On a Lattice of Degrees of Representations of Irrational Numbers

Lars Kristiansen
Department of Mathematics, University of Oslo
Department of Informatics, University of Oslo

CiE 2023: Unity of Logic and Computation

Batumi, Georgia - July 28, 2023

What is a representation of the irrational numbers?

I will tell you.
Beware! I will not tell you what a representation of the real numbers is.

We identify an irrational number α with its Dedkind cut. The Dedekind cut of an irrational α is the function $\alpha: \mathbb{Q} \longrightarrow\{0,1\}$ where

$$
\alpha(q)= \begin{cases}0 & \text { if } q<\alpha \\ 1 & \text { if } q>\alpha\end{cases}
$$

We will use the representation by Dedekind cuts to define what representation in general is. In principle, we could have use any other computable representation for this purpose, but it is

- convenient to use a representation that is unique
- a good idea to use a well-know representation.

What is a representation?

Definition

A class of functions R is a representation (of the irrational numbers) if there exist oracle Turing machines M and N such that

- for every irrational $\alpha \in(0,1)$ there exists $f \in R$ such that

$$
\alpha=\Phi_{M}^{f} \text { and } f=\Phi_{N}^{\alpha}
$$

- for every $g \in R$ there exist an irrational $\alpha \in(0,1)$ such that

$$
\alpha=\Phi_{M}^{g}=\Phi_{M}^{f} \text { where } f=\Phi_{N}^{\alpha}
$$

When $\alpha=\Phi_{M}^{g}$, we say that g represents α and that g is an R-representation of α.

Example

A function $C: \mathbb{N}^{+} \longrightarrow \mathbb{Q}$ is a Cauchy sequence for α if

$$
|\alpha-C(n)|<n^{-1} .
$$

Let \mathcal{C} be the class of all Cauchy sequences for irrational numbers in the interval $(0,1)$.

Then \mathcal{C} is a representation.

Example

A function $E: \mathbb{N}^{+} \longrightarrow\{0,1\}$ is the base-2 expansion of α if

$$
\alpha=\sum_{i=1}^{\infty} E(i) 2^{-i}
$$

Let $2 \mathcal{E}$ be the class of all base- 2 expansions of irrational numbers in the interval (0,1).

Then $2 \mathcal{E}$ is a representation.

Example

A function $T: \mathbb{Q} \cap[0,1] \longrightarrow(0,1)$ is the trace function for α if

$$
|\alpha-T(q)|<|\alpha-q| .
$$

Let \mathcal{T} be the class of all trace functions for irrational numbers in the interval (0,1).

Then \mathcal{T} is a representation.

Example

Recall that the Dedekind cut of an irrational α is the function $\alpha: \mathbb{Q} \longrightarrow\{0,1\}$ where

$$
\alpha(q)= \begin{cases}0 & \text { if } q<\alpha \\ 1 & \text { if } q>\alpha .\end{cases}
$$

Let \mathcal{D} be the class of all Dedekind cuts of irrational numbers in the interval $(0,1)$.

Then \mathcal{D} is a representation.

Example of something that is not a representation (but which come close).

A function $L: \mathbb{N} \longrightarrow(0,1)$ is a left cut for α if the sequence

$$
L(0), L(1), L(2), \ldots
$$

contains (i) all the rationals less than α and (ii) only rational less that α.

A class of left cuts will not be a representation. We cannot compute the Dedekind cut of α from a left cut for α.

Example of something that is not a representation (but which come close).

Cauchy sequences without a modulus of convergence. Let $C: \mathbb{N}^{+} \longrightarrow \mathbb{Q}$ be such that

$$
\forall n \in \mathbb{N}^{+} \exists N\left(i>N \rightarrow|\alpha-C(i)|<n^{-1}\right)
$$

A class of such functions will not be a representation. We cannot compute the Dedekind cut of α from such a function.

Next we define an ordering relation \preceq_{S} over the representations.

