On a Lattice of Degrees of Representations of Irrational Numbers

Lars Kristiansen

Department of Mathematics, University of Oslo Department of Informatics, University of Oslo

CiE 2023: Unity of Logic and Computation

Batumi, Georgia - July 28, 2023

What is a *representation* of the irrational numbers?

I will tell you.

Beware! I will not tell you what a representation of the real numbers is.

We identify an irrational number α with its Dedkind cut. The Dedkind cut of an irrational α is the function $\alpha : \mathbb{Q} \longrightarrow \{0,1\}$ where

$$\alpha(q) = \begin{cases} 0 & \text{if } q < \alpha \\ 1 & \text{if } q > \alpha. \end{cases}$$

We will use the representation by Dedekind cuts to define what representation in general is. In principle, we could have use any other computable representation for this purpose, but it is

- convenient to use a representation that is unique
- a good idea to use a well-know representation.

What is a *representation*?

Definition

A class of functions R is a *representation (of the irrational numbers)* if there exist oracle Turing machines M and N such that

• for every irrational $\alpha \in (0,1)$ there exists $f \in R$ such that

$$lpha = \Phi^f_M$$
 and $f = \Phi^lpha_N$

• for every $g \in R$ there exist an irrational $lpha \in (0,1)$ such that

$$\alpha = \Phi_M^g = \Phi_M^f$$
 where $f = \Phi_N^\alpha$

When $\alpha = \Phi_M^g$, we say that *g* represents α and that *g* is an *R*-representation of α .

A function $C: \mathbb{N}^+ \longrightarrow \mathbb{Q}$ is a *Cauchy sequence* for α if

$$|\alpha - C(n)| < n^{-1}.$$

Let $\mathcal C$ be the class of all Cauchy sequences for irrational numbers in the interval (0,1).

Then \mathcal{C} is a representation.

A function $E: \mathbb{N}^+ \longrightarrow \{0,1\}$ is the *base-2 expansion* of α if

$$\alpha = \sum_{i=1}^{\infty} E(i) 2^{-i} .$$

Let $2\mathcal{E}$ be the class of all base-2 expansions of irrational numbers in the interval (0, 1).

Then $2\mathcal{E}$ is a representation.

A function $T : \mathbb{Q} \cap [0,1] \longrightarrow (0,1)$ is the *trace function* for α if $|\alpha - T(q)| < |\alpha - q|$.

Let ${\mathcal T}$ be the class of all trace functions for irrational numbers in the interval (0,1).

Then \mathcal{T} is a representation.

Recall that the Dedekind cut of an irrational α is the function $\alpha:\mathbb{Q}\longrightarrow\{0,1\}$ where

$$\alpha(q) = \begin{cases} 0 & \text{if } q < \alpha \\ 1 & \text{if } q > \alpha. \end{cases}$$

Let ${\mathcal D}$ be the class of all Dedekind cuts of irrational numbers in the interval (0,1).

Then \mathcal{D} is a representation.

Example of something that is not a representation (but which come close).

A function $L: \mathbb{N} \longrightarrow (0,1)$ is a *left cut* for α if the sequence

 $L(0), L(1), L(2), \ldots$

contains (i) all the rationals less than α and (ii) only rational less that α .

A class of left cuts will *not* be a representation. We cannot compute the Dedekind cut of α from a left cut for α .

Example of something that is not a representation (but which come close).

Cauchy sequences without a modulus of convergence. Let $\mathcal{C}:\mathbb{N}^+\longrightarrow\mathbb{Q}$ be such that

$$\forall n \in \mathbb{N}^+ \exists N (i > N \rightarrow |\alpha - C(i)| < n^{-1})$$

A class of such functions will *not* be a representation. We cannot compute the Dedekind cut of α from such a function.

Next we define an ordering relation \leq_S over the representations.

Intuitiviely, we want

- R₁ ≤_S R₂ to be true if an R₂-representation of α can be subrecursively converted into an R₁-representation of α (subrecursively = "without unbounded search")
- R₁ ∠_S R₂ to be true if unbounded search is required in order to convert R₂-representation of α into an R₁-representation of α.

More intuition

 If R₁ ≤_S R₂ holds, then the representation R₂ gives more information than the representation R₁. More intuition

Let C be a Cauchy sequence for the irrational number α .

More intuition ...

Let C be a Cauchy sequence for the irrational number α .

How can we decide if α lies above or below 1/3?

