Computability in Europe 2023 Special session on Proof Theory

∂ is for Dialectica

Marie Kerjean

CNRS & LIPN, Université Sorbonne Paris Nord

Work in collaboration with Pierre-Marie Pédrot

Gödel's Dialectica Transformation

► Gödel <u>Dialectica transformation</u> [1958] : a translation from intuitionistic arithmetic to a finite type extension of primitive recursive arithmetic.

$$A \rightsquigarrow \exists u : \mathbb{W}(A), \forall x : \mathbb{C}(A), A^D[u, x]$$

- De Paiva [1991]: the linearized Dialectica translation operates on Linear Logic (types) and λ-calculus (terms).
- Pedrot [2014] A *computational* Dialectica translation preserving β -equivalence, via the introduction of an "abstract multiset constructor" on types on the target.

Gödel's Dialectica

.

.

1.
$$(F \land G)' = (\exists yv) (zw) [A (y, z, x) \land B (v, w, u)].$$

2. $(F \lor G)' = (\exists yvt) (zw) [t=0 \land A (y, z, x) \cdot \lor \cdot t=1 \land B (v, w, u)].$
3. $[(s) F]' = (\exists Y) (sz) A (Y (s), z, x).$
4. $[(\exists s) F]' = (\exists sy) (z) A (y, z, x).$
5. $(F \supset G)' = (\exists VZ) (yw) [A (y, Z (yw), x) \supset B (V (y), w, u)].$
6. $(\neg F)' = (\exists \overline{Z}) (y) \neg A (y, \overline{Z} (y), x).$

Kurt Gödel (1958). Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. Dialectica.

Gödel's Dialectica

▶ Validates semi-classical axioms:

- ▶ Markov's principle : $\neg \neg \exists x A \rightarrow \exists x A$ when A is decidable.
- ▶ Independant of premises : $(A \to \exists xB) \to (\exists x.(A \to B))$
- ▶ Numerous applications :
 - Soudness results
 - Proof mining

A further distinguishing feature of the D-interpretation is its nice behavior with respect to modus ponens. In contrast to cut-elimination, which entails a global (and computationally infeasible) transformation of proofs, the D-interpretation extracts constructive information through a purely local procedure: when proofs of φ and $\varphi \rightarrow \psi$ are combined to yield a proof of ψ , witnessing terms for the antecedents of this last inference are combined to yield a witnessing term for the conclusion. As a result of this modularity, the interpretation of a theorem can be readily obtained from the interpretations of the lemmata used in its proof.

Jeremy Avigad and Solomon Feferman (1999). Gödel's functional ("Dialectica") interpretation

A peek into Dialectica interpretation of functions

$$(A \to B)_D = \exists fg \forall xy (A_D(x, gxy) \to B_D(fx, y))$$

Usual explanation : least unconstructive prenexation.

- ▶ Start from $\exists x, \forall u, A_D[x, u] \rightarrow \exists y, \forall v, B_D[y, v].$
- ▶ Obvious prenexation : $\forall x (\forall u, A_D[x, u] \rightarrow \exists y, \forall v, B_D[y, v])$
- ▶ Weak form of IP : $\forall x \exists y (\forall u, A_D[x, u] \rightarrow \forall v, B_D[y, v])$
- ▶ Prenexation : $\forall x \exists y, \forall v, \exists u \ (A_D[x, u] \rightarrow B_D[y, v]).$
- Markov : $\forall x, \exists y, \forall v, \exists u(A_D[x, u] \to B_D[y, v])$
- Axiom of choice : $\exists f, \exists g, \forall u, \forall v, (A_D(u, guv) \rightarrow B_D[fu, v]).$

Dynamic behaviour : agrees to a chain rule.

Mathematical meaning : it's some kind of approximation.

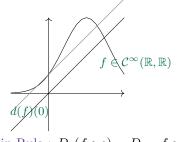
Outline of the talk

- The Historical Dialectica
- Differentiation and Differentiable Programming.
- Factorizing Dialectica through differential linear logic.
- Dialectica acting on λ -terms.
- Applications and related work.

Differentiable Programming

Differentiation

▶ Differentiation is finding the best linear approximation to a function at a point.



Chain Rule : $D_0(f \circ g) = D_{g(0)}f \circ D_0g$

- ▶ Differentiation is a mathematical operation which needs to be fitted to logical and computer science use.
 - ► Algorithmic Differentiation : differentiating sequences of many-valued functions efficiently.
 - Differential Linear Logic : Differentiating proofs and λ -terms.

