Part III : Devlin's theorem computes through sparsity

Ludovic LEVY PATEY

Devlin's theorem

Ramsey's theorem

$[X]^{n}$ is the set of unordered n-tuples of elements of X
A k-coloring of $[X]^{n}$ is a map $f:[X]^{n} \rightarrow k$
A set $H \subseteq X$ is homogeneous for f if $\left|f\left([H]^{n}\right)\right|=1$.
RT_{k}^{n}
Every k-coloring of $[\mathbb{N}]^{n}$ admits an infinite homogeneous set.

$$
(\mathbb{N},<) \text { vs }(\mathbb{Q},<)
$$

Does every k-coloring of $[\mathbb{Q}]^{n}$ admit a homogeneous subcopy?
$n=1$

Every k-coloring of \mathbb{Q} admits a homogeneous subcopy

Fix a 2-coloring of \mathbb{Q}
Either one full interval has color blue
Or the elements of color red are dense

$n=2$

Thm (Galvin)

There is a 2-coloring of $[\mathbb{Q}]^{2}$ with no homogeneous subcopy

Fix an enumeration of $\mathbb{Q}: q_{0}, q_{1}, q_{2}, \ldots$

$$
f\left(\left\{q_{i}, q_{j}\right\}\right)=1 \text { iff } q_{i}<_{\mathbb{Q}} q_{j} \Leftrightarrow i<_{\mathbb{N}} j
$$

$n=2$

Every k-coloring of $[\mathbb{Q}]^{2}$ admits a subcopy with at most 2 colors

Thm (Devin)

For every n, there is some ℓ such that for every k, every k-coloring of $[\mathbb{Q}]^{n}$ admits a subcopy of \mathbb{Q} with at most ℓ colors

Dense linear order without endpoints

Linear order $\mathcal{L}=(L,<)$ such that for every $x, y \in \mathcal{L}$ with $x<y$, there are some $a, b, c \in L$ such that

$$
a<x<b<y<c
$$

Lem

DLO are computably categorical

$$
\begin{aligned}
& \sigma<\mathbb{Q} \tau \\
& \equiv \\
& \operatorname{or}(\sigma \wedge \tau) 0 \preceq \sigma
\end{aligned}
$$

Look at the embedding types of pairs of nodes

Devlin types \equiv unavoidable types

Devlin types for triples

Joyce trees with 3 leaves

(8 more by symmetry)

Let \mathcal{J}_{n} be the set of Joyce trees with n leaves

Thm (Devin, part I)

Let $f:[\mathbb{Q}]^{n} \rightarrow \mathcal{J}_{n}$ be the coloring which associates the Joyce tree. Then for every subcopy $H \subseteq \mathbb{Q},[H]^{n}$ has all the colors.
$\left|\mathcal{J}_{0}\right|=1,\left|\mathcal{J}_{1}\right|=2,\left|\mathcal{J}_{3}\right|=16,\left|\mathcal{J}_{3}\right|=272$

Devlin's theorem

is reduced to a

tree partition theorem

Milliken's tree theorem

Strong subtree of $2^{<\omega}$

A set $T \subseteq 2^{<\omega}$ is a tree of height $\alpha \leq \omega$ if

- every node at the same level in T has the same length;
- if $\sigma, \tau \in T$ then $\sigma \wedge \tau \in T$;
- every node which is not at level $\alpha-1$ is 2 -branching.

$\langle T\rangle^{\alpha}$: subtrees of T of height α

Thm (Milliken)

For every k-coloring of $\left\langle 2^{<\omega}\right\rangle^{n}$, there is a tree T of height ω such that $\langle T\rangle^{n}$ is monochromatic.
\mathcal{D}_{n} : Devlin types for n-tuples
$\langle T\rangle^{D}$: n-tuples of Devlin type D

Lem

For every $D \in \mathcal{D}_{n}$, there is a surjection $\iota_{D}:\left\langle 2^{<\omega}\right\rangle^{2 n-1} \rightarrow\left\langle 2^{<\omega}\right\rangle^{D}$
$\left(\mathbb{Q},<_{\mathbb{Q}}\right)$
$\left(2^{<\omega},<_{\mathbb{Q}}\right)$