Consider C as an oracle. (We assume that α is irrational, so α lies strictly above or strictly below 1/3.)

- C(0) = ?
- C(1) = ?
- C(2) = ?
- C(3) = ? • :

- C(0) = 1/3
- C(1) = ?
- C(2) = ?
- C(3) = ? • :

- C(0) = 1/3
- C(1) = 1/3
- C(2) = ?
- C(3) = ?

- C(0) = 1/3
- C(1) = 1/3
- C(2) = 1/3
- C(3) = 1/3
- :
- C(16) = 1/3
- C(17) = 1/3

- :
- C(16) = 1/3
- C(17) = 1/3

Now, we know that α is close to 1/3, that is

$$\left| lpha - rac{1}{3}
ight| \ < \ rac{1}{17}$$

but we still don't know if α lies above or below 1/3.

Now

Now

but we need unbounded search to find that number.

Now

```
C(\text{a sufficiently large number}) = \begin{array}{l} \text{a rational that allows} \\ \text{me to conclude if } \alpha \\ \text{lies above or below } 1/3 \end{array}
```

but we need unbounded search to find that number.

I cannot find the number by a subrecursive computation.

I need full Turing computability.

- If D(1/3) = 0, then 1/3 lies below α
- If D(1/3) = 1, then 1/3 lies above α

- If D(1/3) = 0, then 1/3 lies below α
- If D(1/3) = 1, then 1/3 lies above α

Just one question is needed. No unbounded search is required.

- If D(1/3) = 0, then 1/3 lies below α
- If D(1/3) = 1, then 1/3 lies above α

Just one question is needed. No unbounded search is required.

A subrecursive computation is sufficient to answer the question.

This example shows that we cannot compute the Dedekind cut of α subrecursively in a Cauchy sequence for α .

We want

$$\mathcal{D} \not\preceq_{S} \mathcal{C}$$

where

- $\bullet \ \mathcal{D}$ is the representation by Dedekind cuts
- $\bullet \ \mathcal{C}$ is the representation by Cauchy sequences.

This example shows that we cannot compute the Dedekind cut of α subrecursively in a Cauchy sequence for α .

We want

$$\mathcal{D} \not\preceq_{S} \mathcal{C}$$

where

- $\bullet \ \mathcal{D}$ is the representation by Dedekind cuts
- $\bullet \ \mathcal{C}$ is the representation by Cauchy sequences.

In contrast, we can compute a Cauchy sequence for α subrecursively in the Dedekind cut of $\alpha.$

Let α be an irrational number between 0 and 1.

We can compute a Cauchy sequence C for α subrecursively in the Dedekind cut of α : Let $C(1) = 2^{-1}$ and

$$C(n+1) = \begin{cases} C(n) - 2^{-n-1} & \text{if } D(C(n)) = 0\\ C(n) + 2^{-n-1} & \text{otherwise.} \end{cases}$$

Let α be an irrational number between 0 and 1.

We can compute a Cauchy sequence C for α subrecursively in the Dedekind cut of α : Let $C(1) = 2^{-1}$ and

$$C(n+1) = \begin{cases} C(n) - 2^{-n-1} & \text{if } D(C(n)) = 0\\ C(n) + 2^{-n-1} & \text{otherwise.} \end{cases}$$

We want that

 $\mathcal{C} \preceq_{S} \mathcal{D}$.

Now, ... the formal definition of \leq_S .

We need some auxiliary definitions.

We need the time bounds.

Definition

A function $t : \mathbb{N} \longrightarrow \mathbb{N}$ is a *time bound* if (i) $n \le t(n)$, (ii) t is increasing and (iii) t is time-constructible: there is a single-tape Turing machine that, on input 1^n , computes t(n) in O(t(n)) steps.

We need the notation $O(t)_R$.

Definition

Let t be a time-bound and let R be a representation. Then, $O(t)_R$ denotes the class of all irrational α in the interval (0, 1) such that at least one R-representation of α is computable by a Turing machine running in time O(t(n)) (where n is the length of the input).

Let $\mathcal C$ be the representation by Cauchy sequences. Let $\alpha \in (0,1)$ be irrational.

Then the following two statements are equivalent (by definition).

$$\ \, \mathbf{O}(\mathbf{n}^2)_{\mathcal{C}}$$

• at least one Cauchy sequence for α can be computed by a Turing machine running in time $O(n^2)$ (where *n* is the length of the input).

