
Computability in Europe 2023
Special session on Proof Theory

∂ is for Dialectica

Marie Kerjean

CNRS & LIPN, Université Sorbonne Paris Nord

Work in collaboration with Pierre-Marie Pédrot

1 / 1

Gödel’s Dialectica Transformation

▶ Gödel Dialectica transformation [1958] : a translation from intuitionistic
arithmetic to a finite type extension of primitive recursive arithmetic.

A⇝ ∃u : W(A),∀x : C(A), AD[u, x]

▶ De Paiva [1991]: the linearized Dialectica translation operates on Linear
Logic (types) and λ-calculus (terms).

▶ Pedrot [2014] A computational Dialectica translation preserving
β-equivalence, via the introduction of an ”abstract multiset constructor”
on types on the target.

2 / 1

Gödel’s Dialectica

Kurt Gödel (1958). Über eine bisher noch nicht benützte Erweiterung des finiten
Standpunktes. Dialectica.

3 / 1

Gödel’s Dialectica

▶ Validates semi-classical axioms:
▶ Markov’s principle : ¬¬∃xA → ∃xA when A is decidable.
▶ Independant of premises : (A → ∃xB) → (∃x.(A → B))

▶ Numerous applications :
▶ Soudness results
▶ Proof mining

Jeremy Avigad and Solomon Feferman (1999). Gödel’s functional (”Dialectica”)
interpretation

4 / 1

A peek into Dialectica interpretation of functions

(A→ B)D = ∃fg∀xy(AD(x, gxy)→ BD(fx, y))

Usual explanation : least unconstructive prenexation.
▶ Start from ∃x,∀u,AD[x, u] → ∃y,∀v,BD[y, v].

▶ Obvious prenexation : ∀x (∀u,AD[x, u] → ∃y,∀v,BD[y, v])

▶ Weak form of IP : ∀x∃y (∀u,AD[x, u] → ∀v,BD[y, v])

▶ Prenexation : ∀x∃y,∀v,∃u (AD[x, u] → BD[y, v]).

▶ Markov : ∀x,∃y,∀v,∃u(AD[x, u] → BD[y, v])

▶ Axiom of choice : ∃f, ∃g,∀u,∀v, (AD(u, guv) → BD[fu, v]).

Dynamic behaviour : agrees to a chain rule.

Mathematical meaning : it’s some kind of approximation.

Ulrich Kohlenbach, Applied Proof Theory: Proof Interpretations and their Use in
Mathematics, 2008

5 / 1

Outline of the talk

• The Historical Dialectica

• Differentiation and Differentiable Programming.

• Factorizing Dialectica through differential linear logic.

• Dialectica acting on λ-terms.

• Applications and related work.

6 / 1

Differentiable Programming

7 / 1

Differentiation

▶ Differentiation is finding the best linear approximation to a function at a
point.

f ∈ C∞(R,R)

d(f)(0)

Chain Rule : D0(f ◦ g) = Dg(0)f ◦D0g

▶ Differentiation is a mathematical operation which needs to be fitted to
logical and computer science use.
▶ Algorithmic Differentiation : differentiating sequences of many-valued

functions efficiently.
▶ Differential Linear Logic : Differentiating proofs and λ-terms.

8 / 1

Dialectica verifies the chain rule
Composing the Dialectica interpretation of arrows:

(A⇒ B)D[ϕ1;ψ1, u1; v1] := AD(u1, ψ1 u1 v1)⇒ BD(ϕ1 u1, v1)

(B ⇒ C)D[ϕ2;ψ2, u2; v2] := BD(u2, ψ2 u2 v2)⇒ CD(ϕ2 u2, v2)

(A⇒ C)D[ϕ3;ψ3, u3; v3] := AD(u3, ψ3 u3 v3)⇒ CD(ϕ3 u3, v3)

The Dialectica interpretation amounts to the following equations:

u3 = u1 ψ3, u3, v3 = ψ1, u1, v1

v3 = v2 ϕ2 u2 = ϕ1, u1

u2 = ϕ1 u1 v1 = ψ2(u2, v2)

which can be simplified to:

ϕ3(u3) = ϕ2 (ϕ1 (u3)) composition of functions

ψ3(u3, v3) = ψ1 (u3, ψ2(ϕ1u3, v3)) composition of their differentials

Thanks to T. Powell for noticing typos here.

