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Reverse mathematics
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among five big subsystems.
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A set A ⊆ N is computable if there is a computer program
which, on input n, decides whether n ∈ A or not.

A set A ⊆ N is computable in B if there is a computer program
in an language augmented with the characteristic function of B
which, on input n, decides whether n ∈ A or not.

A ≤T B
A is computable in B
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Φe(x) ↓
The e-th program halts on input x.

Φe(x)[t] ↓
The e-th program halts on input x

in less than t steps.
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ΦAe (x) ↓
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Overall, Ramsey’s theory seeks to understand the in-
herent structure and order that can arise within large
finite sets by investigating the existence of specific pat-
terns, colorings, or configurations. — ChatGPT
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Ramsey’s theorem

[X]n is the set of unordered n-tuples of elements of X

A k-coloring of [X]n is a map f : [X]n → k

A set H ⊆ X is homogeneous for f if |f([H]n)| = 1.

RTnk
Every k-coloring of [N]n admits
an infinite homogeneous set.
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Pigeonhole principle

RT1
k

Every k-partition of N admits
an infinite subset of a part.
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Ramsey’s theorem for pairs

RT2
k

Every k-coloring of the infinite clique admits
an infinite monochromatic subclique.
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Let A be a countable structure and F be a finite structure.
Let [A]F be the collection of sub-copies of F in A.

Question
For every coloring f : [A]F → k, is there a sub-copy B of A such
that [B]F is monochromatic?

Case study: A = (Q,<)

14 / 45



computes
The framework

15 / 45



Consider mathematical problems

Intermediate value theorem
For every continuous function f over an
interval [a,b] such that f(a) · f(b) < 0, there
is a real x ∈ [a,b] such that f(x) = 0.

König’s lemma
Every infinite, finitely branching tree admits
an infinite path.

a
b

16 / 45



Fix a problem P.

Computable encodability
A set S is computably
P-encodable if there is a
computable instance of P such
that every solution computes S.

Encodability
A set S is P-encodable if
there is an instance of P
such that every solution
computes S.
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Computable encodability

Thm (Jockusch and Soare)

Only computable sets are
computably encodable by WKL

This is the cone avoidance Π0
1

basis theorem

Encodability

Thm

Every set is encodable by
WKL

Given a set A, consider the
tree T = {σ ∈ 2<N : σ ≺ A}
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Encodability vs Domination

Encodability
A set S is P-encodable if there
is an instance of P such that
every solution computes S

Domination
A function f is P-dominated if
there is an instance of P such
that every solution computes
a function dominating f.
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Encodability vs Domination

The P-encodable sets
are the computable ones.

6≡

The P-dominated functions
are the computably dominated ones.
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Encodability vs Domination
(relativized version)

For every Z, the P-encodable sets relative to Z
are the Z-computable ones.

≡

For every Z, the P-dominated functions relative to Z
are the Z-computably dominated ones.

21 / 45



through sparsity
The results

22 / 45



A function f : N → N is a modulus
for a set A ⊆ N if every function
dominating f computes A.

The principal function of an
infinite set A ⊆ N is the function
pA : N → N which to n associates
the nth element of A.

A set A is computably encodable
if for every infinite set X,
there is an infinite subset Y ⊆ X
computing A.

Computably
encodable

Computable
through sparsity

Admit a
modulus
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What sets admit a
modulus?
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∅′ admits a modulus

f(e) =
{

µt[Φe(e)[t] ↓] if it exists
0 otherwise

Every function dominating f computes the halting set.
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∅′′ admits a modulus

f(e) =
{

µt[Φe(e)[t] ↓] if it exists
0 otherwise

g(e) =
{

µt[Φ∅′
e (e)[t] ↓] if it exists

0 otherwise

Every function dominating x 7→ max(f(x),g(x)) computes the
halting set of the halting set.
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Arithmetic hierarchy

Σ0
n A = {y : ∃x1∀x2 . . .Qxn R(y, x1, . . . , xn)}

Π0
n A = {y : ∀x1∃x2 . . .Qxn R(y, x1, . . . , xn)}

where R is a computable predicate.