$\left(T,<_{\mathbb{Q}}\right)$

$\left(\mathbb{Q},<_{\mathbb{Q}}\right)$

Fix a coloring $f:[\mathbb{Q}]^{n} \rightarrow k$
It induces a coloring $g:\left[2^{<\omega}\right]^{n} \rightarrow k$

Define $h:\left\langle 2^{<\omega}\right\rangle^{2 n-1} \rightarrow K$ by
$h(S)=\left(g\left(\iota_{D}(S)\right): D \in \mathcal{D}_{n}\right)$

By Milliken's tree theorem,
$\langle T\rangle^{2 n-1}$ is h-homogeneous

Embed $\left(\mathbb{Q},<_{\mathbb{Q}}\right)$ into $\left(T,<_{\mathbb{Q}}\right)$
to have only Devlin types

Framework

A set S is computably P -encodable if there is a computable instance of P such that every solution computes S

Thm (Seetapun)

The computably RT_{k}^{2}-encodable sets are the computable ones

Thm (Jockusch)

The halting set is computable RT_{2}^{3}-encodable

$$
f_{\emptyset^{\prime}}(x, y, z)=1 \text { iff } \emptyset_{y}^{\prime} \upharpoonright x=\emptyset_{z}^{\prime} \upharpoonright x
$$

Fix some $n \geq 2$.

Thm (Cholak, Jockusch, Slaman)

The computably RT_{k}^{n}-encodable sets are the Δ_{n-1}^{0} ones

$\mathrm{MTT}_{k, \ell}^{n}$

Every coloring $f:\left\langle 2^{<\omega}\right\rangle^{n} \rightarrow k$ admits a subtree T such that $\left.\mid f\langle T\rangle^{n}\right) \mid \leq \ell$.

$$
\mathrm{DT}_{k, \ell}^{n}
$$

Every coloring $f:[\mathbb{Q}]^{n} \rightarrow k$ admits a subcopy $(H,<)$ such that $\left.\mid f[H]^{n}\right) \mid \leq \ell$.

Thm (Anglès d'Auriac, Cholak, Dzhafarov, Monin, P.)

The halting set is computably $\mathrm{DT}_{4,3}^{2}$-encodable

$$
\begin{aligned}
& f_{<\mathbb{Q}}(\sigma, \tau)=1 \text { iff }|\sigma|<|\tau| \Longleftrightarrow \sigma<\mathbb{Q} \tau \\
& f_{\emptyset^{\prime}}(x, y, z)=1 \text { iff } \emptyset_{y}^{\prime} \upharpoonright x=\emptyset_{z}^{\prime} \upharpoonright x \\
& f(\sigma, \tau)=\left(f_{<\mathbb{Q}}(\sigma, \tau), f_{\emptyset^{\prime}}(|\sigma \wedge \tau|,|\sigma|,|\tau|)\right)
\end{aligned}
$$

Thm (Anglès d'Auriac, Cholak, Dzhafarov, Monin, P.)

The computably $\mathrm{MTT}_{3,2}^{3}$-encodable sets are the computable ones

Thm (Anglès d'Auriac, Cholak, Dzhafarov, Monin, P.)

The computably $\mathrm{DT}_{5,4}^{2}$-encodable sets are the computable ones

Conclusion

The computational content of theorems is closely related to their combinatorics

Devlin's theorem computes through sparsity

References

R Paul-Elliot Anglès d'Auriac, Peter A Cholak, Damir D Dzhafarov, Benoît Monin, and Ludovic Patey. Milliken's tree theorem and its applications: a computability-theoretic perspective.
Memoirs of the American Mathematical Society.
to appear.
Denis Campau Devlin.
Some partition theorems and ultrafilters on omega.
ProQuest LLC, Ann Arbor, MI, 1980.
Thesis (Ph.D.)-Dartmouth College.