Dialectica verifies the chain rule

Composing the Dialectica interpretation of arrows:

$$(A \Rightarrow B)_D[\phi_1; \psi_1, u_1; v_1] := A_D(u_1, \psi_1 \, u_1 \, v_1) \Rightarrow B_D(\phi_1 \, u_1, v_1) (B \Rightarrow C)_D[\phi_2; \psi_2, u_2; v_2] := B_D(u_2, \psi_2 \, u_2 \, v_2) \Rightarrow C_D(\phi_2 \, u_2, v_2) (A \Rightarrow C)_D[\phi_3; \psi_3, u_3; v_3] := A_D(u_3, \psi_3 \, u_3 \, v_3) \Rightarrow C_D(\phi_3 \, u_3, v_3)$$

The Dialectica interpretation amounts to the following equations:

$u_3 = u_1$	$\psi_3, u_3, v_3 = \psi_1, u_1, v_1$
$v_3 = v_2$	$\phi_2u_2=\phi_1,u_1$
$u_2 = \phi_1 u_1$	$v_1=\psi_2(u_2,v_2)$

which can be simplified to:

 $\phi_3(u_3) = \phi_2(\phi_1(u_3)) \text{ composition of functions}$ $\psi_3(u_3, v_3) = \psi_1(u_3, \psi_2(\phi_1 u_3, v_3)) \text{ composition of their differentials}$

Thanks to T. Powell for noticing typos here.

But verifying the chain rule does not make you differentiation!

▶ More modern presentations of Dialectica.

▶ More Computer Science Friendly presentations of Differentiation.

▶ Linearity must enter the game.

Curry-Howard for semantics

Programs	Logic	Semantics
fun $(x:A) \rightarrow (t:B)$	Proof of $A \vdash B$	$f: A \to B.$
Types	Formulas	Objects
Execution	Cut-elimination	Equality
Dialectica		
Differential λ -calculus	Differential Linear Logic	Differential Categories

Dialectica is Backward Differentiation in Logic

And now for something completely different : Automatic Differentiation

How does one compute the differentiation of an algebraic expression, computed as a sequence of elementary operations ?

E.g. :
$$z = y + \cos(x^2)$$

 $x_1 = x_0^2$
 $x_2 = \cos(x_1)$
 $x_2' = -x'_0 \sin(x_0)$
 $z = y + x_2$
 $z' = y' + 2x_2 x'_2$

Derivative of a sequence of instruction

₩

sequence of instruction \times sequence of derivatives

Forward Mode differentiation [Wengert, 1964] $(x_1, x'_1) \rightarrow (x_2, x'_2) \rightarrow (z, z').$ Reverse Mode differentiation: [Speelpenning, Rall, 1980s] $x_1 \rightarrow x_2 \rightarrow z \rightarrow z' \rightarrow x'_2 \rightarrow x'_1$ while keeping formal the unknown derivative.

Curry-Howard for semantics

The syntax mirrors the semantics.

Programs	Logic	Semantics
fun (x: A)-> (t: B)	Proof of $A \vdash B$	$f: A \to B.$
Types	Formulas	Objects
Execution	Cut-elimination	Equality

- ▶ Programs acts on programs.
 - Functions are higher-order: they act not only on \mathbb{R}^n , but also on $\mathcal{C}^{\infty}(\mathbb{R}^n, \mathbb{R})$.
- Programs are typed.
 - $\blacktriangleright Add: \mathcal{C}^{\infty}(\mathbb{R}^n, \mathbb{R}) \times \mathcal{C}^{\infty}(\mathbb{R}^n, \mathbb{R}) \to \mathcal{C}^{\infty}(\mathbb{R}^n, \mathbb{R})$
- ▶ Everything is interpreted in Categories.
 - Objects are Data
 - ▶ Functions are Programs
 - ▶ Transformations are functorial:

 $\mathcal{F}(p_1; p_2) = \mathcal{F}(p_1); \mathcal{F}(p_2)$ $\mathcal{F}(f_2 \circ f_1) = \mathcal{F}(f_2) \circ \mathcal{F}(f_1)$

Back to AD: I hate graphs

$$\mathcal{D}_u(f \circ g) = D_{g(u)}f \circ D_u(g)$$

The choice of an algorithm is due to complexity considerations:

- **Forward mode** for $f \circ g : \mathbb{R} \to \mathbb{R}^n$.
- **Reverse mode** for $f \circ g : \mathbb{R}^n \to \mathbb{R}$

 \rightsquigarrow Differentiable programming is a new research area triggered by the advances of deep learning algorithms on neural networks, it tries to attach two very old domains: lambda-calculus and automatic differentiation, with correctness and modularity goals in mind.

AD from a functorial point of view $\mathbf{D}_{u}(f \circ g) = \mathbf{D}_{g(u)}f \circ \mathbf{D}_{u}(g)$

Non-functorial !!!

How to make differentiation functorial ? Make it act on pairs !

$$f: E \Rightarrow F$$

Forward Mode differentiation :

$$\begin{aligned} f: E \Rightarrow E &\leadsto \overrightarrow{D}f: E \Rightarrow E \multimap F \\ \overrightarrow{D}(f): \begin{cases} E \Rightarrow E \multimap F \\ u \mapsto v \mapsto D_u(f)(v) \end{cases} \end{aligned}$$

Functorial forward differentiation :

$$(f, \overrightarrow{D}(f)) : \begin{cases} E \times E \to F \times F \\ (a, x) \mapsto (f(a), (\mathbf{D}_a f \cdot x)) \end{cases}$$

Reverse AD from a functorial point of view

How to make **reverse** differentiation functorial ?