A set is ∆0
n if it is Σ0

n and Π0
n.
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Computability ≡ Definability

Thm (Post)

A set is c.e. iff it is Σ0
1 and computable iff it is ∆0

1.

Thm (Post)

A set is ∅(n)-c.e. iff it is Σ0
n+1 and ∅(n)-computable iff it is ∆0

n+1.
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Thm

All the arithmetic sets admit a modulus.

∅(ω) admits a modulus

∅(ω) =
⊕
n

∅(n) =
{
〈n, x〉 : x ∈ ∅(n)

}
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Analytic hierarchy

Σ1
n A = {y : ∃X1∀X2 . . .QXn R(y,X1, . . . ,Xn)}

Π1
n A = {y : ∀X1∃X2 . . .QXn R(y,X1, . . . ,Xn)}

where R is an arithmetic predicate.

A set is ∆1
n if it is Σ1

n and Π1
n.
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Klenee’s normal form

Σ1
n A = {y : ∃X1∀X2 . . .QXn R(y,X1, . . . ,Xn)}

Π1
n A = {y : ∀X1∃X2 . . .QXn R(y,X1, . . . ,Xn)}

where R is Σ0
1 if Q = ∀

Π0
1 if Q = ∃
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Lem (Folklore)

For every Π1
1 set A ⊆ N, there is a function f : N → N such that

A is c.e. in any function dominating f.

� A = {n ∈ N : Tn is a well-founded tree }
� Pick f such that if Tn is infinite, then Tn ∩ f<ω

n is infinite
� Given g dominating f, A = {n ∈ N : Tn ∩ g<ω

n is finite }

where given f, fn(x) =
{

f(n) if x < n
f(x) otherwise
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Thm (Solovay)

All the ∆1
1 sets admit a modulus.

� Suppose A and A are Π1
1

� Let f,g be their c.e. moduli
� x 7→ max(f(x),g(x)) is a modulus for A
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A set A is computably encodable if for every infinite set X,
there is an infinite subset Y ⊆ X computing A.

Thm (Folklore)

If A admits a modulus, then A is computably encodable.

Recall that pY is the principal function of Y.

� Let f be a modulus for A
� Given X, pick Y ⊆ X be such that pY ≥ f
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Thm (Solovay)

If A is computably encodable, then A is ∆1
1.

By Mathias forcing, using Galvin-Prikry’s theorem

Thm (Galvin-Prikry)

For every Borel set S ⊆ [N]ω, there is a B ∈ [N]ω such that
[B]ω ⊆ S or [B]ω ∩ S = ∅.
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Mathias condition

(F,X)
Initial segment Reservoir

F is finite, X is infinite,
maxF < minX

Mathias extension
(E,Y) ≤ (F,X)

F ⊆ E, Y ⊆ X, E \ F ⊆ X

Cylinder
[F,X] = {G : F ⊆ G ⊆ F ∪ X}
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Lem

Given (F,X), Φe and A 6∈ ∆1
1, there is some Y ∈ [X]ω such that

ΦG
e 6= A for every G ∈ [F,Y]

� Let S = {G ∈ [X]ω : ΦF∪G
e = A}

� By Galvin-Prikry’s theorem, there is Y ∈ [X]ω such that

[Y]ω ⊆ S or [Y]ω ∩ S = ∅

� Assume the first case holds. Then

A = {n : ∀Z ∈ [Y]ω : ΦZ
e(n) ↓= 1}

A = {n : ∀Z ∈ [Y]ω : ΦZ
e(n) ↓= 0}

� Then A is ∆1
1, contradiction.
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Lem

Given (F,X), Φe and A 6∈ ∆1
1, there is some Y ∈ [X]ω such that

ΦH
e 6= A for every G ∈ [F,Y] and H ∈ [G]ω.

� Let {F1, . . .Fk} = [F]<ω

� Let Γi be the functional Z 7→ ΦFi∪Z
e

� Apply successively the previous lemma to Γ1, . . . ,Γk
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Conclusion

We consider theorems as mathematical problems

A problem encodes a set if there is an instance, all of
whose solutions compute the set

The ∆1
1 sets are robust, and computable by sparsity
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