




Shor's algorithm

Polynomial-time quantum algorithms for RSA/Diffie-Hellman


 $\mathrm{RSA1024}-\mathrm{classic}\approx400$ years

 $\mathrm{RSA1024}$ – quantum pprox hours

Scaling IBM Quantum technology

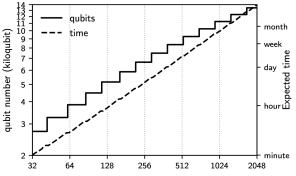
TRM

C. Gidney, M. Ekera.

"How to factor 2048 bit ${\rm RSA}$ integers in 8 hours using 20 million noisy qubits."

Quantum, 2021.

			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				ume	Qubits	Runtime			
	. 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.	Retry	(megaqu	ibitdays)	(megaqubits)	(hours)
n	n_e	d_1	d_2	δ_{off}	c_{mul}	c_{exp}	$c_{\rm sep}$		per run	expected	per run	per run
1024	40	15	27	5	5	5	1024	6%	0.5	0.5	9.7	1.3
2048	- 41	15	27	4	5	5	1024	31%	4.1	5.9	20	5.1
3072	-	17	29	6	4	5	1024	9%	19	21	38	12
4096	171	17	31	9	4	5	1024	5%	48	51	55	22
8192	2	19	33	4	4	5	1024	5%	480	510	140	86
12288	<i>u</i>)	19	33	3	4	5	1024		1700	1900	200	200
16384	с С	19	33	4	4	5	1024	24%	3900	5100	270	350


Extrapolating (paranoid)

- 9 years for RSA2048
- 8 years for RSA1024
- Time for a cryptographic transition 5/10 years

E. Gouzien, N. Sangouard

"Factoring 2048-bit ${\rm RSA}$ integers in 177 days with 13436 qubits and a multimode memory."

Physical Review Letters, 2021.

Have Chinese scientists really cracked RSA encryption with a quantum computer?

The researchers say they could crack 2048-bit RSA using a quantum computer with a few hundred qubits. Not everyone is convinced.

Bao Yan et al.

"Factoring integers with sublinear resources on a superconducting quantum processor." ArXiv 2022.

Adi Shamir predictions - 2016

"There will be no full size quantum computers capable of factoring RSA keys".

Time bomb effect

Harvest now, decrypt later

Time bomb effect

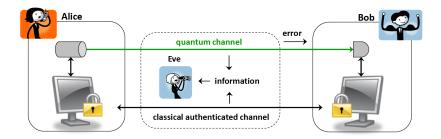
Connected objects with long life cycle

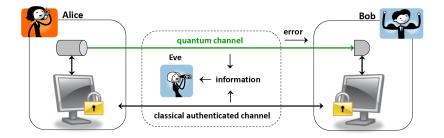
Outline

Cryptography Warm-Up

2 Quantum Impact

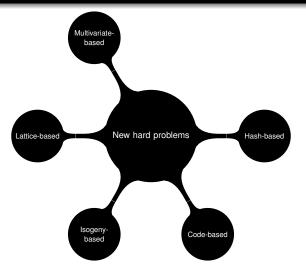
3 Transition toward quantum-resistant infrastructure


A risk perceived as major



Quantum-Key Distribution (QKD)

- Let two channels : authenticated classical and quantum
- **Unconditional security** based on quantum physics
 - □ Practical limitations : distance, cost, ...


National Security Agencies (French ANSSI, UK GCHQ, US NSA,...) usually argue **against** current deployment of QKD

National Security Agencies (French ANSSI, UK GCHQ, US NSA,...) usually argue **against** current deployment of QKD

- □ Out-of-band distribution of a pre-shared key for ITS MAC authentication
- □ Key expansion with QKD
- □ Encryption of traffic with a block-cipher (**computational** assumption)

Post-Quantum Cryptography (PQC)

- □ Computational security based on new hard algorithmic problems
- Natural integration into security protocols

Polynomial System Solving over Finite Fields (PoSSoq)

q, size of field n, nb. of variables m, nb. of equations

PoSSo_q

Input. non-linear polynomials $p_1, \ldots, p_m \in \mathbb{F}_q[x_1, \ldots, x_n]$ **Question.** Find – if any – $(z_1, \ldots, z_n) \in \mathbb{F}_q^n$ such that:

 $\begin{cases} p_1(z_1,\ldots,z_n)=0\\ \vdots\\ p_m(z_1,\ldots,z_n)=0 \end{cases}$

PoSSo_q is NP-hard [Garey-Johnson, 1979]

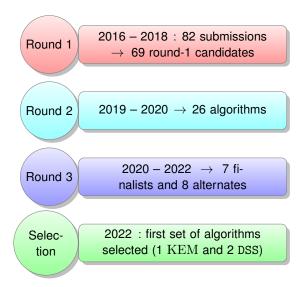
Polynomial System Solving over Finite Fields (PoSSoq)

q, size of field n, nb. of variables m, nb. of equations

PoSSo_q

Input. non-linear polynomials $p_1, \ldots, p_m \in \mathbb{F}_q[x_1, \ldots, x_n]$ **Question.** Find – if any – $(z_1, \ldots, z_n) \in \mathbb{F}_q^n$ such that:

 $\begin{cases} p_1(z_1,\ldots,z_n)=0\\ \vdots\\ p_m(z_1,\ldots,z_n)=0 \end{cases}$


PoSSo_q is NP-hard [Garey-Johnson, 1979]

Foundation

 NP problem cannot be solved in poly-time by a quantum Turing machine.

C. H. Bennett, E. Bernstein, G. Brassard and U. V. Vazirani. "Strengths and Weaknesses of Quantum Computing". SIAM J. Comput., 1997.

NIST post-quantum standardization process

NIST post-quantum standardization process

Post-Quantum Cryptography (PQC) standardization process

First PQC standards

2017 : NIST started a standardization process for PQC

2022 : first set of post-quantum standards

1 lattice-based KEM (Kyber)

3 signature schemes : 2 lattice-based

(Dilithium/Falcon) and 1 hash-based (Sphincs+)

2023/2024 : Official standards

Performances

AES	RSA (N) /DH (p)	ECC (order q)
80	1024	160
112	2048	224
128	3072	256

Figure: Key-sizes (bits)

Name	Size (bytes)	Performance (cycles) KEYGEN ENCAPSULATE DECAPSULATE					
	#pk	#ct	KEYGEN	ENCAPSULATE	DECAPSULATE			
Kyber512	800	768	33 856	45 200	34 572			

Performances

AES	RSA (N) /DH (p)	ECC (order q)
80	1024	160
112	2048	224
128	3072	256

Figure: Key-sizes (bits)

_									
	Name	Size (bytes) #pk #ct		Performance (cycles) KEYGEN ENCAPSULATE DECAPSULATE					
-	Kyber512	800	768	33 856	45 200		34 572		
	Name	Size (bytes)	Performance (cycles)					
	Name	#pk	#sig	KEYGEN		SIGN		Verif	Y
Dil	lithium2 1 312		2 430	124 0	124 031		013	118 41	2
Fa	lcon512	897	666	18 722	000	386 (678	82 34	0
SPHINCS+s		32	7 856	144 000	000	1 100 00	000 000	1 190 0	00

A boom in PQC standardization – cryptography

Standardization for basic PQC primitives

- NIST Round-4 for additional KEM (since 2022)
- NIST call for additional signature schemes (since 2023)
- ISO JTC 1/SC 27/WG 2 Larger portfolio of PQC algorithms than NIST standards

New NIST call for digital signature schemes

NIST.

"Call for Additional Digital Signature Schemes for the Post-Quantum Cryptography Standardization Process." October 2022.

More diversities in the computational assumptions Short signature sizes Deadline, June 1st, 2023 50 submissions (23

submissions for round-1)

National Institute of Standards and Technology

A boom in PQC standardization – cryptography

Standardization for basic PQC primitives

- NIST Round-4 for additional KEM (since 2022)
- NIST call for additional signature schemes (since 2023)
- □ IS0 JTC 1/SC 27/WG 2
 - Larger portfolio of PQC algorithms than NIST standards

Standardization of advanced PQC

Upcoming NIST call for Multi-Party Threshold Schemes

- Building blocks for Privacy-Enhancing Technologies
- Homomorphic encryp., threshold signature schemes,

National Institute of Standards and Technology