Make it act on pairs with linear duals !

Reverse functorial differentiation

Linear Dual $A^{\perp} \equiv A \multimap \perp \equiv \mathcal{L}(A, \mathbb{R})$

Reverse Mode differentiation:

$$\begin{split} g(u) &\to f(g(u)) \to D_{g(u)}f \to D_{g(u)}f \circ D_u(g) \\ f: E \Rightarrow F \rightsquigarrow \overleftarrow{D}f: E \Rightarrow F^{\perp} \Rightarrow E^{\perp}. \\ &\overleftarrow{D}(f): \begin{cases} E \Rightarrow F^{\perp} \multimap E^{\perp} \\ u \mapsto \ell \mapsto \ell \circ D_u(f) \end{cases} \end{split}$$

[Mazza, Pagani, POPL2020]

Reverse functorial differentiation :

$$(f, \overleftarrow{D}(f)): (E \Rightarrow F) \times (E \Rightarrow F^{\perp} \Rightarrow E^{\perp})$$

Types !

Programs and variable are typed by logical formulas which describe their behavior

Witness and counter types :

$$\mathbb{C}(A \Rightarrow B) = \mathbb{C}(A) \times \mathbb{C}(B)$$

 $\mathbb{W}(A \Rightarrow B) = (\mathbb{W}(A) \Rightarrow \mathbb{W}(B)) \times (\mathbb{W}(A) \Rightarrow \mathbb{C}(B) \Rightarrow \mathbb{C}(A))$

Reverse Mode differentiation:

Functorial :
$$(h, \overleftarrow{D}h) : (A \Rightarrow B) \times (A \Rightarrow B^{\perp} \multimap A^{\perp})$$

However:

- ▶ Having the same type does not mean you're the same program.
- Some french (linear) logicians have a strong opinion on what proof differentiation should.

Types !

Programs and variable are typed by logical formulas which describe their behavior

$$A \rightsquigarrow \exists \quad \overbrace{x: \mathbb{W}(A)}^{\text{global witness}}, \forall \quad \underbrace{u: \mathbb{C}(A)}_{\text{bescherment}}, A_D[x, u]$$

local opponent

Witness and counter for implication types :

$$\mathbb{C}(A \Rightarrow B) = \mathbb{C}(A) \times \mathbb{C}(B)$$

$$\mathbb{W}(A \Rightarrow B) = \overbrace{(\mathbb{W}(A) \Rightarrow \mathbb{W}(B))}^{\text{function}} \times \left(\mathbb{W}(A) \Rightarrow \underbrace{\mathbb{C}(B) \Rightarrow \mathbb{C}(A)}_{\text{reverse derivative}}\right)$$

Reverse Mode differentiation:

Functorial :
$$(h, \overleftarrow{D}h) : (A \Rightarrow B) \times (A \Rightarrow B^{\perp} \multimap A^{\perp})$$

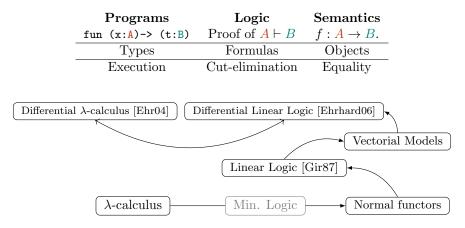
However:

- ▶ Having the same type does not mean you're the same program.
- Some french (linear) logicians have a strong opinion on what proof differentiation should.

A Linear Logic Refinement

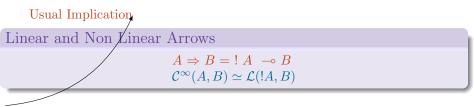
Curry-Howard for semantics

The syntax mirrors the semantics.



Doing to proofs everything we do to functions

Linear Logic

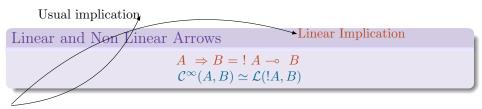


A proof is linear when it uses only once its hypothesis A.

- Notions of ressources which have made their way into programmation through linear types.
- ▶ The dynamics of linearity gets encoded through the rules of the ! connective, and its dual ?.

 $A, B := A \otimes B | A \ \mathfrak{B} B | A \oplus B | A \& B | !A | ?A$

Linear Logic

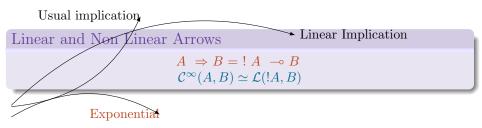


A proof is linear when it uses only once its hypothesis A.

- Notions of ressources which have made their way into programmation through linear types.
- ▶ The dynamics of linearity gets encoded through the rules of the ! connective, and its dual ?.