Intuitiviely, we want

- $R_{1} \preceq_{S} R_{2}$ to be true if an R_{2}-representation of α can be subrecursively converted into an R_{1}-representation of α (subrecursively $=$ " without unbounded search")
- $R_{1} \npreceq s R_{2}$ to be true if unbounded search is required in order to convert R_{2}-representation of α into an R_{1}-representation of α.

More intuition...

- If $R_{1} \preceq \varsigma R_{2}$ holds, then the representation R_{2} gives more information than the representation R_{1}.

More intuition ...

Let C be a Cauchy sequence for the irrational number α.

More intuition ...

Let C be a Cauchy sequence for the irrational number α.

How can we decide if α lies above or below $1 / 3$?

Consider C as an oracle. (We assume that α is irrational, so α lies strictly above or strictly below $1 / 3$.)

We may ask C...

- $C(0)=$?
- $C(1)=$?
- $C(2)=$?
- $C(3)=$?

We may ask C...

- $C(0)=1 / 3$
- $C(1)=$?
- $C(2)=$?
- $C(3)=$?

We may ask C...

- $C(0)=1 / 3$
- $C(1)=1 / 3$
- $C(2)=$?
- $C(3)=$?

We may ask C...

- $C(0)=1 / 3$
- $C(1)=1 / 3$
- $C(2)=1 / 3$
- $C(3)=1 / 3$
- $\quad \vdots$
- $C(16)=1 / 3$
- $C(17)=1 / 3$

We may ask C...

- $C(16)=1 / 3$
- $C(17)=1 / 3$

Now, we know that α is close to $1 / 3$, that is

$$
\left|\alpha-\frac{1}{3}\right|<\frac{1}{17}
$$

but we still don't know if α lies above or below $1 / 3$.

Now
a rational that allows
$C($ a sufficiently large number $)=$ me to conclude if α lies above or below $1 / 3$

Now
a rational that allows
$C($ a sufficiently large number $)=$ me to conclude if α lies above or below $1 / 3$
but we need unbounded search to find that number.

Now
a rational that allows
$C($ a sufficiently large number $)=$ me to conclude if α lies above or below $1 / 3$
but we need unbounded search to find that number.

I cannot find the number by a subrecursive computation.

I need full Turing computability.

If we have access to the Dedekind cut of α, then we can easily decide if $1 / 3$ lies above or below α.

If we have access to the Dedekind cut of α, then we can easily decide if $1 / 3$ lies above or below α.

- If $D(1 / 3)=0$, then $1 / 3$ lies below α
- If $D(1 / 3)=1$, then $1 / 3$ lies above α

If we have access to the Dedekind cut of α, then we can easily decide if $1 / 3$ lies above or below α.

- If $D(1 / 3)=0$, then $1 / 3$ lies below α
- If $D(1 / 3)=1$, then $1 / 3$ lies above α

Just one question is needed. No unbounded search is required.

If we have access to the Dedekind cut of α, then we can easily decide if $1 / 3$ lies above or below α.

- If $D(1 / 3)=0$, then $1 / 3$ lies below α
- If $D(1 / 3)=1$, then $1 / 3$ lies above α

Just one question is needed. No unbounded search is required.

A subrecursive computation is sufficient to answer the question.

This example shows that we cannot compute the Dedekind cut of α subrecursively in a Cauchy sequence for α.

We want

$$
\mathcal{D} \npreceq s \mathcal{C}
$$

where

- \mathcal{D} is the representation by Dedekind cuts
- \mathcal{C} is the representation by Cauchy sequences.

This example shows that we cannot compute the Dedekind cut of α subrecursively in a Cauchy sequence for α.

We want

$$
\mathcal{D} \npreceq S \mathcal{C}
$$

where

- \mathcal{D} is the representation by Dedekind cuts
- \mathcal{C} is the representation by Cauchy sequences.

In contrast, we can compute a Cauchy sequence for α subrecursively in the Dedekind cut of α.