9 / 1

But verifying the chain rule does not make you differentiation!

▶ More modern presentations of Dialectica.

▶ More Computer Science Friendly presentations of Differentiation.

▶ Linearity must enter the game.

10 / 1

Curry-Howard for semantics

Programs Logic Semantics
fun (x:A)-> (t:B) Proof of A ⊢ B f : A→ B.

Types Formulas Objects
Execution Cut-elimination Equality

Dialectica
Differential λ-calculus Differential Linear Logic Differential Categories

Dialectica is Backward Differentiation in Logic

11 / 1

And now for something completely different :
Automatic Differentiation

How does one compute the differentiation of an algebraic expression,
computed as a sequence of elementary operations ?

E.g. : z = y + cos(x2)
x1 = x20 x′1 = 2x0x

′
0

x2 = cos(x1) x′2 = −x′0sin(x0)
z = y + x2 z′ = y′ + 2x2x

′
2

Derivative of a sequence of instruction

⇓

sequence of instruction × sequence of derivatives

Forward Mode differentiation [Wengert, 1964]
(x1, x

′
1)→ (x2, x

′
2)→ (z, z′).

Reverse Mode differentiation: [Speelpenning, Rall, 1980s]
x1 → x2 → z → z′ → x′2 → x′1 while keeping formal the unknown derivative.

12 / 1

Curry-Howard for semantics

The syntax mirrors the semantics.

Programs Logic Semantics
fun (x:A)-> (t:B) Proof of A ⊢ B f : A→ B.

Types Formulas Objects
Execution Cut-elimination Equality

▶ Programs acts on programs.
▶ Functions are higher-order: they act not only on Rn, but also on

C∞(Rn,R).
▶ Programs are typed.

▶ Add : C∞(Rn,R)× C∞(Rn,R) → C∞(Rn,R)
▶ Everything is interpreted in Categories.

▶ Objects are Data
▶ Functions are Programs
▶ Transformations are functorial:

F(p1; p2) = F(p1);F(p2)

F(f2 ◦ f1) = F(f2) ◦ F(f1)

13 / 1

Back to AD: I hate graphs

Du(f ◦ g) = Dg(u)f ◦Du(g)

▶ Forward Mode differentiation :
g(u)→ Dug → f(g(u))→ Dg(u)f → Dg(u)f ◦Du(g).

▶ Reverse Mode differentiation:
g(u)→ f(g(u))→ Dg(u)f → Du(g)→ Dg(u)f ◦Du(g)

The choice of an algorithm is due to complexity considerations:

▶ Forward mode for f ◦ g : R→ Rn.

▶ Reverse mode for f ◦ g : Rn → R

⇝ Differentiable programming is a new research area triggered by the advances of

deep learning algorithms on neural networks, it tries to attach two very old domains:

lambda-calculus and automatic differentiation, with correctness and modularity goals

in mind.

14 / 1

AD from a functorial point of view

Du(f ◦ g) = Dg(u)f ◦Du(g)

Non-functorial !!!

How to make differentiation functorial ? Make it act on pairs !

f : E ⇒ F

Forward Mode differentiation :

f : E ⇒ E ⇝
−→
Df : E ⇒ E ⊸ F .

−→
D(f) :

{
E ⇒ E ⊸ F

u 7→ v 7→ Du(f)(v)

Functorial forward differentiation :

(f,
−→
D(f)) :

{
E × E → F × F
(a, x) 7→ (f(a), (Daf · x))

15 / 1

Reverse AD from a functorial point of view

How to make reverse differentiation functorial ?

Make it act on pairs with linear duals !

