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Where do I come from, where am I going to?

1 Effectivize a notion so that it is useful in a
computably-defined world

2 Use the effective notion to prove results in the classical world

3 Effectivize it some more so that you can use it in a
finite-automata defined world → Use the finite-state notion
to prove results in the classical world



Effective Hausdorff dimension: Kolmogorov complexity

Given U a universal Turing Machine, and σ ∈ 2<ω, KU(σ) is
the Kolmogorov complexity of σ, which is the length of the
shortest description of σ (from which U recovers σ):

KU(σ) = min {|p| |U(p) = σ}

This concept is invariant on U up to an additive constant, we
drop the U

K(σ) = min {|p| |U(p) = σ}



Effective Hausdorff dimension: Cantor space

Theorem (M 2002)

For x ∈ 2ω,

dim(x) = lim inf
n

K(x [1..n])

n

It extends the notion of Martin-Löf random sequence:
x is ML-random iff there is a c such that for all n,

K(x [1..n]) > n − c

For a set E ⊆ 2ω,
dim(E ) = sup

x∈E
dim(x)



Why do we effectivize?

To quantify

Partial randomness

Geometric measure theory (correspondence principles)



Sample results

(Hitchcock 2005) If E is a union of Π0
1-definable sets then

dimH(E ) = dim(E )

There are ∆0
2-degrees of dimension 1 with no ML-random reals



Most extreme effectivitation: Finite-state dimension

Given a finite-state transducer D with input and output binary
alphabet (2-FST),

KD(σ) = min {|p| |D(p) = σ ∨ p = σ}



Most extreme effectivitation: Finite-state dimension

Theorem (Doty Moser 2006)

For x ∈ 2ω,

dim2
FS(x) = inf

D2−FST
lim inf

n

KD(x [1..n])

n

For a different input alphabet x ∈ {0, . . . , b − 1}ω

dimb
FS(x) = inf

Db−FST
lim inf

n

KD(x [1..n])

n

For a set E ⊆ {0, . . . , b − 1}ω,

dimb
FS(E ) = inf

Db−FST
sup
x∈E

lim inf
n

KD(x [1..n])

n



Sample result

Theorem

(Lutz M 2021) There is an algorithm that computes an absolutely
normal real number in nearly-linear time



Effective Hausdorff dimension in Euclidean space

We identify x ∈ 2ω with the real number with binary
representation 0.x (also denoted x)
For x ∈ [0, 1],

dim(x) = lim inf
n

K(x [1..n])

n

At Finite-State level, the alphabet matters, so for b ∈ N we
identify x ∈ {0, . . . , b − 1}ω with the real number in base b, 0.x

dimb
FS(x) = inf

Db−FST
lim inf

n

KD(x [1..n])

n



Effective dimension in Euclidean space: adding geometry

Definition (Kolmogorov complexity of x at precision δ)

Kδ(x) = inf {K(σ) | |x − 0.σ| < δ}

For x ∈ [0, 1],

dim(x) = lim inf
δ→0+

Kδ(x)

log(1/δ)



Using information content at precision δ for FS

For D a finite-state transducer with input and output alphabet
{0, . . . , b − 1} (b ∈ N), for x ∈ [0, 1],

KD,δ(x) = inf {KD(σ) | |x − 0.σ| < δ}

Theorem (M 2022)

For x ∈ [0, 1],

dimb
FS(x) = inf

Db−FST
lim inf
δ→0+

KD,δ(x)

log(1/δ)



Effective Hausdorff dimension in other separable metric
spaces

Let (X , ρ) be a separable metric space and let D ⊆ X be a
countable dense set (fix f : 2<ω � D)

Definition (Kolmogorov complexity of x at precision δ)

Kδ(x) = inf {K(σ) | ρ(x , f (σ)) < δ}

Definition (Lutz et al 2022)

The algorithmic dimension of a point x ∈ X is

dim(x) = lim inf
δ→0+

Kδ(x)

log(1/δ)



Using information content at precision δ for FS

For D a finite-state transducer with input and output alphabet
{0, . . . , b − 1} (b ∈ N), x ∈ X ,

KD,δ(x) = inf {KD(σ) | ρ(x , f (σ)) < δ}

dimb
FS(x) = inf

Db−FST
lim inf
δ→0+

KD,δ(x)

log(1/δ)



What next?



