Part III : Devlin's theorem computes through sparsity

Ludovic LEVY PATEY

Devlin's theorem

Ramsey's theorem

 $[X]^n$ is the set of unordered *n*-tuples of elements of X

A *k*-coloring of $[X]^n$ is a map $f : [X]^n \to k$

A set $H \subseteq X$ is homogeneous for f if $|f([H]^n)| = 1$.

 $\begin{array}{ll} \mathsf{RT}^{\boldsymbol{n}}_{\boldsymbol{k}} & \text{Every } {\boldsymbol{k}}\text{-coloring of } [\mathbb{N}]^n \text{ admits} \\ \text{ an infinite homogeneous set.} \end{array}$

 $(\mathbb{N}, <)$ vs $(\mathbb{Q}, <)$

Does every *k*-coloring of $[\mathbb{Q}]^n$ admit a homogeneous subcopy?

n = 1

Every *k*-coloring of \mathbb{Q} admits a homogeneous subcopy

n = 2

Thm (Galvin)

There is a 2-coloring of $[\mathbb{Q}]^2$ with no homogeneous subcopy

Fix an enumeration of \mathbb{Q} : q_0, q_1, q_2, \ldots

$$f(\{q_i, q_j\}) = 1 \text{ iff } q_i <_{\mathbb{Q}} q_j \Leftrightarrow i <_{\mathbb{N}} j$$

n = 2

Every *k*-coloring of $[\mathbb{Q}]^2$ admits a subcopy with at most 2 colors

Thm (Devlin)

For every *n*, there is some ℓ such that for every *k*, every *k*-coloring of $[\mathbb{Q}]^n$ admits a subcopy of \mathbb{Q} with at most ℓ colors

Dense linear order without endpoints

Linear order $\mathcal{L} = (L, <)$ such that for every $x, y \in \mathcal{L}$ with x < y, there are some $a, b, c \in L$ such that

a < *x* < *b* < *y* < *c*

Lem

DLO are computably categorical

 $(2^{<\omega},<_{\mathbb Q})$ is a DLO

Look at the embedding types of pairs of nodes

Devlin types \equiv unavoidable types

Devlin types for triples

Joyce trees with 3 leaves

(8 more by symmetry)

Let \mathcal{J}_n be the set of Joyce trees with *n* leaves

Thm (Devlin, part I)

Let $f : [\mathbb{Q}]^n \to \mathcal{J}_n$ be the coloring which associates the Joyce tree. Then for every subcopy $H \subseteq \mathbb{Q}$, $[H]^n$ has all the colors.

$$|\mathcal{J}_0| = 1$$
, $|\mathcal{J}_1| = 2$, $|\mathcal{J}_3| = 16$, $|\mathcal{J}_3| = 272$

Devlin's theorem

is reduced to a

tree partition theorem

Milliken's tree theorem

Strong subtree of $2^{<\omega}$

A set $T \subseteq 2^{<\omega}$ is a tree of height $\alpha \le \omega$ if

- every node at the same level in *T* has the same length;
- if $\sigma, \tau \in T$ then $\sigma \land \tau \in T$;
- every node which is not at level $\alpha 1$ is 2-branching.

$\langle T \rangle^{\alpha}$: subtrees of T of height α

Thm (Milliken)

For every *k*-coloring of $\langle 2^{<\omega} \rangle^n$, there is a tree *T* of height ω such that $\langle T \rangle^n$ is monochromatic.

 \mathcal{D}_n : Devlin types for *n*-tuples $\langle T \rangle^D$: *n*-tuples of Devlin type *D*

Lem

For every $D \in \mathcal{D}_n$, there is a surjection $\iota_D : \langle 2^{<\omega} \rangle^{2n-1} \to \langle 2^{<\omega} \rangle^D$

Fix a coloring $f : [\mathbb{Q}]^n \to k$ It induces a coloring $g : [2^{<\omega}]^n \to k$

Define $h : \langle 2^{<\omega} \rangle^{2n-1} \to K$ by $h(S) = (g(\iota_D(S)) : D \in \mathcal{D}_n)$

By Milliken's tree theorem, $\langle T \rangle^{2n-1}$ is *h*-homogeneous

Embed $(\mathbb{Q}, <_{\mathbb{Q}})$ into $(T, <_{\mathbb{Q}})$ to have only Devlin types

Framework

A set *S* is computably P-encodable if there is a computable instance of P such that every solution computes *S*

Thm (Seetapun)

The computably RT_k^2 -encodable sets are the computable ones

Thm (Jockusch)

The halting set is computable RT_2^3 -encodable

$$f_{\emptyset'}(x,y,z) = 1$$
 iff $\emptyset'_y \upharpoonright x = \emptyset'_z \upharpoonright x$

Fix some $n \ge 2$.

Thm (Cholak, Jockusch, Slaman)

The computably RT_k^n -encodable sets are the Δ_{n-1}^0 ones

$$\mathsf{MTT}^n_{k,\ell}$$

Every coloring $f : \langle 2^{<\omega} \rangle^n \to k$ admits a subtree *T* such that $|f(T)^n| \leq \ell$.

 $\mathsf{DT}^n_{k,\ell}$

Every coloring $f : [\mathbb{Q}]^n \to k$ admits a subcopy (H, <) such that $|f[H]^n| \le \ell$.

Thm (Anglès d'Auriac, Cholak, Dzhafarov, Monin, P.)

The halting set is computably $\mathsf{DT}^2_{4,3}$ -encodable

$$\begin{split} \mathbf{f}_{<\mathbb{Q}}(\sigma,\tau) &= 1 \text{ iff } |\sigma| < |\tau| \iff \sigma <_{\mathbb{Q}} \tau \\ \mathbf{f}_{\emptyset'}(\mathbf{x},\mathbf{y},\mathbf{z}) &= 1 \text{ iff } \emptyset'_{\mathbf{y}} \upharpoonright \mathbf{x} = \emptyset'_{\mathbf{z}} \upharpoonright \mathbf{x} \\ \mathbf{f}(\sigma,\tau) &= (\mathbf{f}_{<\mathbb{Q}}(\sigma,\tau), \mathbf{f}_{\emptyset'}(|\sigma \land \tau|, |\sigma|, |\tau|)) \end{split}$$

Thm (Anglès d'Auriac, Cholak, Dzhafarov, Monin, P.)

The computably $\mathsf{MTT}^3_{3,2}\text{-encodable sets}$ are the computable ones

Thm (Anglès d'Auriac, Cholak, Dzhafarov, Monin, P.)

The computably $\mathsf{DT}^2_{5,4}\text{-encodable sets}$ are the computable ones

Conclusion

The computational content of theorems is closely related to their combinatorics

Devlin's theorem computes through sparsity

References

Paul-Elliot Anglès d'Auriac, Peter A Cholak, Damir D Dzhafarov, Benoît Monin, and Ludovic Patey.

Milliken's tree theorem and its applications: a computability-theoretic perspective.

Memoirs of the American Mathematical Society.

to appear.

Denis Campau Devlin.

Some partition theorems and ultrafilters on omega.

ProQuest LLC, Ann Arbor, MI, 1980.

Thesis (Ph.D.)–Dartmouth College.