Part I : Ramsey theory computes through sparsity

Ludovic LEVY PATEY

Theorem

Reverse mathematics

Mathematics are computationally very structured

Almost every theorem is empirically equivalent to one among five big subsystems. $\Pi^1_1 CA$ ATR \mathbf{T} ACA \mathbf{J} WKI RCA₀

Reverse mathematics

Mathematics are computationally very structured

Almost every theorem is empirically equivalent to one among five big subsystems.

Except for Ramsey's theory...

The subject

computes

The framework

through sparsity

The subject

computes

The framework

through sparsity

The subject

computes

The framework

through sparsity

A set $A \subseteq \mathbb{N}$ is computable if there is a computer program which, on input *n*, decides whether $n \in A$ or not.

A set $A \subseteq \mathbb{N}$ is computable in *B* if there is a computer program in an language augmented with the characteristic function of *B* which, on input *n*, decides whether $n \in A$ or not.

A is computable in B

 $\Phi_{\mathbf{e}}(\mathbf{X}) \downarrow$

The e-th program halts on input x.

$\Phi_{\mathbf{e}}(\mathbf{x})[\mathbf{t}]\downarrow$

The e-th program halts on input *x* in less than *t* steps.

 $\Phi_{\mathbf{A}}^{\mathbf{A}}(\mathbf{X})\downarrow$

The e-th program with oracle A halts on input x.

 $\Phi_{\mathbf{A}}^{\mathbf{A}}(\mathbf{x})[\mathbf{t}] \downarrow$

The e-th program with oracle *A* halts on input *x* in less than *t* steps.

The subject

Overall, Ramsey's theory seeks to understand the inherent structure and order that can arise within large finite sets by investigating the existence of specific patterns, colorings, or configurations. — ChatGPT

Ramsey's theorem

 $[X]^n$ is the set of unordered *n*-tuples of elements of X

A *k*-coloring of $[X]^n$ is a map $f : [X]^n \to k$

A set $H \subseteq X$ is homogeneous for f if $|f([H]^n)| = 1$.

 $\begin{array}{ll} \mathsf{RT}^{\boldsymbol{n}}_{\boldsymbol{k}} & \text{Every } {\boldsymbol{k}}\text{-coloring of } [\mathbb{N}]^n \text{ admits} \\ \text{ an infinite homogeneous set.} \end{array}$

Pigeonhole principle

$\mathsf{RT}^1_{\mathbf{k}}$ Every *k*-partition of \mathbb{N} admits an infinite subset of a part.

Ramsey's theorem for pairs

 $\mathsf{RT}^2_{\mathbf{k}}$ Every *k*-coloring of the infinite clique admits an infinite monochromatic subclique.

Let \mathbb{A} be a countable structure and \mathbb{F} be a finite structure. Let $[\mathbb{A}]^{\mathbb{F}}$ be the collection of sub-copies of \mathbb{F} in \mathbb{A} .

Question

For every coloring $f : [\mathbb{A}]^{\mathbb{F}} \to k$, is there a sub-copy \mathbb{B} of \mathbb{A} such that $[\mathbb{B}]^{\mathbb{F}}$ is monochromatic?

Case study: $\mathbb{A} = (\mathbb{Q}, <)$

computes

The framework

Consider mathematical problems

Intermediate value theorem

For every continuous function *f* over an interval [a, b] such that $f(a) \cdot f(b) < 0$, there is a real $x \in [a, b]$ such that f(x) = 0.

König's lemma

Every infinite, finitely branching tree admits an infinite path.

Fix a problem P.

Computable encodability

A set S is computably

P-encodable if there is a computable instance of P such that every solution computes *S*.

Encodability

A set *S* is P-encodable if there is an instance of P such that every solution computes *S*.

Computable encodability

Encodability

Thm (Jockusch and Soare)

Only computable sets are computably encodable by WKL

This is the cone avoidance Π^0_1 basis theorem

Thm

Every set is encodable by WKL

Given a set A, consider the tree $T = \{ \sigma \in 2^{<\mathbb{N}} : \sigma \prec A \}$

Encodability vs Domination

Encodability

A set *S* is P-encodable if there is an instance of P such that every solution computes *S*

Domination

A function *f* is P-dominated if there is an instance of P such that every solution computes a function dominating *f*.

