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Reverse mathematics

Mathematics are
computationally
very structured

Almost every theorem is
empirically equivalent to one
among five big subsystems.
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A set A C N is computable if there is a computer program
which, on input n, decides whether n € A or not.

A set A C N is computable in B if there is a computer program
in an language augmented with the characteristic function of B
which, on input n, decides whether n € A or not.

A<rB

A is computable in B
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De(x) |

The e-th program halts on input x.

b ()T

The e-th program halts on input x
in less than t steps.
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g (x) J

The e-th program with oracle A halts on input x.

AP

The e-th program with oracle A halts on input x
in less than t steps.
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Ramsey theory

The subject
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Overall, Ramsey’s theory seeks to understand the in-
herent structure and order that can arise within large
finfte sets by investigating the existence of specific pat-
terns, colorings, or configurations. — ChatGPT
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Ramsey’s theorem

[X]" is the set of unordered n-tuples of elements of X
A k-coloring of [X]"isamap f: [X]" — k

A set H C X is homogeneous for f if [f([H]")| = 1.

RTn Every k-coloring of [N]” admits
K an infinite homogeneous set.
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Pigeonhole principle

RTI Every k-partition of N admits
k an infinite subset of a part.

01 2 3 4 2

5 6 7 8 9 5 6 9
10 11 12 13 14 —> 12

15 16 17 18 19 15 17 18

20 21 22 23 24 24

25 26 27 28 ... 26 27
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Ramsey’s theorem for pairs

RT2 Every k-coloring of the infinite clique admits
an infinite monochromatic subclique.
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Let A be a countable structure and F be a finite structure.
Let [A]¥ be the collection of sub-copies of F in A.

Question

For every coloring f : [A]¥ — k, is there a sub-copy B of A such
that [B]" is monochromatic?

Case study: A = (Q, <)
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The framework
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Consider mathematical problems

Intermediate value theorem

For every continuous function f over an
interval [a, b] such that f(a) - f(b) < 0, there
is areal x € [a, b] such that f(x) = 0.

Konig’s lemma
Every infinite, finitely branching tree admits
an infinite path.
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Fix a problem P.

Computable encodability

A set S is computably
P-encodable if there is a
computable instance of P such
that every solution computes S.

Encodability

A set S is P-encodable if
there is an instance of P

such that every solution

computes S.
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Computable encodability

Only computable sets are
computably encodable by WKL

This is the cone avoidance 119
basis theorem

Encodability

Every set is encodable by
WKL

Given a set A, consider the
tree T= {0 c2N:0 < A}
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Encodability vs Domination

Encodability

A set S is P-encodable if there
is an instance of P such that
every solution computes S

Domination

A function f is P-dominated if
there is an instance of P such
that every solution computes
a function dominating f.
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Encodability vs Domination

The P-encodable sets
are the computable ones.

#

The P-dominated functions
are the computably dominated ones.
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Encodability vs Domination

(relativized version)

For every Z, the P-encodable sets relative to Z
are the Z-computable ones.

For every Z, the P-dominated functions relative to Z
are the Z-computably dominated ones.
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The results
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A function f : N — N is a modulus
for a set A C N if every function
dominating f computes A.

The principal function of an
infinite set A C N is the function
pa : N — N which to n associates
the nth element of A.

A set A is computably encodable
if for every infinite set X,

there is an infinite subset Y C X
computing A.

Computably
encodable

Computable
through sparsity

Admit a
modulus
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Sets computable
through sparsity
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What sets admit a
modulus?



() admits a modulus

B [Pe(e)]t] ] ifit exists
fle) = { gt otherwise

Every function dominating f computes the halting set.
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(" admits a modulus
t[Pe(e)[t] }] if it exists
fle) = { g Iotlher)\(/:/ise

(@Y (e)]t] J] if it exists
gle) = { 0 otherwise

Every function dominating x — max(f(x), g(x)) computes the
halting set of the halting set.
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Arithmetic hierarchy

A={y:IVs...Q% R(Y,X1,...,Xn)}
A = {y . VX1E|XQ .. .QXn R(_y7X11 s =Xn)}

where R is a computable predicate.
A setis A ifitis 39 and TI0.
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Computability = Definability

Thm (Post)

Asetis c.e. iff it is 0 and computable iff it is AY.

Thm (Post)

Asetis ("-c.e. iff itis 3, and (0 -computable iff it is AJ, ;.
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Thm
All the arithmetic sets admit a modulus.

)« admits a modulus

0 = P™ = {(n,x> xec q)(n)}
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Y

S

Analytic hierarchy

A= {y : E|X1\V/X2QXn R(y,Xl,...

A= {yVX15|X2 . QXn R(y,Xl,...

where R is an arithmetic predicate.

A setis A} ifitis 3} and II}.
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)

3=

Klenee’s normal form

A= {y . VX15|X2 . QXn R(y;Xl; S 5Xn)}

. E? ifQ=V
where R is H(lj Q=3
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For every H% set A C N, there is a function f : N — N such that
A is c.e. in any function dominating f.

» A={neN:T,is awell-founded tree }
» Pick f such that if T, is infinite, then T, N f5 is infinite
» Given g dominatingf, A= {n € N: T, Ng;¥ is finite }

fln) ifx<n

where given f, f(x) = { f(x) otherwise
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All the Al sets admit a modulus.

» Suppose A and A are I1}
» Let £, g be their c.e. moduli
» x — max(f(x),g(x)) is a modulus for A

35/45



°q

Sets computable
through sparsity

e 3‘\.\»99 sias 1 IE]/

36/45



A set A is computably encodable if for every infinite set X,
there is an infinite subset Y C X computing A.

If A admits a modulus, then A is computably encodable.

Recall that py is the principal function of Y.

» Let fbe a modulus for A
» Given X, pick Y C X be such that py > f
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Thm (Solovay)

If A is computably encodable, then A is Af.

By Mathias forcing, using Galvin-Prikry’s theorem

Thm (Galvin-Prikry)

For every Borel set S C [N], there is a B € [N]¥ such that
Bl CSorB“nNS =10.
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Mathias condition

(F, X)

4 \

Initial segment Reservoir

F is finite, X is infinite,
maxF < minX

Mathias extension

(E,Y) < (F,X)
FCE YCX,E\FCX

Cylinder

IF,X|={G:FCGCFuUX}
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Given (F,X), ®. and A ¢ Al, there is some Y € [X]* such that
G +£ Aforevery G € |F,Y]

> LetS = {G e [X]*: ®[VC = A}
» By Galvin-Prikry’s theorem, there is Y € [X]* such that

Y“CSor[Y*NS=10
» Assume the first case holds. Then
A={n:YZe[Y“:®%(n) |=1}

A={n:VZe[Y“:®%(n) =0}

» Then A is Al, contradiction.
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Given (F,X), . and A ¢ Al, there is some Y € [X]“ such that
dH £ Aforevery G € [F,Y] and H € [G]~.

> Let {Fl, .. Fk} = [F]<w
» Let I be the functional Z — ®5“%
» Apply successively the previous lemmato I'y,..., Ik
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Conclusion

We consider theorems as mathematical problems

A problem encodes a set if there is an instance, all of
whose solutions compute the set

The Al sets are robust, and computable by sparsity
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