An $O(\sqrt{k})$ -approximation algorithm for minimum power k edge-disjoint st-paths

Zeev Nutov, The Open University of Israel

Network Design Problems

Input: A graph G = (V, E) with edge/node costs.

Output: A min-cost subgraph H of G that satisfies a given property.

Examples of properties

- *H* has minimum degree 1
- *H* is connected
- *H* contains an *st*-path
- H contains k disjoint st-paths
- Etc.

Edge-Cover Minimum Spanning Tree Shortest Path Min-Cost k-Flow many other problems

Wireless Networks

The uses of wireless networks have grown

significantly in the past several decades.

Wired versus Wireless

<u>Wired Networks</u> connecting two nodes incurs a certain cost.

<u>Wireless Networks</u> We pay at a node (transmitter) for a **range**, to connect to all nodes in the range.

Minimum Power Problems

- Nodes in the network are transmitters.
- Every node connects to all nodes in its range.
- More power \Rightarrow larger transmission range.
- Transmission range: a disk centered at the node.

Goal: Assign **energy levels** $\{w(v): v \in V\}$ to the nodes such that:

- the communication network satisfies a given property;
- the **total energy** $\sum_{v \in V} w(v)$ is minimal.

Example

Range assignment

Communication network

The Min-Power k Edge Disjoint st-Paths Problem

Min-Power k-EDP

Input: A graph G = (V, E) with edge-costs c(e), $s, t \in V$, integer k. Output: An edge set $F \subseteq E$ that contains k edge-disjoint st-paths. Minimize: $p(F) = \sum_{v \in V} w_F(v)$, where $w_F(v) = \max_{v \in F} c(uv)$. total power of F power of F power of F at vExample 3 3 t. S 3

The Min-Power k Edge Disjoint st-Paths problem

Min-Power k-EDP

Input: A graph G = (V, E) with edge-costs c(e), $s, t \in V$, integer k. Output: An edge set $F \subseteq E$ that contains k edge-disjoint st-paths. Minimize: $p(F) = \sum_{v \in V} w_F(v)$, where $w_F(v) = \max_{uv \in F} c(uv)$. Example 2 3 $p(F) = 3 \cdot 3 + 1 \cdot 4$ 3 3 3 t. S 2 3

Relation to the Node-Weighted *k*-EDP problem

Min-Power k-EDP

Input: A graph G = (V, E) with edge-costs c(e), $s, t \in V$, integer k. Output: An edge set $F \subseteq E$ that contains k edge-disjoint st-paths. Minimize: $p(F) = \sum_{v \in V} w_F(v)$, where $w_F(v) = \max_{uv \in F} c(uv)$.

Node-Weighted *k*-EDP

Node weights w(v) instead of edge costs.

Minimize the weight $w(V(F)) = \sum_{v \in V(F)} w(v)$

of the set V(F) of end-nodes of the edges in F.

Observation: Node-Weighted *k*-EDP with unit node weights is equivalent to Min-Power *k*-EDP with unit costs.

What do we know about Min-Power *k*-EDP?

k = 1: Polynomial algorithm [ACMP 03], reduction to Shortest Path.

k = 2: We have a 2-approximation algorithm, but
 we don't know if the problem is in P or is NPC.
 The edge-disjoint and node-disjoint versions are equivalent.

What do we know about Min-Power *k*-EDP?

k = 1: Polynomial algorithm [ACMP 03], reduction to Shortest Path.

k = 2: We have a 2-approximation algorithm, butwe don't know if the problem is in P or is NPC.The edge-disjoin and node-disjoint versions are equivalent.

Large values of k:

- Polynomial algorithm for increasing the number of paths by 1, when G has k - 1 edge disjoint st-paths of cost zero [LN 10]. This implies k-approximation for Min-Power k-EDP.
- Ratio ρ for Min-Power k-EDP with unit costs implies ratio $\alpha = 2\rho^2$ for the Densest k-Subgraph problem [N 08]. Currently $\alpha = n^{1/4+\epsilon}$ [BCCFV 10], so probably $\rho = \Omega(n^{1/8})$.

Two Open Questions

Question 1: Best known ratio is k, approximation threshold is $n^{1/8}$. Can we achieve approximation ratio sublinear in k?

Question 2: For k = 2:

- Is the problem in P or is it NPC?
- Can we achieve approximation ratio better than 2?

Open questions

Question 1: Best known ratio is k, approximation threshold is $n^{1/8}$. Can we achieve approximation ratio sublinear in k?

Question 2: For k = 2:

• The problem is in P or is NPC?

• Can we achieve approximation ratio better than 2?

Theorem: Min-Power k-EDP admits ratio $4\sqrt{2k} = O(\sqrt{k})$.

Open questions

Question 1: Best known ratio is k, approximation threshold is $n^{1/8}$. Can we achieve approximation ratio sublinear in k?