16 / 1

Reverse functorial differentiation

Linear Dual
A⊥≡ A⊸ ⊥ ≡ L(A,R)

▶ Reverse Mode differentiation:

g(u)→ f(g(u))→ Dg(u)f → Dg(u)f ◦Du(g)

f : E ⇒ F ⇝
←−
Df : E ⇒ F⊥ ⇒ E⊥.

←−
D(f) :

{
E ⇒ F⊥⊸ E⊥

u 7→ ℓ 7→ ℓ ◦Du(f)

[Mazza, Pagani, POPL2020]

▶ Reverse functorial differentiation :

(f,
←−
D(f)) : (E ⇒ F)× (E ⇒ F⊥ ⇒ E⊥)

17 / 1

Types !
Programs and variable are typed
by logical formulas which describe their behavior

A⇝ ∃
witness︷ ︸︸ ︷

x : W(A),∀u : C(A)︸ ︷︷ ︸
opponent

, AD[x, u]

Witness and counter types :

C(A⇒ B) = C(A)× C(B)

W(A⇒ B) = (W(A)⇒W(B)) × (W(A)⇒ C(B)⇒ C(A))

Reverse Mode differentiation:

Functorial : (h,
←−
Dh) : (A⇒ B)× (A⇒ B⊥⊸ A⊥)

However:

▶ Having the same type does not mean you’re the same program.

▶ Some french (linear) logicians have a strong opinion on what proof differentiation
should.

18 / 1

Types !
Programs and variable are typed
by logical formulas which describe their behavior

A⇝ ∃

global witness︷ ︸︸ ︷
x : W(A) ,∀ u : C(A)︸ ︷︷ ︸

local opponent

, AD[x, u]

Witness and counter for implication types :

C(A⇒ B) = C(A)× C(B)

W(A⇒ B) =

function︷ ︸︸ ︷
(W(A)⇒W(B))×

W(A)⇒ C(B)⇒ C(A)︸ ︷︷ ︸
reverse derivative

Reverse Mode differentiation:

Functorial : (h,
←−
Dh) : (A⇒ B)× (A⇒ B⊥⊸ A⊥)

However:

▶ Having the same type does not mean you’re the same program.

▶ Some french (linear) logicians have a strong opinion on what proof differentiation
should.

18 / 1

A Linear Logic Refinement

19 / 1

Curry-Howard for semantics

The syntax mirrors the semantics.

Programs Logic Semantics
fun (x:A)-> (t:B) Proof of A ⊢ B f : A→ B.

Types Formulas Objects
Execution Cut-elimination Equality

λ-calculus Min. Logic Normal functors

Linear Logic [Gir87]

Vectorial Models

Differential Linear Logic [Ehrhard06]Differential λ-calculus [Ehr04]

Doing to proofs everything we do to functions

20 / 1

Linear Logic

Linear and Non Linear Arrows

A ⇒ B = ! A ⊸ B
C∞(A,B) ≃ L(!A,B)

Usual Implication

A proof is linear when it uses only once its hypothesis A.

▶ Notions of ressources
which have made their way into programmation through linear types.

▶ The dynamics of linearity gets encoded through the rules of the !
connective, and its dual ?.

A,B := A⊗B|A`B|A⊕B|A&B|!A|?A

21 / 1

Linear Logic

Linear and Non Linear Arrows

A ⇒ B = ! A ⊸ B
C∞(A,B) ≃ L(!A,B)

Usual implication

Linear Implication

A proof is linear when it uses only once its hypothesis A.

▶ Notions of ressources
which have made their way into programmation through linear types.

▶ The dynamics of linearity gets encoded through the rules of the !
connective, and its dual ?.

A,B := A⊗B|A`B|A⊕B|A&B|!A|?A

21 / 1

Linear Logic

Linear and Non Linear Arrows

A ⇒ B = ! A ⊸ B
C∞(A,B) ≃ L(!A,B)

Usual implication

Linear Implication

Exponential

A proof is linear when it uses only once its hypothesis A.

