Part I : Ramsey theory computes through sparsity

Ludovic LEVY PATEY

Theorem
T

Axioms
 Theorem
 $A_{1}, \ldots, A_{n} \Rightarrow T$

Axioms
 Theorem
 $A_{1}, \ldots, A_{n} \Leftarrow T$

Reverse mathematics

Mathematics are
 computationally very structured

Almost every theorem is empirically equivalent to one among five big subsystems.
$\Pi_{1}^{1} \mathrm{CA}$
\downarrow
ATR
\downarrow
ACA
\downarrow
WKL
\downarrow
RCA $_{0}$

Reverse mathematics

Mathematics are computationally very structured

Almost every theorem is empirically equivalent to one among five big subsystems.

Except for Ramsey's theory...

Ramsey theory

The subject

computes

The framework

through sparsity
 The results

Ramsey theory

The subject

computes

The framework

through sparsity
 The results

Ramsey theory

The subject

computes

The framework

through sparsity
 The results

A set $A \subseteq \mathbb{N}$ is computable if there is a computer program which, on input n, decides whether $n \in A$ or not.

A set $A \subseteq \mathbb{N}$ is computable in B if there is a computer program in an language augmented with the characteristic function of B which, on input n, decides whether $n \in A$ or not.

$A \leq{ }_{T} B$

A is computable in B

$\Phi_{e}(x) \downarrow$

The e-th program halts on input x.

$$
\Phi_{e}(x)[t] \downarrow
$$

The e-th program halts on input x in less than t steps.

$$
\Phi_{e}^{A}(x) \downarrow
$$

The e-th program with oracle A halts on input x.

$$
\Phi_{e}^{A}(x)[t] \downarrow
$$

The e-th program with oracle A halts on input x in less than t steps.

Ramsey theory

The subject

Overall, Ramsey's theory seeks to understand the inherent structure and order that can arise within large finite sets by investigating the existence of specific patterns, colorings, or configurations. - ChatGPT

Ramsey's theorem

$[X]^{n}$ is the set of unordered n-tuples of elements of X
A k-coloring of $[X]^{n}$ is a map $f:[X]^{n} \rightarrow k$
A set $H \subseteq X$ is homogeneous for f if $\left|f\left([H]^{n}\right)\right|=1$.
RT_{k}^{n}
Every k-coloring of $[\mathbb{N}]^{n}$ admits an infinite homogeneous set.

Pigeonhole principle

$$
R T_{k}^{1} \quad \begin{gathered}
\text { Every } k \text {-partition of } \mathbb{N} \text { admits } \\
\text { an infinite subset of a part. }
\end{gathered}
$$

$$
\begin{array}{rrrrr}
0 & 1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 & 9 \\
10 & 11 & 12 & 13 & 14 \\
15 & 16 & 17 & 18 & 19 \\
20 & 21 & 22 & 23 & 24 \\
25 & 26 & 27 & 28 & \ldots .
\end{array}
$$

Ramsey's theorem for pairs

RT_{k}^{2}

Every k-coloring of the infinite clique admits an infinite monochromatic subclique.

Let \mathbb{A} be a countable structure and \mathbb{F} be a finite structure. Let $[\mathbb{A}]^{\mathbb{F}}$ be the collection of sub-copies of \mathbb{F} in \mathbb{A}.

Question

For every coloring $f:[\mathbb{A}]^{\mathbb{P}} \rightarrow k$, is there a sub-copy \mathbb{B} of \mathbb{A} such that $[\mathbb{B}]^{\mathbb{F}}$ is monochromatic?

Case study: $\mathbb{A}=(\mathbb{Q},<)$

computes

The framework

Consider mathematical problems

Intermediate value theorem
For every continuous function f over an interval $[a, b]$ such that $f(a) \cdot f(b)<0$, there is a real $x \in[a, b]$ such that $f(x)=0$.

König's lemma
Every infinite, finitely branching tree admits an infinite path.

Fix a problem P.

Computable encodability

A set S is computably
P -encodable if there is a computable instance of P such that every solution computes S.

Encodability

A set S is P -encodable if there is an instance of P such that every solution computes S.