 $A, B := A \otimes B | A \ \mathfrak{B} B | A \oplus B | A \& B | !A | ?A$

Linear Logic

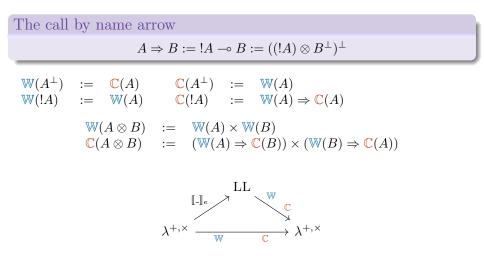


A proof is linear when it uses only once its hypothesis A.

- Notions of ressources which have made their way into programmation through linear types.
- ▶ The dynamics of linearity gets encoded through the rules of the ! connective, and its dual ?.

 $A, B := A \otimes B | A \ \mathfrak{B} B | A \oplus B | A \& B | !A | ?A$

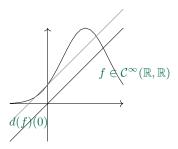
Dialectica factorizes through Linear Logic



Valeria de Paiva, 1989, A dialectica-like model of linear logic.

Differential Linear Logic

 $\frac{\vdash \ell : A \multimap B}{\vdash \ell : !A \multimap B} d$ A linear proof is in particular non-linear. $\begin{array}{c} \vdash f: !A \multimap B \\ \hline \vdash D_0 f: A \multimap B \end{array} \overline{d} \\ From \ a \ non-linear \ proof \\ we \ can \ extract \ a \ linear \ proof \end{array}$



Differential interaction nets, Ehrhard and Regnier, TCS (2006)

Exponential rules of Differential Linear Logic

$$\frac{\vdash \Gamma}{\vdash \Gamma, cst_{1} : ?A} w \qquad \frac{\vdash \Gamma, f : ?A, g : ?A}{\vdash \Gamma, f.g : ?A} c \qquad \frac{\vdash \Gamma, \ell : A}{\vdash \Gamma, \ell : ?A} d \\ \frac{\vdash \Gamma}{\vdash \Gamma, \delta_{0} : !A} \bar{w} \qquad \frac{\vdash \Gamma, \phi : !A \vdash \Delta, \psi : !A}{\vdash \Gamma, \Delta, \psi * \phi : !A} \bar{c} \qquad \frac{\vdash \Gamma, x : A}{\vdash \Gamma, D_{0}(_)(x) : !A} \bar{d} \\ \frac{: ?\Gamma \vdash x : A}{: ?\Gamma \vdash \delta_{x} : !A} p$$

Differentiation in Differential Linear Logic

The only thing you need to know:

$$\frac{ \vdash \Gamma, v : A}{\vdash \Gamma, D_0(_)(v) : !A} \frac{\bar{d}}{\bar{c}} \\ \frac{ \vdash \Gamma, \Delta, D_u(_)(v) : !A}{\bar{c}}$$

Dialectica factorizes through Differential Linear Logic

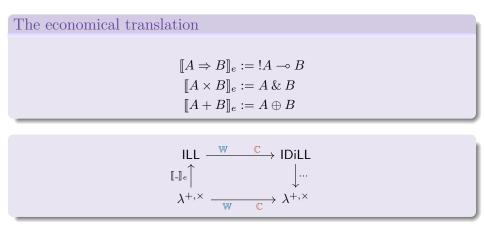
Witnesses are functorial reverse derivative

 $\mathbb{W}(A \Rightarrow B) = (\mathbb{W}(A) \Rightarrow \mathbb{W}(B)) \times (\mathbb{W}(A) \Rightarrow \mathbb{C}(B) \Rightarrow \mathbb{C}(A))$

If $\Gamma \vdash A$ in LL, then $\mathbb{W}(\Gamma) \vdash \mathbb{W}(A)$ in classical DILL.

$$\frac{ \overbrace{\vdash A, A^{\perp}}^{\text{int}} ax }{ \overbrace{\vdash A, !A^{\perp}}^{\text{int}} \overline{d}} \frac{ }{ \overbrace{\vdash ?A, !A^{\perp}}^{\text{int}} ax } \frac{ }{\overline{c}} \frac{ \pi}{ \Gamma \vdash ?A} }{ \frac{ \overbrace{\vdash ?A, A, !A^{\perp}}^{\text{int}} \overline{c}}{ \Gamma \vdash ?A, A} } \text{cut}$$

Dialectica factorizes through Differential Linear Logic



IDILL : Intuitionnistic Differential Linear Logic ? Oh no ...

Let's say x, u, f, g are λ -terms.

The computational Dialectica : a reverse Differential λ -calculus

"Behind every successful proof there is a program", Gödel's wife

A computational Dialectica

Making Dialectica act on $\lambda\text{-terms}$ instead of formulas.