Let α be an irrational number between 0 and 1 .
We can compute a Cauchy sequence C for α subrecursively in the Dedekind cut of α : Let $C(1)=2^{-1}$ and

$$
C(n+1)= \begin{cases}C(n)-2^{-n-1} & \text { if } D(C(n))=0 \\ C(n)+2^{-n-1} & \text { otherwise }\end{cases}
$$

Let α be an irrational number between 0 and 1 .
We can compute a Cauchy sequence C for α subrecursively in the Dedekind cut of α : Let $C(1)=2^{-1}$ and

$$
C(n+1)= \begin{cases}C(n)-2^{-n-1} & \text { if } D(C(n))=0 \\ C(n)+2^{-n-1} & \text { otherwise }\end{cases}
$$

We want that

$$
\mathcal{C} \preceq_{S} \mathcal{D} .
$$

Now, ... the formal definition of $\preceq s$.

We need some auxiliary definitions.

We need the time bounds.

Definition

A function $t: \mathbb{N} \longrightarrow \mathbb{N}$ is a time bound if (i) $n \leq t(n)$, (ii) t is increasing and (iii) t is time-constructible: there is a single-tape Turing machine that, on input 1^{n}, computes $t(n)$ in $O(t(n))$ steps.

We need the notation $O(t)_{R}$.

Definition

Let t be a time-bound and let R be a representation. Then, $O(t)_{R}$ denotes the class of all irrational α in the interval $(0,1)$ such that at least one R-representation of α is computable by a Turing machine running in time $O(t(n))$ (where n is the length of the input).

Example

Let \mathcal{C} be the representation by Cauchy sequences. Let $\alpha \in(0,1)$ be irrational.

Then the following two statements are equivalent (by definition).
(1) $\alpha \in O\left(n^{2}\right)_{\mathcal{C}}$
(2) at least one Cauchy sequence for α can be computed by a Turing machine running in time $O\left(n^{2}\right)$ (where n is the length of the input).

Example

Let $2 \mathcal{E}$ be the representation by base- 2 expansions. Let $\alpha \in(0,1)$ be irrational.

Then the following two statements are equivalent.
(1) $\alpha \in O\left(2^{4 n^{2}}\right)_{2 \varepsilon}$
(2) the base- 2 expansion of α can be computed by a Turing machine running in time $O\left(2^{4 n^{2}}\right)$ (where n is the length of the input).

Now we are ready for the definition of $\preceq \varsigma$.

Definition

Let t be a time-bound. Let R_{1} and R_{2} be representations. The relation $R_{1} \preceq \varsigma R_{2}$ holds if there for any time-bound t exists a time-bound s such that

$$
O(t)_{R_{2}} \subseteq O(s)_{R_{1}} .
$$

If the relation $R_{1} \preceq \varsigma R_{2}$ holds, we will say that the representation R_{1} is subrecursive in the representation R_{2}.

Let us see why we have $\mathcal{C} \preceq \varsigma 2 \mathcal{E}$.
There is a natural subrecursive algorithm for converting the base-2 expansion of α into a Cauchy sequence for α (no unbounded search involved).

Let us see why we have $\mathcal{C} \preceq s 2 \mathcal{E}$.
There is a natural subrecursive algorithm for converting the base-2 expansion of α into a Cauchy sequence for α (no unbounded search involved).

Analyse that algorithm and conclude: If a Turing machine can compute the base-2 expansion of α in time $O(t(n))$, then a Turing machine can compute a Cauchy sequence for α in time $O\left(2^{5 t(n)}\right)$.

Let us see why we have $\mathcal{C} \preceq s 2 \mathcal{E}$.
There is a natural subrecursive algorithm for converting the base-2 expansion of α into a Cauchy sequence for α (no unbounded search involved).

Analyse that algorithm and conclude: If a Turing machine can compute the base-2 expansion of α in time $O(t(n))$, then a Turing machine can compute a Cauchy sequence for α in time $O\left(2^{5 t(n)}\right)$.