Let 2 ${\mathcal E}$ be the representation by base-2 expansions. Let $\alpha \in (0,1)$ be irrational.

Then the following two statements are equivalent.

$$\bullet \ \alpha \ \in \ O(2^{4n^2})_{2\mathcal{E}}$$

• the base-2 expansion of α can be computed by a Turing machine running in time $O(2^{4n^2})$ (where *n* is the length of the input).

Now we are ready for the definition of \leq_S .

Definition

Let t be a time-bound. Let R_1 and R_2 be representations. The relation $R_1 \preceq_S R_2$ holds if there for any time-bound t exists a time-bound s such that

$$O(t)_{R_2} \subseteq O(s)_{R_1}$$
.

If the relation $R_1 \leq_S R_2$ holds, we will say that the representation R_1 is *subrecursive* in the representation R_2 .

Let us see why we have $\mathcal{C} \preceq_S 2\mathcal{E}$.

There is a natural subrecursive algorithm for converting the base-2 expansion of α into a Cauchy sequence for α (no unbounded search involved).

Let us see why we have $\mathcal{C} \preceq_S 2\mathcal{E}$.

There is a natural subrecursive algorithm for converting the base-2 expansion of α into a Cauchy sequence for α (no unbounded search involved).

Analyse that algorithm and conclude: If a Turing machine can compute the base-2 expansion of α in time O(t(n)), then a Turing machine can compute a Cauchy sequence for α in time $O(2^{5t(n)})$. Let us see why we have $\mathcal{C} \leq_S 2\mathcal{E}$.

There is a natural subrecursive algorithm for converting the base-2 expansion of α into a Cauchy sequence for α (no unbounded search involved).

Analyse that algorithm and conclude: If a Turing machine can compute the base-2 expansion of α in time O(t(n)), then a Turing machine can compute a Cauchy sequence for α in time $O(2^{5t(n)})$.

Thus

 $O(t(n))_{2\mathcal{E}} \subseteq O(2^{5t(n)})_{\mathcal{C}}$.

Let us see why we have $\mathcal{C} \preceq_S 2\mathcal{E}$.

There is a natural subrecursive algorithm for converting the base-2 expansion of α into a Cauchy sequence for α (no unbounded search involved).

Analyse that algorithm and conclude: If a Turing machine can compute the base-2 expansion of α in time O(t(n)), then a Turing machine can compute a Cauchy sequence for α in time $O(2^{5t(n)})$.

Thus

$$O(t(n))_{2\mathcal{E}} \subseteq O(2^{5t(n)})_{\mathcal{C}}$$
.

Thus, for any time-bound t there exists a time-bound s such that

$$O(t(n))_{2\mathcal{E}} \subseteq O(s(n))_{\mathcal{C}}$$
.

(this holds when $s(n) = 2^{5t(n)}$).

Let us see why we have $\mathcal{C} \leq_S 2\mathcal{E}$.

There is a natural subrecursive algorithm for converting the base-2 expansion of α into a Cauchy sequence for α (no unbounded search involved).

Analyse that algorithm and conclude: If a Turing machine can compute the base-2 expansion of α in time O(t(n)), then a Turing machine can compute a Cauchy sequence for α in time $O(2^{5t(n)})$.

Thus

$$O(t(n))_{2\mathcal{E}} \subseteq O(2^{5t(n)})_{\mathcal{C}}$$
.

Thus, for any time-bound t there exists a time-bound s such that

$$O(t(n))_{2\mathcal{E}} \subseteq O(s(n))_{\mathcal{C}}$$
.

(this holds when $s(n) = 2^{5t(n)}$).

Thus, we have $\mathcal{C} \leq_S 2\mathcal{E}$ (by the definition of \leq_S).

This generalises. In general we can prove $R_1 \preceq_S R_2$ by the following recipe.

Find a subrecursive algorithm for converting an R_2 -representation of α into an R_1 -representation of α (no unbounded search).

This generalises. In general we can prove $R_1 \preceq_S R_2$ by the following recipe.

Find a subrecursive algorithm for converting an R_2 -representation of α into an R_1 -representation of α (no unbounded search).

Analyse that algorithm and conclude: If a Turing machine can compute an R_2 -representation of α in time O(t(n)), then a Turing machine can compute an R_1 -representation α in time $O(s_t(n))$ where s_t is a time-bound depending on t. This generalises. In general we can prove $R_1 \preceq_S R_2$ by the following recipe.