λ -terms with an extra type allowing for sums		
	$\Gamma \vdash m_1 : \mathfrak{M} A \qquad \Gamma \vdash m_2 : \mathfrak{M} A$	
$\overline{\Gamma \vdash \varnothing: \mathfrak{M} A}$	$\Gamma \vdash m_1 \circledast m_2 : \mathfrak{M} A$	
$\Gamma \vdash t: A$	$\Gamma \vdash m : \mathfrak{M}A \qquad \Gamma \vdash f : A \Rightarrow \mathfrak{M}B$	
$\Gamma \vdash \{t\} : \mathfrak{M}A$	$\Gamma \vdash m \gg = f : \mathfrak{M} B$	

$$\begin{split} \mathbb{W}(A \Rightarrow B) &:= & (\mathbb{W}(A) \Rightarrow \mathbb{W}(B)) \\ & \times (\mathbb{C}(B) \Rightarrow \mathbb{W}(A) \Rightarrow \mathfrak{M}\mathbb{C}(A)) \\ \mathbb{C}(A \Rightarrow B) &:= & \mathbb{W}(A) \times \mathbb{C}(B) \end{split}$$

Pédrot's Dialectica Transformation

Soundness [Ped14]

If $\Gamma \vdash t : A$ in the source then we have in the target

- $\blacktriangleright \mathbb{W}(\Gamma) \vdash t^{\bullet} : \mathbb{W}(A)$
- $\blacktriangleright \ \mathbb{W}(\Gamma) \vdash t_x : \mathbb{C}(A) \Rightarrow \mathfrak{M}\mathbb{C}(X) \text{ provided } x : X \in \Gamma.$

A global and a local transformation

$$\begin{array}{rcl} x^{\bullet} & := & x & (\lambda x.t)^{\bullet} & := & (\lambda x.t^{\bullet}, \lambda \pi x.t_{x} \ \pi) \\ x_{x} & := & \lambda \pi. \{\pi\} & (\lambda x.t)_{y} & := & \lambda \pi. (\lambda x.t_{y}) \ \pi.1 \ \pi.2 \\ x_{y} & := & \lambda \pi. \varnothing \text{ if } x \neq y & (t \ u)^{\bullet} & := & (t^{\bullet}.1) \ u^{\bullet} \end{array}$$

 $(t\ u)_{\boldsymbol{y}} := \lambda \pi. \left(t_{\boldsymbol{y}} \left(u^{\bullet}, \pi \right) \right) \circledast \left((t^{\bullet}.2) \, \pi \, u^{\bullet} \gg = u_{\boldsymbol{y}} \right)$

Flashback: Differential λ -calculus [Ehrhard, Regnier 04]

Inspired by denotational models of Linear Logic in vector spaces of sequences, it introduces a differentiation of λ -terms.

 $D(\lambda x.t)$ is the **linearization** of $\lambda x.t$, it substitute x linearly, and then it remains a term t' where x is free.

Syntax:

Operational Semantics:

$$\begin{array}{c} (\lambda x.s)T \to_{\beta} s[T/x] \\ \mathrm{D}(\lambda x.s) \cdot t \to_{\beta_D} \lambda x. \frac{\partial s}{\partial x} \cdot t \end{array}$$

where $\frac{\partial s}{\partial x} \cdot t$ is the **linear substitution** of x by t in s.

Linearity in Linear Logic

Linearity is about resources: A proof/program is *linear* iff it uses only once its hypotheses/argument.

Linear	Non-linear
$A \vdash A \lor B$	$A \vdash A \wedge A$
$\lambda f \lambda x. f x x$	$\lambda x.\lambda f.fxx$

Differentiation is about making a λ -term linear :

 \rightsquigarrow about making a λ -term have a linear usage of its arguments.

 $\lambda x \lambda f. fxx \rightsquigarrow ?$

Linearity in Linear Logic

Linearity is about resources: A proof/program is *linear* iff it uses only once its hypotheses/argument.

Linear	Non-linear
$A \vdash A \lor B$	$A \vdash A \wedge A$
$\lambda f \lambda x. f x x$	$\lambda x.\lambda f.fxx$

Differentiation is about making a λ -term linear :

 \rightsquigarrow about making a $\lambda\text{-term}$ have a linear usage of its arguments.

$$D(\lambda x \lambda f. fxx) \cdot v := \lambda x. \lambda f. vx + ?$$

Linearity in Linear Logic

Linearity is about resources: A proof/program is *linear* iff it uses only once its hypotheses/argument.

Linear	Non-linear
$A \vdash A \lor B$	$A \vdash A \wedge A$
$\lambda f \lambda x. f x x$	$\lambda x.\lambda f.fxx$

Differentiation is about making a λ -term linear :

 \rightsquigarrow about making a $\lambda\text{-term}$ have a linear usage of its arguments.

$$D(\lambda x \lambda f. f x x) \cdot v := \lambda x. \lambda f. v x + \lambda x. \lambda f. D x v$$

The linear substitution ...