Encodability vs Domination

The P-encodable sets are the computable ones.

≢

The P-dominated functions are the computably dominated ones.

Encodability vs Domination

(relativized version)

For every Z, the P-encodable sets relative to Z are the Z-computable ones.

 \equiv

For every *Z*, the P-dominated functions relative to *Z* are the *Z*-computably dominated ones.

through sparsity

A function $f : \mathbb{N} \to \mathbb{N}$ is a modulus for a set $A \subseteq \mathbb{N}$ if every function dominating *f* computes *A*.

The principal function of an infinite set $A \subseteq \mathbb{N}$ is the function $p_A : \mathbb{N} \to \mathbb{N}$ which to *n* associates the *n*th element of *A*.

A set *A* is computably encodable if for every infinite set *X*, there is an infinite subset $Y \subseteq X$ computing *A*.

What sets admit a modulus?

\emptyset' admits a modulus

$$f(\mathbf{e}) = \begin{cases} \mu_t[\Phi_{\mathbf{e}}(\mathbf{e})[t] \downarrow] & \text{if it exists} \\ 0 & \text{otherwise} \end{cases}$$

Every function dominating *f* computes the halting set.

\emptyset'' admits a modulus

$$f(\mathbf{e}) = \begin{cases} \mu_t[\Phi_{\mathbf{e}}(\mathbf{e})[t] \downarrow] & \text{if it exists} \\ 0 & \text{otherwise} \end{cases}$$
$$g(\mathbf{e}) = \begin{cases} \mu_t[\Phi_{\mathbf{e}}^{\emptyset'}(\mathbf{e})[t] \downarrow] & \text{if it exists} \\ 0 & \text{otherwise} \end{cases}$$

Every function dominating $x \mapsto \max(f(x), g(x))$ computes the halting set of the halting set.

Arithmetic hierarchy

$$\Sigma_n^0 \quad A = \{ y : \exists x_1 \forall x_2 \dots Q x_n \ R(y, x_1, \dots, x_n) \}$$
$$\Pi_n^0 \quad A = \{ y : \forall x_1 \exists x_2 \dots Q x_n \ R(y, x_1, \dots, x_n) \}$$

where *R* is a computable predicate.

A set is
$$\Delta_n^0$$
 if it is Σ_n^0 and Π_n^0 .

$Computability \equiv \text{Definability}$

Thm (Post)

A set is c.e. iff it is Σ_1^0 and computable iff it is Δ_1^0 .

Thm (Post)

A set is $\emptyset^{(n)}$ -c.e. iff it is Σ_{n+1}^0 and $\emptyset^{(n)}$ -computable iff it is Δ_{n+1}^0 .

Thm

All the arithmetic sets admit a modulus.

$\emptyset^{(\omega)}$ admits a modulus

$$\emptyset^{(\omega)} = \bigoplus_{n} \emptyset^{(n)} = \left\{ \langle n, x \rangle : x \in \emptyset^{(n)} \right\}$$

Analytic hierarchy

$$\Sigma_n^1 \quad A = \{ y : \exists X_1 \forall X_2 \dots QX_n R(y, X_1, \dots, X_n) \}$$
$$\Pi_n^1 \quad A = \{ y : \forall X_1 \exists X_2 \dots QX_n R(y, X_1, \dots, X_n) \}$$

where *R* is an arithmetic predicate.

A set is
$$\Delta_n^1$$
 if it is Σ_n^1 and Π_n^1 .

Klenee's normal form

$$\Sigma_n^1 \quad A = \{ y : \exists X_1 \forall X_2 \dots QX_n R(y, X_1, \dots, X_n) \}$$
$$\Pi_n^1 \quad A = \{ y : \forall X_1 \exists X_2 \dots QX_n R(y, X_1, \dots, X_n) \}$$

where *R* is
$$\begin{array}{cc} \Sigma_1^0 & \text{if } Q = \forall \\ \Pi_1^0 & \text{if } Q = \exists \end{array}$$

Lem (Folklore)

For every Π_1^1 set $A \subseteq \mathbb{N}$, there is a function $f : \mathbb{N} \to \mathbb{N}$ such that A is c.e. in any function dominating f.