Find a subrecursive algorithm for converting an R_2 -representation of α into an R_1 -representation of α (no unbounded search).

Analyse that algorithm and conclude: If a Turing machine can compute an R_2 -representation of α in time O(t(n)), then a Turing machine can compute an R_1 -representation α in time $O(s_t(n))$ where s_t is a time-bound depending on t.

Thus, for any time-bound t there exists a time-bound s such that

```
O(t(n))_{R_2} \subseteq O(s(n))_{R_1}.
```

Thus, we have $R_1 \leq_S R_2$ (by the definition of \leq_S).

To prove $R_1 \not\leq_S R_2$ migh not be all that easy.

Then we have to prove that

there exists a time-bound t such that for any time-bound s $O(t(n))_{R_2} \not\subseteq O(s(n))_{R_1}$ To prove $R_1 \not\leq_S R_2$ might not be all that easy ...

... which again can be proved by proving

there exists a time-bound t such that for any time-bound sthere exists an irrational $\beta \in (0, 1)$ such that $\beta \in O(t(n))_{R_2} \setminus O(s(n))_{R_1}$

That there for any time-bond *s* exists such a β will typically be proved by a diagonalisation argument. Such arguments may be tedious and involved.

The relation \leq_S is a preorder. Thus \leq_S induce a degree structure on the representations (standard stuff will follow).

Let R and Q be representations.

$$R \equiv_{S} Q \quad \Leftrightarrow_{\mathsf{def}} \quad R \preceq_{S} Q \text{ and } Q \preceq_{S} R .$$
$$R \prec_{S} Q \quad \Leftrightarrow_{\mathsf{def}} \quad R \preceq_{S} Q \text{ and } Q \not\preceq_{S} R .$$

We define the *degree* of the representation R, denoted deg(R), as the equivalence class given by

$$\deg(R) = \{ Q \mid Q \equiv_S R \}.$$

The set of all degrees, denoted \mathcal{S} , is given by

 $S = \{ \deg(R) \mid R \text{ is a representation } \}.$

We will use **a**, **b**, **c** (possible decorated) to denote degrees. We will use \leq and < to denote the ordering relations induced on the degrees by \leq_S and \prec_S , respectively.

It turns out that this degree structure is a lattice. That is, there are operators \cup and \cap on the degrees such that

- $\bullet \ a \cup b$ is the least upper bound of a and b
- $\bullet \ a \cap b$ is the greatest lower bound of a and b.

for any $\mathbf{a}, \mathbf{b} \in \mathcal{S}$.

It turns out that the degree structure has a top and bottom degree.

Let ${\bf 0}$ denote the degree of the representation by Weirauch intersections (nested intervals).

Let ${\bf 1}$ denote the degree of the representation by continued fractions.

Theorem		
We have		
	$0~\leq~a~\leq~1$	
for any degree a .		J

Definition

A function $I : \mathbb{N} \longrightarrow \mathbb{Q} \times \mathbb{Q}$ is a *Weihrauch intersection* for the real number α if the left component of the pair I(i) is strictly less that the right component of the pair I(i) (for all $i \in \mathbb{N}$) and

$$\{ \alpha \} = \bigcap_{i=0}^{\infty} I_i^C$$

where I_i^O denotes the open interval given by the pair I(i).

If we have a Weihrauch intersection for an irrational number α , the we can compute the Dedekind cut of α (we will need unbounded search). If we have the Dedekind cut of α , we can obviously compute a Weihrauch intersection for α (we do not need unbounded search).

The class of all Weihrauch intersections for irrationals in the intervall (0,1) is a representation.

Definition

Let α be an irrational in the interval (0,1). The continued fraction of α is the unique function $f : \mathbb{N}^+ \longrightarrow \mathbb{N}^+$ such that $\alpha = [0; f(1), f(2), \ldots]$ where

$$[0; a_1, a_2, a_3...] = 0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + ...}}}$$

The class of all continued fractions of irrationals in the intervall (0, 1) is a representation.

arXiv:2304.07227 [pdf, ps, other] math.LO cs.CC

On representations of real numbers and the computational complexity of converting between such representations.

Authors: Amir M. Ben-Amram, Lars Kristiansen, Jakob Grue Simonsen

Another paper recently submitted to a journal (but not to arXive):

A Degree Structure on Representations of Irrational Numbers

Authors: Amir M. Ben-Amram, Lars Kristiansen

