An $\boldsymbol{O}(\sqrt{k})$-approximation algorithm for minimum power k edge-disjoint st-paths

Zeev Nutov, The Open University of Israel

Network Design Problems

Input: A graph $G=(V, E)$ with edge/node costs.
Output: A min-cost subgraph H of G that satisfies a given property.

Examples of properties

- H has minimum degree 1
- H is connected
- H contains an st-path
- H contains k disjoint st-paths
- Etc.

Edge-Cover
Minimum Spanning Tree
Shortest Path
Min-Cost k-Flow
many other problems

Wired versus Wireless

Wired Networks

 connecting two nodes incurs a certain cost.Wireless Networks
We pay at a node (transmitter) for a range, to connect to all nodes in the range.

Minimum Power Problems

- Nodes in the network are transmitters.
- Every node connects to all nodes in its range.
- More power \Rightarrow larger transmission range.
- Transmission range: a disk centered at the node.

Goal: Assign energy levels $\{w(v): v \in V\}$ to the nodes such that:

- the communication network satisfies a given property;
- the total energy $\sum_{v \in V} w(v)$ is minimal.

Example

Communication network
Undirected

The Min-Power \boldsymbol{k} Edge Disjoint $\boldsymbol{s t}$-Paths Problem

Min-Power k-EDP

Input: A graph $G=(V, E)$ with edge-costs $c(e), s, t \in V$, integer k.
Output: An edge set $F \subseteq E$ that contains k edge-disjoint $s t$-paths.

Example

The Min-Power \boldsymbol{k} Edge Disjoint $\boldsymbol{s t}$-Paths problem

Min-Power k-EDP

Input: A graph $G=(V, E)$ with edge-costs $c(e), s, t \in V$, integer k.
Output: An edge set $F \subseteq E$ that contains k edge-disjoint $s t$-paths.

Relation to the Node-Weighted \boldsymbol{k}-EDP problem

Min-Power k-EDP

Input: A graph $G=(V, E)$ with edge-costs $c(e), s, t \in V$, integer k.
Output: An edge set $F \subseteq E$ that contains k edge-disjoint st-paths.
Minimize: $p(F)=\sum_{v \in V} w_{F}(v)$, where $w_{F}(v)=\max _{u v \in F} c(u v)$.

Node-Weighted \boldsymbol{k}-EDP

Node weights $w(v)$ instead of edge costs.
Minimize the weight $w(V(F))=\sum_{v \in V(F)} w(v)$
of the set $V(F)$ of end-nodes of the edges in F.

Observation: Node-Weighted k-EDP with unit node weights is equivalent to Min-Power k-EDP with unit costs.

What do we know about Min-Power k-EDP?

$k=1$: Polynomial algorithm [ACMP 03], reduction to Shortest Path.
$k=2$: We have a 2-approximation algorithm, but
we don't know if the problem is in P or is NPC.
The edge-disjoint and node-disjoint versions are equivalent.

What do we know about Min-Power k-EDP?

$k=1$: Polynomial algorithm [ACMP 03], reduction to Shortest Path.
$k=2$: We have a 2 -approximation algorithm, but
we don't know if the problem is in P or is NPC.
The edge-disjoin and node-disjoint versions are equivalent.

Large values of k :

- Polynomial algorithm for increasing the number of paths by 1 , when G has $k-1$ edge disjoint st-paths of cost zero [LN 10]. This implies k-approximation for Min-Power k-EDP.
- Ratio ρ for Min-Power k-EDP with unit costs implies ratio $\alpha=2 \rho^{2}$ for the Densest k-Subgraph problem [N 08]. Currently $\alpha=n^{1 / 4+\epsilon}$ [BCCFV 10], so probably $\rho=\Omega\left(n^{1 / 8}\right)$.

Two Open Questions

Question 1: Best known ratio is k, approximation threshold is $n^{1 / 8}$.
Can we achieve approximation ratio sublinear in k ?
Question 2: For $k=2$:

- Is the problem in P or is it NPC?
- Can we achieve approximation ratio better than 2?

Open questions

Question 1: Best known ratio is k, approximation threshold is $n^{1 / 8}$.
Can we achieve approximation ratio sublinear in k ?
Question 2: For $k=2$:

- The problem is in P or is NPC?
- Can we achieve approximation ratio better than 2?

Theorem: Min-Power k-EDP admits ratio $4 \sqrt{2 k}=O(\sqrt{k})$.

Open questions

Question 1: Best known ratio is k, approximation threshold is $n^{1 / 8}$.
Can we achieve approximation ratio sublinear in k ?
Question 2: For $k=2$:

- The problem is in P or is NPC?
- Can we achieve approximation ratio better than 2?

Theorem: Min-Power k-EDP admits ratio $4 \sqrt{2 k}=O(\sqrt{k})$, on simple graphs.

The Algorithm: Return a set of cheapest k edge-disjoint st-paths.

How $c(F)$ and $p(F)$ are related?

