
On a Lattice of Degrees of Representations

of Irrational Numbers

Lars Kristiansen

Department of Mathematics, University of Oslo

Department of Informatics, University of Oslo

CiE 2023: Unity of Logic and Computation

Batumi, Georgia – July 28, 2023



What is a representation of the irrational numbers?

I will tell you.

Beware! I will not tell you what a representation of the real numbers is.



We identify an irrational number α with its Dedkind cut. The Dedekind

cut of an irrational α is the function α : Q −→ {0, 1} where

α(q) =

{
0 if q < α

1 if q > α.

We will use the representation by Dedekind cuts to define what

representation in general is. In principle, we could have use any other

computable representation for this purpose, but it is

convenient to use a representation that is unique

a good idea to use a well-know representation.



What is a representation?

Definition

A class of functions R is a representation (of the irrational numbers) if

there exist oracle Turing machines M and N such that

for every irrational α ∈ (0, 1) there exists f ∈ R such that

α = Φf
M and f = Φα

N

for every g ∈ R there exist an irrational α ∈ (0, 1) such that

α = Φg
M = Φf

M where f = Φα
N

When α = Φg
M , we say that g represents α and that g is an

R-representation of α.



Example

A function C : N+ −→ Q is a Cauchy sequence for α if

|α− C (n)| < n−1 .

Let C be the class of all Cauchy sequences for irrational numbers in the

interval (0, 1).

Then C is a representation.



Example

A function E : N+ −→ {0, 1} is the base-2 expansion of α if

α =
∞∑
i=1

E (i)2−i .

Let 2E be the class of all base-2 expansions of irrational numbers in the

interval (0, 1).

Then 2E is a representation.



Example

A function T : Q ∩ [0, 1] −→ (0, 1) is the trace function for α if

|α− T (q)| < |α− q| .

Let T be the class of all trace functions for irrational numbers in the

interval (0, 1).

Then T is a representation.



Example

Recall that the Dedekind cut of an irrational α is the function

α : Q −→ {0, 1} where

α(q) =

{
0 if q < α

1 if q > α.

Let D be the class of all Dedekind cuts of irrational numbers in the

interval (0, 1).

Then D is a representation.



Example of something that is not a representation
(but which come close).

A function L : N −→ (0, 1) is a left cut for α if the sequence

L(0), L(1), L(2), . . .

contains (i) all the rationals less than α and (ii) only rational less that α.

A class of left cuts will not be a representation. We cannot compute the

Dedekind cut of α from a left cut for α.



Example of something that is not a representation
(but which come close).

Cauchy sequences without a modulus of convergence. Let C : N+ −→ Q
be such that

∀n ∈ N+ ∃N
(
i > N → |α− C (i)| < n−1

)

A class of such functions will not be a representation. We cannot

compute the Dedekind cut of α from such a function.



Next we define an ordering relation �S over the representations.

Intuitiviely, we want

R1 �S R2 to be true if an R2-representation of α can be

subrecursively converted into an R1-representation of α

(subrecursively = ”without unbounded search”)

R1 6�S R2 to be true if unbounded search is required in order to

convert R2-representation of α into an R1-representation of α.

More intuition . . .

If R1 �S R2 holds, then the representation R2 gives more

information than the representation R1.



More intuition . . .

Let C be a Cauchy sequence for the irrational number α.

How can we decide if α lies above or below 1/3?

Consider C as an oracle. (We assume that α is irrational, so α lies

strictly above or strictly below 1/3.)



More intuition . . .

Let C be a Cauchy sequence for the irrational number α.

How can we decide if α lies above or below 1/3?

Consider C as an oracle. (We assume that α is irrational, so α lies

strictly above or strictly below 1/3.)



We may ask C . . .

C (0) = ?

C (1) = ?

C (2) = ?

C (3) = ?

...



We may ask C . . .

C (0) = 1/3

C (1) = ?

C (2) = ?

C (3) = ?

...



We may ask C . . .

C (0) = 1/3

C (1) = 1/3

C (2) = ?