Question 2: For k = 2:

• The problem is in P or is NPC?

• Can we achieve approximation ratio better than 2?

Theorem: Min-Power k-EDP admits ratio $4\sqrt{2k} = O(\sqrt{k})$, on simple graphs.

The Algorithm: Return a set of cheapest k edge-disjoint st-paths.

How c(F) and p(F) are related?

Easy to see: $p(F) \le 2c(F)$ (tight example: single edge) Hard to see: $c(F) \le \sqrt{2|F|} \cdot p(F)$ (tight example: clique)

If F and F^* are optimal solutions to Min-Cost and Min-Power k-EDP, $p(F) \le 2c(F) \le 2c(F^*) \le 2\sqrt{2|F|} \cdot p(F^*)$

Main Theorem:

If F is an inclusion minimal edge set of k edge-disjoint st-paths without parallel edges then $c(F) \le 2\sqrt{2k} \cdot p(F)$.

Corollary: If G = (V, E) is an inclusion minimal graph that contains k edge-disjoint st-paths then $|E| \le 2\sqrt{2k} \cdot |V|$.

A tight example for unit costs

Corollary: $|E| \leq 2\sqrt{2k} \cdot |V|$.

A tight example for unit costs

Corollary: $|F| \leq 2\sqrt{2k} \cdot |V(F)|$.

Proof of the Theorem

Let F be an inclusion minimal edge set of k edge-disjoint st-paths without parallel edges. For $U \subseteq V$ let $F_U = \{uv \in F : u, v \in U\}$.

The main Lemma: $|F_U| \leq 2\sqrt{2k} \cdot |U|$ for any node subset U.

We use the lemma to prove that $c(F) \leq 2\sqrt{2k} \cdot p(F)$.

Let
$$w(v) = \max_{uv \in F} c(uv)$$
 be the power of F at node v . Then
 $c(F) \le \sum_{xy \in F} \min\{w(x), w(y)\}$

Thus it is sufficient to prove that for any node weights w(v)

$$\sum_{xy\in F} \min\{w(x), w(y)\} \le 2\sqrt{2k} \cdot \sum_{v\in V} w(v)$$

Proof of the TheoremMain Lemma: $|F_U| \le 2\sqrt{2k} |U|$
for any node subset U.

We need to prove: For any node weights w(v)

$$\sum_{xy\in F} \min\{w(x), w(y)\} \le 2\sqrt{2k} \cdot \sum_{v\in V} w(v)$$

Proof: By induction on the number N of distinct w(v) values.

For N = 1 this follows from the Main Lemma.

For $N \ge 2$ we use "peeling":

• U = the set of max-weight nodes.

- ϵ = max-weight minus second max-weight.
- $w'(u) = w(u) \epsilon$ for $u \in U$, w'(u) = w(u) otherwise.

Proof of the TheoremMain Lemma: $|F_U| \le 2\sqrt{2k} |U|$
for any node subset U.

We need to prove:
$$\sum_{xy \in F} \min\{w(x), w(y)\} \le 2\sqrt{2k} \cdot \sum_{v \in V} w(v)$$

- *U* = the set of max-weight nodes.
- ϵ = max-weight minus second max-weight.

•
$$w'(u) = w(u) - \epsilon$$
 for $u \in U$, $w'(u) = w(u)$ otherwise.

$$\sum_{xy\in F} \min\{w(x), w(y)\} = \sum_{xy\in F} \min\{w'(x), w'(y)\} + \epsilon |F_U|$$
$$\leq 2\sqrt{2k} \sum_{v\in V} w'(v) + 2\sqrt{2k} \cdot \epsilon |U|$$
$$= 2\sqrt{2k} \sum_{v\in V} w(v)$$

Proof sketch of the Main Lemma: $|E| \le 2\sqrt{2k} \cdot |V|$

- 1. By minimality, there exists a **nested** family of *st*-cuts such that: every cut has at most *k* edges and every edge is in some cut.
- 2. This partition V into layers L_1, \ldots, L_{q+1} .
- 3. An edge *e* from L_i to L_j has length j i. Let $\alpha = \sqrt{k/2}$.
- 4. The number of "short" edges of length $< \alpha q/n$ is at most $2\alpha n$.
- 5. The number of "long" edges of length $\geq \alpha q/n$ is at most kn/α .

Summary

- For Min-Power k-EDP we showed that the simplest algorithm (that computes a min-cost solution) achieves ratio $4\sqrt{2k}$.
- The proof is based on a combinatorial result in an inclusion minimal simple graph that contains k edge-disjoint st-paths, the number of edges $\leq 2\sqrt{2k}$ the number of nodes.
- [Maier, Mecke, Wagner 07] showed that the ratio is at least $2\sqrt{k}$.

Open Questions

- Is Min-Power 2-EDP in P, or is it NPC?
- Approximation ratio better than 2 for Min-Power 2-EDP?

Thank you for attention!

Questions?