Computable encodability

Thm (Jockusch and Soare)
Only computable sets are computably encodable by WKL

This is the cone avoidance Π_{1}^{0} basis theorem

Encodability

Thm

Every set is encodable by WKL

Given a set A, consider the tree $T=\left\{\sigma \in 2^{<\mathbb{N}}: \sigma \prec A\right\}$

Encodability vs Domination

Encodability

A set S is P-encodable if there is an instance of P such that every solution computes S

Domination

A function f is P -dominated if there is an instance of P such that every solution computes a function dominating f.

Encodability vs Domination

The P-encodable sets are the computable ones.

$$
\not \equiv
$$

The P-dominated functions are the computably dominated ones.

Encodability vs Domination

(relativized version)

For every Z, the P-encodable sets relative to Z are the Z-computable ones.

$$
\equiv
$$

For every Z, the P-dominated functions relative to Z are the Z-computably dominated ones.

through sparsity

The results

What sets admit a modulus?

\emptyset^{\prime} admits a modulus

$$
f(e)= \begin{cases}\mu_{t}\left[\Phi_{e}(e)[t] \downarrow\right] & \text { if it exists } \\ 0 & \text { otherwise }\end{cases}
$$

Every function dominating f computes the halting set.

$\emptyset^{\prime \prime}$ admits a modulus

$$
\begin{aligned}
f(e) & = \begin{cases}\mu_{t}\left[\Phi_{e}(e)[t] \downarrow\right] & \text { if it exists } \\
0 & \text { otherwise }\end{cases} \\
g(e) & = \begin{cases}\mu_{t}\left[\Phi_{e}^{0^{\prime}}(e)[t] \downarrow\right] & \text { if it exists } \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Every function dominating $x \mapsto \max (f(x), g(x))$ computes the halting set of the halting set.

Arithmetic hierarchy

$$
\begin{aligned}
& \Sigma_{n}^{0} \quad A=\left\{y: \exists x_{1} \forall x_{2} \ldots Q x_{n} R\left(y, x_{1}, \ldots, x_{n}\right)\right\} \\
& \Pi_{n}^{0} \quad A=\left\{y: \forall x_{1} \exists x_{2} \ldots Q x_{n} R\left(y, x_{1}, \ldots, x_{n}\right)\right\}
\end{aligned}
$$

where R is a computable predicate.

A set is Δ_{n}^{0} if it is Σ_{n}^{0} and Π_{n}^{0}.

Computability \equiv Definability

Thm (Post)

A set is c.e. iff it is Σ_{1}^{0} and computable iff it is Δ_{1}^{0}.

Thm (Post)

A set is $\emptyset^{(n)}$-c.e. iff it is Σ_{n+1}^{0} and $\emptyset^{(n)}$-computable iff it is Δ_{n+1}^{0}.

Thm

All the arithmetic sets admit a modulus.

$\emptyset^{(\omega)}$ admits a modulus

$$
\emptyset^{(\omega)}=\bigoplus_{n} \emptyset^{(n)}=\left\{\langle n, x\rangle: x \in \emptyset^{(n)}\right\}
$$

Analytic hierarchy

$$
\begin{aligned}
& \Sigma_{n}^{1} \quad A=\left\{y: \exists X_{1} \forall X_{2} \ldots Q X_{n} R\left(y, X_{1}, \ldots, X_{n}\right)\right\} \\
& \Pi_{n}^{1} \quad A=\left\{y: \forall X_{1} \exists X_{2} \ldots Q X_{n} R\left(y, X_{1}, \ldots, X_{n}\right)\right\}
\end{aligned}
$$

where R is an arithmetic predicate.

A set is Δ_{n}^{1} if it is Σ_{n}^{1} and Π_{n}^{1}.

Klenee's normal form

$$
\begin{aligned}
& \Sigma_{n}^{1} \quad A=\left\{y: \exists X_{1} \forall X_{2} \ldots Q X_{n} R\left(y, X_{1}, \ldots, X_{n}\right)\right\} \\
& \Pi_{n}^{1} \quad A=\left\{y: \forall X_{1} \exists X_{2} \ldots Q X_{n} R\left(y, X_{1}, \ldots, X_{n}\right)\right\}
\end{aligned}
$$

where R is $\begin{array}{ll}\Sigma_{1}^{0} & \text { if } Q=\forall \\ \Pi_{1}^{0} & \text { if } Q=\exists\end{array}$

Lem (Folkiore)

For every Π_{1}^{1} set $A \subseteq \mathbb{N}$, there is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that A is c.e. in any function dominating f.