C (3) = ?

...



We may ask C . . .

C (0) = 1/3

C (1) = 1/3

C (2) = 1/3

C (3) = 1/3

...

C (16) = 1/3

C (17) = 1/3



We may ask C . . .

...

C (16) = 1/3

C (17) = 1/3

Now, we know that α is close to 1/3, that is∣∣∣∣α− 1

3

∣∣∣∣ < 1

17

but we still don’t know if α lies above or below 1/3.



Now

C (a sufficiently large number) =

a rational that allows

me to conclude if α

lies above or below 1/3

but we need unbounded search to find that number.

I cannot find the number by a subrecursive computation.

I need full Turing computability.



Now

C (a sufficiently large number) =

a rational that allows

me to conclude if α

lies above or below 1/3

but we need unbounded search to find that number.

I cannot find the number by a subrecursive computation.

I need full Turing computability.



Now

C (a sufficiently large number) =

a rational that allows

me to conclude if α

lies above or below 1/3

but we need unbounded search to find that number.

I cannot find the number by a subrecursive computation.

I need full Turing computability.



If we have access to the Dedekind cut of α, then we can easily decide if

1/3 lies above or below α.

If D(1/3) = 0, then 1/3 lies below α

If D(1/3) = 1, then 1/3 lies above α

Just one question is needed. No unbounded search is required.

A subrecursive computation is sufficient to answer the question.
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This example shows that we cannot compute the Dedekind cut of α

subrecursively in a Cauchy sequence for α.

We want

D 6�S C

where

D is the representation by Dedekind cuts

C is the representation by Cauchy sequences.

In contrast, we can compute a Cauchy sequence for α subrecursively in

the Dedekind cut of α.



This example shows that we cannot compute the Dedekind cut of α

subrecursively in a Cauchy sequence for α.

We want
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D is the representation by Dedekind cuts
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Let α be an irrational number between 0 and 1.

We can compute a Cauchy sequence C for α subrecursively in the

Dedekind cut of α: Let C (1) = 2−1 and

C (n + 1) =

{
C (n)− 2−n−1 if D(C (n)) = 0

C (n) + 2−n−1 otherwise.

We want that

C �S D .



Let α be an irrational number between 0 and 1.

We can compute a Cauchy sequence C for α subrecursively in the

Dedekind cut of α: Let C (1) = 2−1 and

C (n + 1) =

{
C (n)− 2−n−1 if D(C (n)) = 0

C (n) + 2−n−1 otherwise.

We want that

C �S D .



Now, . . . the formal definition of �S .

We need some auxiliary definitions.



We need the time bounds.

Definition

A function t : N −→ N is a time bound if (i) n ≤ t(n), (ii) t is increasing

and (iii) t is time-constructible: there is a single-tape Turing machine

that, on input 1n, computes t(n) in O(t(n)) steps.



We need the notation O(t)R .

Definition

Let t be a time-bound and let R be a representation. Then, O(t)R
denotes the class of all irrational α in the interval (0, 1) such that at least

one R-representation of α is computable by a Turing machine running in

time O(t(n)) (where n is the length of the input).



Example

Let C be the representation by Cauchy sequences. Let α ∈ (0, 1) be

irrational.

Then the following two statements are equivalent (by definition).

1 α ∈ O(n2)C

2 at least one Cauchy sequence for α can be computed by a Turing

machine running in time O(n2) (where n is the length of the input).



Example

Let 2E be the representation by base-2 expansions. Let α ∈ (0, 1) be

irrational.

Then the following two statements are equivalent.

1 α ∈ O(24n2)2E

2 the base-2 expansion of α can be computed by a Turing machine

running in time O(24n2) (where n is the length of the input).



Now we are ready for the definition of �S .

Definition

Let t be a time-bound. Let R1 and R2 be representations. The relation

R1 �S R2 holds if there for any time-bound t exists a time-bound s such

that

O(t)R2 ⊆ O(s)R1 .