Thus

$$
O(t(n))_{2 \mathcal{E}} \subseteq O\left(2^{5 t(n)}\right)_{\mathcal{C}}
$$

Let us see why we have $\mathcal{C} \preceq s 2 \mathcal{E}$.
There is a natural subrecursive algorithm for converting the base-2 expansion of α into a Cauchy sequence for α (no unbounded search involved).

Analyse that algorithm and conclude: If a Turing machine can compute the base-2 expansion of α in time $O(t(n))$, then a Turing machine can compute a Cauchy sequence for α in time $O\left(2^{5 t(n)}\right)$.

Thus

$$
O(t(n))_{2 \mathcal{E}} \subseteq O\left(2^{5 t(n)}\right)_{\mathcal{C}}
$$

Thus, for any time-bound t there exists a time-bound s such that

$$
O(t(n))_{2 \mathcal{E}} \subseteq O(s(n))_{\mathcal{C}}
$$

(this holds when $s(n)=2^{5 t(n)}$).

Let us see why we have $\mathcal{C} \preceq s 2 \mathcal{E}$.
There is a natural subrecursive algorithm for converting the base-2 expansion of α into a Cauchy sequence for α (no unbounded search involved).

Analyse that algorithm and conclude: If a Turing machine can compute the base-2 expansion of α in time $O(t(n))$, then a Turing machine can compute a Cauchy sequence for α in time $O\left(2^{5 t(n)}\right)$.

Thus

$$
O(t(n))_{2 \mathcal{E}} \subseteq O\left(2^{5 t(n)}\right)_{\mathcal{C}}
$$

Thus, for any time-bound t there exists a time-bound s such that

$$
O(t(n))_{2 \mathcal{E}} \subseteq O(s(n))_{\mathcal{C}}
$$

(this holds when $s(n)=2^{5 t(n)}$).
Thus, we have $\mathcal{C} \preceq \varsigma 2 \mathcal{E}$ (by the definition of $\preceq \varsigma$).

This generalises. In general we can prove $R_{1} \preceq \varsigma R_{2}$ by the following recipe.

Find a subrecursive algorithm for converting an R_{2}-representation of α into an R_{1}-representation of α (no unbounded search).

This generalises. In general we can prove $R_{1} \preceq \varsigma R_{2}$ by the following recipe.

Find a subrecursive algorithm for converting an R_{2}-representation of α into an R_{1}-representation of α (no unbounded search).

Analyse that algorithm and conclude: If a Turing machine can compute an R_{2}-representation of α in time $O(t(n))$, then a Turing machine can compute an R_{1}-representation α in time $O\left(s_{t}(n)\right)$ where s_{t} is a time-bound depending on t.

This generalises. In general we can prove $R_{1} \preceq \varsigma R_{2}$ by the following recipe.

Find a subrecursive algorithm for converting an R_{2}-representation of α into an R_{1}-representation of α (no unbounded search).

Analyse that algorithm and conclude: If a Turing machine can compute an R_{2}-representation of α in time $O(t(n))$, then a Turing machine can compute an R_{1}-representation α in time $O\left(s_{t}(n)\right)$ where s_{t} is a time-bound depending on t.

Thus, for any time-bound t there exists a time-bound s such that

$$
O(t(n))_{R_{2}} \subseteq O(s(n))_{R_{1}}
$$

Thus, we have $R_{1} \preceq \varsigma R_{2}$ (by the definition of $\preceq \varsigma$).

To prove $R_{1} \npreceq s R_{2}$ migh not be all that easy.
Then we have to prove that
there exists a time-bound t such that for any time-bound s

$$
O(t(n))_{R_{2}} \nsubseteq O(s(n))_{R_{1}}
$$

To prove $R_{1} \npreceq s R_{2}$ might not be all that easy ...
... which again can be proved by proving
there exists a time-bound t such that for any time-bound s there exists an irrational $\beta \in(0,1)$ such that $\beta \in O(t(n))_{R_{2}} \backslash O(s(n))_{R_{1}}$

That there for any time-bond s exists such a β will typically be proved by a diagonalisation argument. Such arguments may be tedious and involved.