- $A=\left\{n \in \mathbb{N}: T_{n}\right.$ is a well-founded tree $\}$
- Pick f such that if T_{n} is infinite, then $T_{n} \cap f_{n}^{<\omega}$ is infinite
- Given g dominating $f, A=\left\{n \in \mathbb{N}: T_{n} \cap g_{n}^{<\omega}\right.$ is finite $\}$

$$
\text { where given } f, f_{n}(x)= \begin{cases}f(n) & \text { if } x<n \\ f(x) & \text { otherwise }\end{cases}
$$

Thm (Solovay)

All the Δ_{1}^{1} sets admit a modulus.

- Suppose A and \bar{A} are Π_{1}^{1}
- Let f, g be their c.e. moduli
- $x \mapsto \max (f(x), g(x))$ is a modulus for A

A set A is computably encodable if for every infinite set X, there is an infinite subset $Y \subseteq X$ computing A.

Thm (Folklore)

If A admits a modulus, then A is computably encodable.

Recall that p_{Y} is the principal function of Y.

- Let f be a modulus for A
- Given X, pick $Y \subseteq X$ be such that $p_{Y} \geq f$

Thm (Solovay)

If A is computably encodable, then A is Δ_{1}^{1}.

By Mathias forcing, using Galvin-Prikry's theorem

Thm (Galvin-Prikry)

For every Borel set $\mathcal{S} \subseteq[\mathbb{N}]^{\omega}$, there is a $B \in[\mathbb{N}]^{\omega}$ such that $[B]^{\omega} \subseteq \mathcal{S}$ or $[B]^{\omega} \cap \mathcal{S}=\emptyset$.

Mathias condition

$$
(F, X)
$$

Initial segment Reservoir
F is finite, X is infinite, $\max F<\min X$

Mathias extension

$$
(E, Y) \leq(F, X)
$$

$$
F \subseteq E, Y \subseteq X, E \backslash F \subseteq X
$$

Cylinder

$$
[F, X]=\{G: F \subseteq G \subseteq F \cup X\}
$$

Lem

Given $(F, X), \Phi_{e}$ and $A \notin \Delta_{1}^{1}$, there is some $Y \in[X]^{\omega}$ such that $\Phi_{e}^{G} \neq A$ for every $G \in[F, Y]$

- Let $\mathcal{S}=\left\{G \in[X]^{\omega}: \Phi_{e}^{F \cup G}=A\right\}$
- By Galvin-Prikry's theorem, there is $Y \in[X]^{\omega}$ such that

$$
[Y]^{\omega} \subseteq \mathcal{S} \text { or }[Y]^{\omega} \cap \mathcal{S}=\emptyset
$$

- Assume the first case holds. Then

$$
\begin{aligned}
& A=\left\{n: \forall Z \in[Y]^{\omega}: \Phi_{e}^{Z}(n) \downarrow=1\right\} \\
& \bar{A}=\left\{n: \forall Z \in[Y]^{\omega}: \Phi_{e}^{Z}(n) \downarrow=0\right\}
\end{aligned}
$$

- Then A is Δ_{1}^{1}, contradiction.

Lem

Given $(F, X), \Phi_{e}$ and $A \notin \Delta_{1}^{1}$, there is some $Y \in[X]^{\omega}$ such that $\Phi_{e}^{H} \neq A$ for every $G \in[F, Y]$ and $H \in[G]^{\omega}$.

- Let $\left\{F_{1}, \ldots F_{k}\right\}=[F]^{<\omega}$
- Let Γ_{i} be the functional $Z \mapsto \Phi_{e}^{F_{i} \cup Z}$
- Apply successively the previous lemma to $\Gamma_{1}, \ldots, \Gamma_{k}$

Conclusion

We consider theorems as mathematical problems

A problem encodes a set if there is an instance, all of whose solutions compute the set

The Δ_{1}^{1} sets are robust, and computable by sparsity

References

R Rod Downey, Noam Greenberg, Matthew Harrison-Trainor, Ludovic Patey, and Dan Turetsky.
Relationships between computability-theoretic properties of problems.
J. Symb. Log., 87(1):47-71, 2022.

R Marcia J Groszek and Theodore A Slaman.
Moduli of computation (talk).
Buenos Aires, Argentina, 2007.
Robert M. Solovay.
Hyperarithmetically encodable sets.
Trans. Amer. Math. Soc., 239:99-122, 1978.