... which is not exactly a substitution

$$\frac{\partial y}{\partial x} \cdot t = \{ \begin{array}{cc} t \ if \ x = y \\ 0 \ otherwise \end{array} \qquad \quad \frac{\partial}{\partial x} (tu) \cdot s = (\frac{\partial t}{\partial x} \cdot s)u + (\mathrm{D}t \cdot (\frac{\partial u}{\partial x} \cdot s))u$$

$$\frac{\partial}{\partial x}(\lambda y.s) \cdot t = \lambda y. \frac{\partial s}{\partial x} \cdot t \qquad \quad \frac{\partial}{\partial x}(\mathrm{D}s \cdot u) \cdot t = \mathrm{D}(\frac{\partial s}{\partial x} \cdot t) \cdot u + \mathrm{D}s \cdot (\frac{\partial u}{\partial x} \cdot t)$$

$$\frac{\partial 0}{\partial x} \cdot t = 0 \qquad \qquad \frac{\partial}{\partial x} (s+u) \cdot t = \frac{\partial s}{\partial x} \cdot t + \frac{\partial u}{\partial x} \cdot t$$

 $\frac{\partial s}{\partial x} \cdot t$ represents s where x is linearly (i.e. one time) substituted by t.

The linear substitution ...

The computational Dialectica

$$\frac{\partial y}{\partial x} \cdot t = \{ \begin{array}{cc} t \ if \ x = y \\ 0 \ otherwise \end{array} \qquad \frac{\partial}{\partial x} (tu) \cdot s = (\frac{\partial t}{\partial x} \cdot s)u + (\mathrm{D}t \cdot (\frac{\partial u}{\partial x} \cdot s))u$$

$$x_y \cdot \pi = \{ \begin{array}{l} \pi \ if \ x = y \\ \emptyset \ otherwise \end{array} \quad (t \ u)_y := \lambda \pi. \left(t_y \left(u^{\bullet}, \pi \right) \right) \circledast \left(\left(t^{\bullet}.2 \right) \pi \ u^{\bullet} \gg = u_y \right)$$

$$\frac{\partial}{\partial x}(\lambda y.s) \cdot t = \lambda y. \frac{\partial s}{\partial x} \cdot t \qquad \quad \frac{\partial}{\partial x}(\mathrm{D}s \cdot u) \cdot t = \mathrm{D}(\frac{\partial s}{\partial x} \cdot t) \cdot u + \mathrm{D}s \cdot (\frac{\partial u}{\partial x} \cdot t)$$

$$\frac{\partial 0}{\partial x} \cdot t = 0 \qquad \qquad \frac{\partial}{\partial x} (s+u) \cdot t = \frac{\partial s}{\partial x} \cdot t + \frac{\partial u}{\partial x} \cdot t$$

$$\begin{aligned} x_x &:= \lambda \pi. \{\pi\} & x^\bullet &:= x \\ x_y &:= \lambda \pi. \varnothing & \text{if } x \neq y & (\lambda x. t)^\bullet &:= (\lambda x. t^\bullet, \lambda x \pi. t_x \pi) \\ (\lambda x. t)_y &:= \lambda \pi. (\lambda x. t_y) \pi. 1 \pi. 2 & (t \ u)^\bullet &:= (t^\bullet. 1) \ u^\bullet \\ & (t \ u)_y &:= \lambda \pi. (t_y \ (u^\bullet, \pi)) \circledast ((t^\bullet. 2) \ u^\bullet \pi \gg u_y) \end{aligned}$$

$$\begin{aligned} x_x &:= \lambda \pi. \{\pi\} & x^\bullet &:= x \\ x_y &:= \lambda \pi. \varnothing & \text{if } x \neq y & (\lambda x. t)^\bullet &:= (\lambda x. t^\bullet, \lambda x \pi. t_x \pi) \\ (\lambda x. t)_y &:= \lambda \pi. (\lambda x. t_y) \pi. 1 \pi. 2 & (t \ u)^\bullet &:= (t^\bullet. 1) \ u^\bullet \\ & (t \ u)_y &:= \lambda \pi. (t_y \ (u^\bullet, \pi)) \circledast ((t^\bullet. 2) \ u^\bullet \pi \gg u_y) \end{aligned}$$

$$\begin{array}{rcl} x_x & := & \lambda \pi. \frac{\partial x}{\partial x} \cdot \pi & x^{\bullet} & := & x \\ x_y & := & \lambda \pi. \frac{\partial x}{\partial y} \cdot \pi & \text{if } x \neq y & (\lambda x. t)^{\bullet} & := & (\lambda x. t^{\bullet}, \lambda x \pi. t_x \pi) \\ (\lambda x. t)_y & := & \lambda \pi. (\lambda x. t_y) \pi. 1 \pi. 2 & (t \ u)^{\bullet} & := \equiv & (\lambda x. (tx)^{\bullet}) u^{\bullet} \end{array}$$

$$(t\ u)_y := \lambda \pi. \left(t_y \left(u^{\bullet}, \pi \right) \right) \circledast \left(\left(t^{\bullet}.2 \right) u^{\bullet} \pi \right) = u_y \right)$$

That's reverse differentiation

- ▶ $(_)^{\bullet}.2$ obeys the chain rule, $(_)^{\bullet}$ is the functorial differentiation.
- ▶ t_x is contravariant in x, representing a reverse linear substitution.

