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Network Design Problems

Input: A graph with edge/node costs.
Output: A min-cost subgraph of that satisfies a given property.

Examples of properties
 has minimum degree 1       Edge-Cover
 is connected                   Minimum Spanning Tree
 contains an -path                  Shortest Path
 contains disjoint -paths  Min-Cost k-Flow
 Etc.                                                    many other problems





Wired versus Wireless

Wired Networks
connecting two nodes 
incurs a certain cost.

Wireless Networks
We pay at a node (transmitter) 
for a range, to connect to 
all nodes in the range.



 Nodes in the network are transmitters.
 Every node connects to all nodes in its range.
 More power  larger transmission range.
 Transmission range: a disk centered at the node.

Goal: Assign energy levels to the nodes such that:
 the communication network satisfies a given property;
 the total energy is minimal.

Minimum Power Problems
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Min-Power -EDP

Input: A graph with edge-costs , , integer .
Output: An edge set that contains edge-disjoint -paths.

Minimize: , where .

The Min-Power Edge Disjoint -Paths Problem 

Example
total power of power of at 



Example

The Min-Power Edge Disjoint -Paths problem 

power of at 

Min-Power -EDP

Input: A graph with edge-costs , , integer .
Output: An edge set that contains edge-disjoint -paths.

Minimize: , where .
total power of 



Relation to the Node-Weighted -EDP problem 

Node-Weighted -EDP

Node weights instead of edge costs.

Minimize the weight  

of the set of end-nodes of the edges in .

Observation: Node-Weighted -EDP with unit node weights is 
equivalent to Min-Power -EDP with unit costs.

Min-Power -EDP

Input: A graph with edge-costs , , integer .
Output: An edge set that contains edge-disjoint -paths.

Minimize: , where .



: Polynomial algorithm [ACMP 03], reduction to Shortest Path.

What do we know about Min-Power -EDP?

: We have a 2-approximation algorithm, but ….
we don’t know if the problem is in P or is NPC.
The edge-disjoint and node-disjoint versions are equivalent.



: Polynomial algorithm [ACMP 03], reduction to Shortest Path.

What do we know about Min-Power -EDP?

Large values of : 
• Polynomial algorithm for increasing the number of paths by , 

when has edge disjoint -paths of cost zero [LN 10].  
This implies -approximation for Min-Power -EDP. 

• Ratio for Min-Power -EDP with unit costs implies 
ratio for the Densest -Subgraph problem [N 08].   
Currently [BCCFV 10], so probably .

: We have a 2-approximation algorithm, but ….
we don’t know if the problem is in P or is NPC.
The edge-disjoin and node-disjoint versions are equivalent.



Two Open Questions

Question 2: For : 
• Is the problem in P or is it NPC? 
• Can we achieve approximation ratio better than ?

Question 1: Best known ratio is , approximation threshold is 
Can we achieve approximation ratio sublinear in ?
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Open questions

Question 2: For : 
• The problem is in P or is NPC? 
• Can we achieve approximation ratio better than ?

Question 1: Best known ratio is , approximation threshold is 
Can we achieve approximation ratio sublinear in ?

Theorem:  Min-Power k-EDP admits ratio     , 
on simple graphs.

The Algorithm: Return a set of cheapest edge-disjoint -paths. 



Easy to see:  (tight example: single edge)

Hard to see:   (tight example: clique)

How and are related?

If and are optimal solutions to Min-Cost and Min-Power -EDP, 
 

Main Theorem: 
If is an inclusion minimal edge set of edge-disjoint -paths 
without parallel edges then   .

Corollary: If is an inclusion minimal graph that 
contains edge-disjoint -paths then   .



A tight example for unit costs

Corollary:   .



A tight example for unit costs

Corollary:   .



Proof of the Theorem

We use the lemma to prove that   .

Let be the power of at node . Then

Thus it is sufficient to prove that for any node weights 

The main Lemma:   for any node subset .

Let be an inclusion minimal edge set of edge-disjoint -paths 
without parallel edges. For let .

 



For we use “peeling”:
• the set of max-weight nodes.
• max-weight minus second max-weight.
• for , otherwise.

Proof: By induction on the number of distinct values. 
For this follows from the Main Lemma.

Proof of the Theorem

We need to prove: For any node weights 

Main Lemma:  

for any node subset .

 



• the set of max-weight nodes.
• max-weight minus second max-weight.
• for , otherwise.

Proof of the Theorem

We need to prove:

Main Lemma:  

for any node subset .
 

   

 



Proof sketch of the Main Lemma:  

1. By minimality, there exists a nested family of -cuts such that:
every cut has at most edges and every edge is in some cut.

2. This partition into layers . 
3. An edge from to has length .  Let   .
4. The number of “short” edges of length is at most .
5. The number of  “long”  edges of length is at most .



Summary

• For Min-Power -EDP we showed that the simplest algorithm  
(that computes a min-cost solution) achieves ratio  

• The proof is based on a combinatorial result – in an inclusion 
minimal simple graph that contains edge-disjoint -paths,   
the number of edges   the number of nodes.

• [Maier, Mecke, Wagner 07] showed that the ratio is at least  

Open Questions

• Is Min-Power -EDP in P, or is it NPC?
• Approximation ratio better than for Min-Power -EDP?



23

Thank you for attention!

Questions?