If the relation R1 �S R2 holds, we will say that the representation R1 is

subrecursive in the representation R2.



Let us see why we have C �S 2E .

There is a natural subrecursive algorithm for converting the base-2

expansion of α into a Cauchy sequence for α (no unbounded search

involved).

Analyse that algorithm and conclude: If a Turing machine can compute

the base-2 expansion of α in time O(t(n)), then a Turing machine can

compute a Cauchy sequence for α in time O(25t(n)).

Thus

O(t(n))2E ⊆ O(25t(n))C .

Thus, for any time-bound t there exists a time-bound s such that

O(t(n))2E ⊆ O(s(n))C .

(this holds when s(n) = 25t(n)).

Thus, we have C �S 2E (by the definition of �S).
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This generalises. In general we can prove R1 �S R2 by the following

recipe.

Find a subrecursive algorithm for converting an R2-representation of α

into an R1-representation of α (no unbounded search).
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an R2-representation of α in time O(t(n)), then a Turing machine can

compute an R1-representation α in time O(st(n)) where st is a

time-bound depending on t.
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To prove R1 6�S R2 migh not be all that easy.

Then we have to prove that

there exists a time-bound t such that

for any time-bound s

O(t(n))R2 6⊆ O(s(n))R1



To prove R1 6�S R2 might not be all that easy . . .

. . . which again can be proved by proving

there exists a time-bound t such that

for any time-bound s

there exists an irrational β ∈ (0, 1) such that

β ∈ O(t(n))R2 \ O(s(n))R1

That there for any time-bond s exists such a β will typically be proved by

a diagonalisation argument. Such arguments may be tedious and

involved.



The relation �S is a preorder. Thus �S induce a degree structure on the

representations (standard stuff will follow).



Let R and Q be representations.

R ≡S Q ⇔def R �S Q and Q �S R .

R ≺S Q ⇔def R �S Q and Q 6�S R .

We define the degree of the representation R, denoted deg(R), as the

equivalence class given by

deg(R) = { Q | Q ≡S R } .

The set of all degrees, denoted S, is given by

S = { deg(R) | R is a representation } .

We will use a,b, c (possible decorated) to denote degrees. We will use ≤
and < to denote the ordering relations induced on the degrees by �S and

≺S , respectively.



It turns out that this degree structure is a lattice. That is, there are

operators ∪ and ∩ on the degrees such that

a ∪ b is the least upper bound of a and b

a ∩ b is the greatest lower bound of a and b.

for any a,b ∈ S.



It turns out that the degree structure has a top and bottom degree.

Let 0 denote the degree of the representation by Weirauch intersections

(nested intervals).

Let 1 denote the degree of the representation by continued fractions.

Theorem

We have

0 ≤ a ≤ 1

for any degree a.



Definition

A function I : N −→ Q×Q is a Weihrauch intersection for the real

number α if the left component of the pair I (i) is strictly less that the

right component of the pair I (i) (for all i ∈ N) and

{ α } =
∞⋂
i=0

IOi

where IOi denotes the open interval given by the the pair I (i).

If we have a Weihrauch intersection for an irrational number α, the we

can compute the Dedekind cut of α (we will need unbounded search). If

we have the Dedekind cut of α, we can obviously compute a Weihrauch

intersection for α (we do not need unbounded search).

The class of all Weihrauch intersections for irrationals in the intervall

(0, 1) is a representation.



Definition

Let α be an irrational in the interval (0, 1). The continued fraction of α

is the unique function f : N+ −→ N+ such that α = [0; f (1), f (2), . . .]

where

[ 0; a1, a2, a3 . . . ] = 0 +
1

a1 +
1

a2 +
1

a3 + . . .

The class of all continued fractions of irrationals in the intervall (0, 1) is a

representation.



Weihrauch intersections

Cauchy sequences

Base-b expansions Base-b′ expansion

Dedekind cuts
Base-b sum approx.

from below

Base-b′ sum approx.

from above

Best approx.

from below

Best approx.

from above

Continued fractions

Figure 1: Overview.
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