- ▶ $A = \{n \in \mathbb{N} : T_n \text{ is a well-founded tree } \}$
- ▶ Pick *f* such that if T_n is infinite, then $T_n \cap f_n^{<\omega}$ is infinite
- Given *g* dominating *f*, $A = \{n \in \mathbb{N} : T_n \cap g_n^{<\omega} \text{ is finite } \}$

where given *f*,
$$f_n(x) = \begin{cases} f(n) & \text{if } x < n \\ f(x) & \text{otherwise} \end{cases}$$

Thm (Solovay)

All the Δ_1^1 sets admit a modulus.

- Suppose A and \overline{A} are Π_1^1
- ▶ Let *f*, *g* be their c.e. moduli
- $x \mapsto \max(f(x), g(x))$ is a modulus for A

A set *A* is computably encodable if for every infinite set *X*, there is an infinite subset $Y \subseteq X$ computing *A*.

Thm (Folklore)

If A admits a modulus, then A is computably encodable.

Recall that p_Y is the principal function of Y.

- ▶ Let *f* be a modulus for *A*
- Given X, pick $Y \subseteq X$ be such that $p_Y \ge f$

Thm (Solovay)

If *A* is computably encodable, then *A* is Δ_1^1 .

By Mathias forcing, using Galvin-Prikry's theorem

Thm (Galvin-Prikry)

For every Borel set $S \subseteq [\mathbb{N}]^{\omega}$, there is a $B \in [\mathbb{N}]^{\omega}$ such that $[B]^{\omega} \subseteq S$ or $[B]^{\omega} \cap S = \emptyset$.

Mathias extension $(E, Y) \le (F, X)$ $F \subseteq E, Y \subseteq X, E \setminus F \subseteq X$

Cylinder $[F,X] = \{G: F \subseteq G \subseteq F \cup X\}$

Lem

Given (F, X), Φ_e and $A \notin \Delta_1^1$, there is some $Y \in [X]^{\omega}$ such that $\Phi_e^G \neq A$ for every $G \in [F, Y]$

• Let
$$\mathcal{S} = \{ \mathbf{G} \in [\mathbf{X}]^{\omega} : \Phi_{\mathbf{e}}^{\mathbf{F} \cup \mathbf{G}} = \mathbf{A} \}$$

▶ By Galvin-Prikry's theorem, there is $Y \in [X]^{\omega}$ such that

$$[\mathbf{Y}]^{\omega} \subseteq \mathcal{S} \text{ or } [\mathbf{Y}]^{\omega} \cap \mathcal{S} = \emptyset$$

Assume the first case holds. Then

$$A = \{ n : \forall Z \in [Y]^{\omega} : \Phi_{e}^{Z}(n) \downarrow = 1 \}$$
$$\overline{A} = \{ n : \forall Z \in [Y]^{\omega} : \Phi_{e}^{Z}(n) \downarrow = 0 \}$$

• Then A is Δ_1^1 , contradiction.

Lem

Given (F, X), Φ_e and $A \notin \Delta_1^1$, there is some $Y \in [X]^{\omega}$ such that $\Phi_e^H \neq A$ for every $G \in [F, Y]$ and $H \in [G]^{\omega}$.

• Let
$$\{F_1, \ldots, F_k\} = [F]^{<\omega}$$

- Let Γ_i be the functional $Z \mapsto \Phi_e^{F_i \cup Z}$
- Apply successively the previous lemma to $\Gamma_1, \ldots, \Gamma_k$

Conclusion

We consider theorems as mathematical problems

A problem encodes a set if there is an instance, all of whose solutions compute the set

The Δ_1^1 sets are robust, and computable by sparsity

References

Rod Downey, Noam Greenberg, Matthew Harrison-Trainor, Ludovic Patey, and Dan Turetsky. Relationships between computability-theoretic properties of problems.

J. Symb. Log., 87(1):47-71, 2022.

Marcia J Groszek and Theodore A Slaman. Moduli of computation (talk).

Buenos Aires, Argentina, 2007.

Robert M. Solovay.

Hyperarithmetically encodable sets.

Trans. Amer. Math. Soc., 239:99–122, 1978.