Easy to see: $p(F) \leq 2 c(F)$
(tight example: single edge)
Hard to see: $c(F) \leq \sqrt{2|F|} \cdot p(F) \quad$ (tight example: clique)
If F and F^{*} are optimal solutions to Min-Cost and Min-Power k-EDP,

$$
p(F) \leq 2 c(F) \leq 2 c\left(F^{*}\right) \leq 2 \sqrt{2|F|} \cdot p\left(F^{*}\right)
$$

Main Theorem:

If F is an inclusion minimal edge set of k edge-disjoint $s t$-paths without parallel edges then $c(F) \leq 2 \sqrt{2 k} \cdot p(F)$.

Corollary: If $G=(V, E)$ is an inclusion minimal graph that contains k edge-disjoint $s t$-paths then $|E| \leq 2 \sqrt{2 k} \cdot|V|$.

A tight example for unit costs

Corollary: $|E| \leq 2 \sqrt{2 k} \cdot|V|$.

$|E| \approx r^{2}(q+1)$
$|V| \approx r q$

A tight example for unit costs

Corollary: $|F| \leq 2 \sqrt{2 k} \cdot|V(F)|$.

Proof of the Theorem

Let F be an inclusion minimal edge set of k edge-disjoint st-paths without parallel edges. For $U \subseteq V$ let $F_{U}=\{u v \in F: u, v \in U\}$.

The main Lemma: $\left|F_{U}\right| \leq 2 \sqrt{2 k} \cdot|U|$ for any node subset U.
We use the lemma to prove that $c(F) \leq 2 \sqrt{2 k} \cdot p(F)$.
Let $w(v)=\max _{u v \in F} c(u v)$ be the power of F at node v. Then

$$
c(F) \leq \sum_{x y \in F} \min \{w(x), w(y)\}
$$

Thus it is sufficient to prove that for any node weights $w(v)$

$$
\sum_{x y \in F} \min \{w(x), w(y)\} \leq 2 \sqrt{2 k} \cdot \sum_{v \in V} w(v)
$$

Proof of the Theorem Main Lemma: $\left|F_{U}\right| \leq 2 \sqrt{2 k}|U|$

 for any node subset U.We need to prove: For any node weights $w(v)$

$$
\sum_{x y \in F} \min \{w(x), w(y)\} \leq 2 \sqrt{2 k} \cdot \sum_{v \in V} w(v)
$$

Proof: By induction on the number N of distinct $w(v)$ values.
For $N=1$ this follows from the Main Lemma.
For $N \geq 2$ we use "peeling":

- $U=$ the set of max-weight nodes.
- $\epsilon=$ max-weight minus second max-weight.

- $w^{\prime}(u)=w(u)-\epsilon$ for $u \in U, w^{\prime}(u)=w(u)$ otherwise.

Proof of the Theorem Main Lemma: $\left|F_{U}\right| \leq 2 \sqrt{2 k}|U|$

 for any node subset U. We need to prove: $\sum_{x y \in F} \min \{w(x), w(y)\} \leq \mathbf{2} \sqrt{\mathbf{2 k}} \cdot \sum_{v \in V} w(v)$- $U=$ the set of max-weight nodes.
- $\epsilon=$ max-weight minus second max-weight.
- $w^{\prime}(u)=w(u)-\epsilon$ for $u \in U, w^{\prime}(u)=w(u)$ otherwise.
$\sum_{x y \in F} \min \{w(x), w(y)\}=\sum_{x y \in F} \min \left\{w^{\prime}(x), w^{\prime}(y)\right\}+\epsilon\left|F_{U}\right|$
$\leq 2 \sqrt{2 k} \sum_{v \in V} w^{\prime}(v)+2 \sqrt{2 k} \cdot \epsilon|U|$
$=2 \sqrt{2 k} \sum_{v \in V} w(v)$

Proof sketch of the Main Lemma: $|E| \leq 2 \sqrt{2 k} \cdot|V|$

1. By minimality, there exists a nested family of $s t$-cuts such that: every cut has at most k edges and every edge is in some cut.
2. This partition V into layers L_{1}, \ldots, L_{q+1}.
3. An edge e from L_{i} to L_{j} has length $j-i$. Let $\alpha=\sqrt{k / 2}$.
4. The number of "short" edges of length $<\alpha q / n$ is at most $2 \alpha n$.
5. The number of "long" edges of length $\geq \alpha q / n$ is at most $k n / \alpha$.

Summary

- For Min-Power k-EDP we showed that the simplest algorithm (that computes a min-cost solution) achieves ratio $4 \sqrt{2 k}$.
- The proof is based on a combinatorial result - in an inclusion minimal simple graph that contains k edge-disjoint st-paths, the number of edges $\leq 2 \sqrt{2 k}$ the number of nodes.
- [Maier, Mecke, Wagner 07] showed that the ratio is at least $2 \sqrt{k}$.

Open Questions

- Is Min-Power 2-EDP in P, or is it NPC?
- Approximation ratio better than 2 for Min-Power 2-EDP?

Thank you for attention!

Questions?