The relation $\preceq s$ is a preorder. Thus $\preceq s$ induce a degree structure on the representations (standard stuff will follow).

Let R and Q be representations.

$$
\begin{array}{lll}
R \equiv s \\
& \Leftrightarrow_{\operatorname{def}} & R \preceq_{s} Q \text { and } Q \preceq_{s} R . \\
R \prec_{S} Q & \Leftrightarrow_{\operatorname{def}} & R \preceq_{s} Q \text { and } Q \preceq_{s} R .
\end{array}
$$

We define the degree of the representation R, denoted $\operatorname{deg}(R)$, as the equivalence class given by

$$
\operatorname{deg}(R)=\left\{Q \mid Q \equiv_{s} R\right\}
$$

The set of all degrees, denoted \mathcal{S}, is given by

$$
\mathcal{S}=\{\operatorname{deg}(R) \mid R \text { is a representation }\}
$$

We will use $\mathbf{a}, \mathbf{b}, \mathbf{c}$ (possible decorated) to denote degrees. We will use \leq and $<$ to denote the ordering relations induced on the degrees by $\preceq s$ and $\prec s$, respectively.

It turns out that this degree structure is a lattice. That is, there are operators \cup and \cap on the degrees such that

- $\mathbf{a} \cup \mathbf{b}$ is the least upper bound of \mathbf{a} and \mathbf{b}
- $\mathbf{a} \cap \mathbf{b}$ is the greatest lower bound of \mathbf{a} and \mathbf{b}.
for any $\mathbf{a}, \mathbf{b} \in \mathcal{S}$.

It turns out that the degree structure has a top and bottom degree.

Let $\mathbf{0}$ denote the degree of the representation by Weirauch intersections (nested intervals).

Let $\mathbf{1}$ denote the degree of the representation by continued fractions.

Theorem

We have

$$
\mathbf{0} \leq \mathbf{a} \leq \mathbf{1}
$$

for any degree a.

Definition

A function I: $\mathbb{N} \longrightarrow \mathbb{Q} \times \mathbb{Q}$ is a Weihrauch intersection for the real number α if the left component of the pair $I(i)$ is strictly less that the right component of the pair $I(i)$ (for all $i \in \mathbb{N}$) and

$$
\{\alpha\}=\bigcap_{i=0}^{\infty} \iota_{i}^{0}
$$

where I_{i}^{O} denotes the open interval given by the the pair $I(i)$.

If we have a Weihrauch intersection for an irrational number α, the we can compute the Dedekind cut of α (we will need unbounded search). If we have the Dedekind cut of α, we can obviously compute a Weihrauch intersection for α (we do not need unbounded search).

The class of all Weihrauch intersections for irrationals in the intervall $(0,1)$ is a representation.

Definition

Let α be an irrational in the interval $(0,1)$. The continued fraction of α is the unique function $f: \mathbb{N}^{+} \longrightarrow \mathbb{N}^{+}$such that $\alpha=[0 ; f(1), f(2), \ldots]$ where

$$
\left[0 ; a_{1}, a_{2}, a_{3} \ldots\right]=0+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ldots}}}
$$

The class of all continued fractions of irrationals in the intervall $(0,1)$ is a representation.

Figure 1: Overview.
arXiv:2304.07227 [pdf, ps, other] math.LO cs.CC
On representations of real numbers and the computational complexity of converting between such representations.

Authors: Amir M. Ben-Amram, Lars Kristiansen, Jakob Grue Simonsen

Another paper recently submitted to a journal (but not to arXive):
A Degree Structure on Representations of Irrational Numbers
Authors: Amir M. Ben-Amram, Lars Kristiansen