The relativization ingredient

KA(σ) = min
{
|p|
∣∣∣UA(p) = σ

}
KA
δ (x) = inf

{
KA(σ) | ρ(x , f (σ)) < δ

}
dimA(x) = lim inf

δ→0+

KA
δ (x)

log(1/δ)

And for a set E ⊆ X

dimA(E ) = sup
x∈E

dimA(x)



Hausdorff definition of dimension (1919)

Let (X , ρ) be a separable metric space

For E ⊆ X and δ > 0, a δ-cover of E is a countable collection
U such that for all U ∈ U , diam(U) < δ and

E ⊆
⋃
U∈U

U

For s ≥ 0,
Hs(E ) = limδ→0 infU is a δ-cover of E

∑
U∈U diam(U)s

The Hausdorff dimension of E ⊆ X is
dimH(E ) = inf {s |Hs(E ) = 0}



Point-to-set principle

Theorem (Lutz Lutz 2018, Lutz et al 2022)

Let E ⊆ X , then

dimH(E ) = min
A⊆2<ω

dimA(E )

Two possible directions:

Use the point-to-set principle to prove results in geometric
measure theory

Analyze the point-to-set principle to understand
effectivizations of dimension



Application of point to set principles to fractal geometry:
projection formula

Theorem (Marstrand 1954, Mattila 1975)

Let E ⊆ Rn be an analytic set with dimH(E ) = s. Then for
almost every e ∈ Sn−1, dimH(peE ) = min{s, 1}

It does not hold for arbitrary E (assuming CH). Recently an
extension using PSPs

Theorem (N.Lutz Stull 2018)

Let E ⊆ Rn be an arbitrary set with dimH(E ) = dimP(E ) = s.
Then for almost every e ∈ Sn−1, dimH(peE ) = min{s, 1}



Hausdorff optimal oracles (Stull 2022)

(Informal) A is an Hausdorff optimal oracle for E if
dimH(E ) = dimA(E ) and any oracle A,B does not decrease
dimA,B(x) for some x ∈ E

Theorem (Stull 2022)

Let E ⊆ Rn be a set that has a Hausdorff optimal oracle. Then for
almost every e ∈ Sn−1, dimH(peE ) = min{dimH(E ), 1}

All known cases of the projection theorem are particular cases of
this



Revisiting the PTSPs

Let D ⊆ X be a countable dense set, let us consider different
enumerators f : 2<ω � D

Kf
δ(x) = inf {K(σ) |ρ(x , f (σ)) < δ}

Definition

The algorithmic dimension of a point x ∈ X with enumerator f is

dimf (x) = lim inf
δ→0+

Kf
δ(x)

log(1/δ)



Revisiting the PTSPs

Theorem (M 2022)

Let E ⊆ X . Then

dimH(E ) = min
f :2<ω�D

dimf (E ).



Some consequences

Relativization can be substituted by dense set enumeration

This is a robust alternative to relativization for Finite-State
dimension

for each enumeration f we can have a robust definition of
finite-state dimension dimf

FS

dimf
FS(x) = inf

D2−FST
lim inf
δ→0+

Kf
D,δ(x)

log(1/δ)



Finite-State dimension PTSP

Theorem (M 2022)

Let E ⊆ [0, 1).

dimH(E ) = min
f :2<ω�D

dimf
FS(E ).



What we can learn from this

The oracle for which dimH(E ) = minA⊆2<ω dimA(E ) requires
a single (functional) query

It can be interesting to separate compression and relativization

The concept of optimal oracles from (Stull 2022) should be
revisited for optimal enumerators



Further directions

For computability: Classification of PSP enumerators/oracles
of a set

For geometric m.t.: Can sets with optimal
enumerators/oracles replace analytic sets in different known
results?
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