Theorem [K. Pédrot 22]

$$\llbracket u \gg t_x[\Gamma \leftarrow \overrightarrow{r^{\bullet}}] \rrbracket \equiv_{\beta,\eta} \lambda z. \left(\llbracket u \rrbracket \left((\partial x.t[\Gamma \leftarrow \overrightarrow{r}])z) \right)$$

That's reverse differentiation

- ▶ $(_)^{\bullet}.2$ obeys the chain rule, $(_)^{\bullet}$ is the functorial differentiation.
- \blacktriangleright t_x is contravariant in x, representing a reverse linear substitution.

Theorem [K. Pédrot 22]

$$[\![u \!\gg\!=\! t_x[\Gamma \leftarrow \overrightarrow{r^{\bullet}}]]\!] \equiv_{\beta,\eta} \lambda z. ([\![u]\!] \left((\partial x.t[\Gamma \leftarrow \overrightarrow{r}])z) \right)$$

Dialectica is differentiation in categories

That's already known through lenses !

What's categorical differentiation ?

To cook a good differential category, one needs :

▶ A category of regular/continuous/non-linear functions

 $\mathbb{C}(A,B)= !A\multimap B$.

▶ A category of linear functions, in which differentiation embeds

 $\mathscr{L}(A,B) = A \multimap B.$

► Something which linearizes :

 $\bar{d}:A\to !A$

▶ A notion of <u>duality</u>, if one wants to encode <u>reverse</u>. differentiation.

 \rightsquigarrow Basically, one wants a categorical model of D1LL.

Dialectica categories

Categories representing specific relations

Consider a category \mathcal{C} . **Dial**(\mathcal{C}) is constructed as follows:

- Objects : relations $\alpha \subseteq U \times X$, $\beta \subseteq V \times Y$.
- Maps from α to β :

$$(f:U \to V, F:U \times Y \to X)$$

► Composition : the chain rule !

Consider

$$\begin{array}{rrrr} (f,F): & \alpha \subseteq (A,X) & \to & \beta \subseteq (B,Y) \\ \text{and} & (g,G): & \beta \subseteq (B,Y) & \to & \gamma \subseteq (C,Z) \end{array}$$

two arrows of the Dialectica category. Then their composition is defined as

$$(g,G)\circ(f,F):=(g\circ f,(a,z)\mapsto F(a,G(f(a),z))).$$

Dialectica categories through Differential Categories In a *-autonomous differential category :

 $\partial: Id \otimes ! \to !$

$$\mathcal{L}(B \otimes A, C^{\perp}) \simeq \mathcal{L}(A, (B \otimes C)^{\perp})$$

from $f: !A \to B$ one constructs :

$$\overleftarrow{D}(f) \in \mathcal{L}(!A \otimes B^{\perp}, A^{\perp}).$$

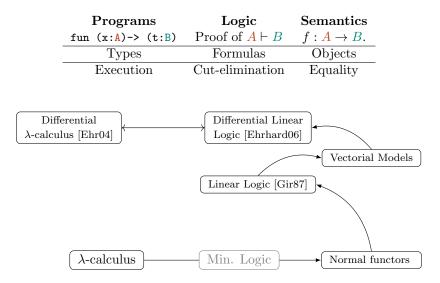
Dialectica categories factorize through differential categories

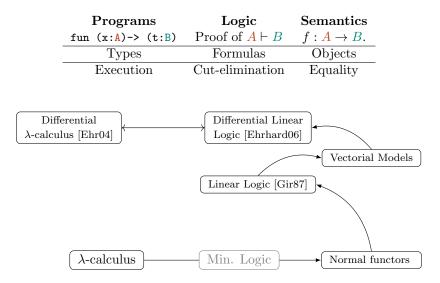
If \mathcal{L} is a model of DILL such that $\mathcal{L}_!$ has finite limits:

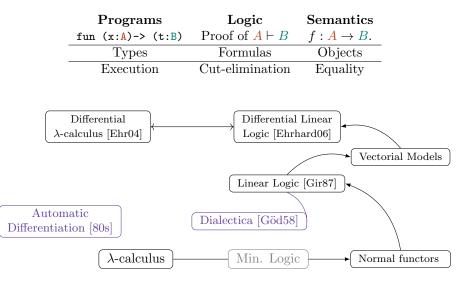
$$\begin{cases} \mathcal{L}_! & \to & \mathscr{D}(\mathcal{L}_!) \\ A & \mapsto & A \times A^{\perp} \\ f & \mapsto & (f, \overleftarrow{D}(f)) \end{cases}$$

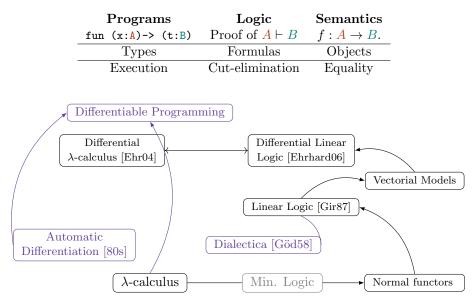
We have an obvious forgetful functor:

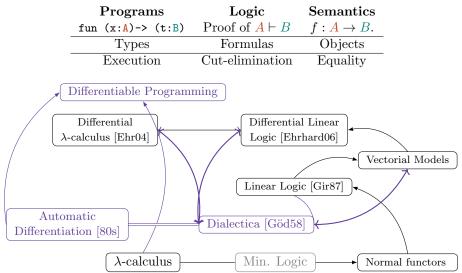
$$\mathcal{U}: \left\{ \begin{array}{rrr} \mathscr{D}(\mathscr{L}_{!}) & \to & \mathscr{L}_{!} \\ \alpha \subseteq A \times X & \mapsto & A \\ (f,F) & \mapsto & f \end{array} \right.$$











A good point for logicians : Gödel invented Dialectica 40 years before reverse differentiation was put to light

Conclusion and applications

Take home message:

Dialectica is functorial reverse differentiation, extracting intensional local content from proofs.

A new semantical correspondance between computations and mathematics : intentional meaning of program is local behaviour of functions.

Program	Proof	Function
Quantitative	Resources	Linearity
Control	Classical Principles	Differentiation

Related work and potential applications:

- ▶ Markov's principle and delimited continuations on positive formulas.
- ▶ Proof mining and backpropagation.
- ▶ Bar Induction and Taylor Exponentiation.

Dialectica is differentiation ...

... We knew it already !

The codereliction of differential proof nets: In terms of polarity in linear logic [23], the \forall - \rightarrow -free constraint characterizes the formulas of intuitionistic logic that can be built only from positive connectives (\oplus , \otimes , 0, 1, !) and the why-not connective ("?"). In this framework, Markov's principle expresses that from such a \forall - \rightarrow -free formula A (e.g. ? \oplus_x (? $A(x) \otimes$?B(x))) where the presence of "?" indicates that the proof possibly used weakening (efq or throw) or contraction (catch), a linear proof of A purged from the occurrences of its "?" connective can be extracted (meaning for the example above a proof of $\oplus_x(A(x) \otimes B(x))$). Interestingly, the removal of the "?", i.e. the steps from ?P to P, correspond to applying the codereliction rule of differential proof nets [24].

Differentiation : $(?P = (P \multimap \bot) \Rightarrow \bot) \rightarrow ((P \multimap \bot) \multimap \bot) \equiv P)$

Hugo Herbelin, "An intuitionistic logic that proves Markov's principle", LICS '10 .

Differentiation and delimited continuations

Herbelin Lics'10

Markov's principle is proved by allowing catch and throw operations on hereditary positive formulas.

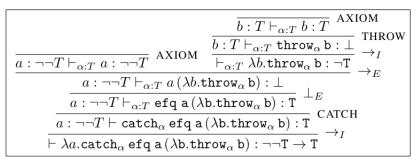


Figure 3. Proof of MP

Proof Mining

Extracting quantitative information from proofs.

Effective moduli from ineffective uniqueness proofs. An unwinding of de La Vallée Poussin's proof for Chebycheff approximation*

Ulrich Kohlenbach

Fachbereich Mathematik, J.W. Goethe Universität Robert Mayer Str. 6–10, 6000 Frankfurt am Main, FRG

Abstract

We consider uniqueness theorems in classical analysis having the form

(+) $\forall u \in U, v_1, v_2 \in V_u (G(u, v_1) = 0 = G(u, v_2) \rightarrow v_1 = v_2),$

where U,V are complete separable metric spaces, V_u is compact in V and $G:U\times V\to \mathbb{R}$ is a constructive function.

If (+) is proved by arithmetical means from analytical assumptions

 $(++) \forall x \in X \exists y \in Y_x \forall z \in Z (F(x, y, z) = 0)$

only (where X, Y, Z are complete separable metric spaces, $Y_x \subset Y$ is compact and $F : X \times Y \times Z \to \mathbb{R}$ constructive), then we can extract from the proof of $(++) \to (+)$ an effective modulus of uniqueness, i.e.

 $(+++) \ \forall u \in U, v_1, v_2 \in V_u, k \in \mathbb{N}(|G(u,v_1)|, |G(u,v_2)| \le 2^{-\Phi_{uk}} \to d_V(v_1,v_2) \le 2^{-k}).$

Proof Mining

Markov's principle and the independence of premises are necessary for most of **mathematical analysis proofs** :

Proof mining allows to refine these proofs by taking away thes principles as guaranteed by (some variant of) Dialectica's transformation.

Conjecture

?

Does it differentiate the function $(\epsilon \rightarrow \eta)$ in :

 $\forall u, v_1v_2, \forall \epsilon > 0, \exists \eta > 0, \|G(u, v_1) - G(u, v_2)\| < \eta \rightarrow d_V(v_1, v_2) < \epsilon$

Is proof mining (based on) reverse differentiation applied to proofs? What else can we explain by differentiation ?

Thank you for Listening !