▶ Notions of ressources
which have made their way into programmation through linear types.

▶ The dynamics of linearity gets encoded through the rules of the !
connective, and its dual ?.

A,B := A⊗B|A`B|A⊕B|A&B|!A|?A

21 / 1

Dialectica factorizes through Linear Logic

The call by name arrow

A⇒ B := !A⊸ B := ((!A)⊗B⊥)⊥

W(A⊥) := C(A) C(A⊥) := W(A)
W(!A) := W(A) C(!A) := W(A)⇒ C(A)

W(A⊗B) := W(A)×W(B)
C(A⊗B) := (W(A)⇒ C(B))× (W(B)⇒ C(A))

LL

λ+,× λ+,×

W
C

J Ke

W C

Valeria de Paiva, 1989, A dialectica-like model of linear logic.

22 / 1

Differential Linear Logic

⊢ ℓ : A⊸ B
d⊢ ℓ : !A⊸ B

⊢ f : !A⊸ B
d̄⊢ D0f : A⊸ B

A linear proof
is in particular non-linear.

From a non-linear proof
we can extract a linear proof

f ∈ C∞(R,R)

d(f)(0)

Differential interaction nets, Ehrhard and Regnier, TCS (2006)

23 / 1

Exponential rules of Differential Linear Logic

Exponential connectives:
J!AK := C∞(JAK,K)′ J?AK := C∞(JAK′,K)

⊢ Γ w
⊢ Γ, cst1 : ?A

⊢ Γ, f : ?A, g : ?A
c

⊢ Γ, f.g : ?A

⊢ Γ, ℓ : A
d⊢ Γ, ℓ : ?A

⊢ Γ
w̄⊢ Γ, δ0 : !A

⊢ Γ, ϕ : !A ⊢ ∆, ψ : !A
c̄⊢ Γ,∆, ψ ∗ ϕ : !A

⊢ Γ, x : A
d̄⊢ Γ, D0()(x) : !A

?Γ ⊢ x : A p
?Γ ⊢ δx : !A

24 / 1

Differentiation in Differential Linear Logic

The only thing you need to know:

⊢ Γ, δu : !A

⊢ Γ, v : A
d̄⊢ Γ, D0()(v) : !A
c̄

⊢ Γ,∆, Du()(v) : !A

25 / 1

Dialectica factorizes through Differential Linear Logic

Witnesses are functorial reverse derivative

W(A⇒ B) = (W(A)⇒W(B))× (W(A)⇒ C(B)⇒ C(A))

W(A⊗B) := W(A)⊗W(B) C(A⊗B) := (W(A)⊸ C(B))
W(A⊸ B) := (W(A)⊸W(B)) ⊕(W(B)⊸ C(A))

&(C(B)⊸ C(A)) C(A⊸ B) := W(A)⊗ C(B)
W(A&B) := W(A) &W(B) C(A&B) := C(A)⊕ C(B)
W(A⊕B) := W(A)⊕W(B) C(A⊕B) := C(A) & C(B)
W(!A) := !W(A) C(!A) := !W(A)⊸ C(A)

If Γ ⊢ A in LL, then W(Γ) ⊢W(A) in classical DiLL.

ax
⊢ A,A⊥

d̄⊢ A, !A⊥
ax

⊢ ?A, !A⊥
c̄

⊢ ?A,A, !A⊥
π

Γ ⊢ ?A
cut

Γ ⊢ ?A,A

26 / 1

Dialectica factorizes through Differential Linear Logic

The economical translation

JA⇒ BKe := !A⊸ B

JA×BKe := A&B

JA+BKe := A⊕B

ILL IDiLL

λ+,× λ+,×

W C

...J Ke

W C

IDILL : Intuitionnistic Differential Linear Logic ? Oh no ...

27 / 1

A⇝ ∃
witness︷ ︸︸ ︷

x : W(A),∀u : C(A)︸ ︷︷ ︸
opponent

, AD[x, u]

Let’s say x, u, f , g are λ-terms.

The computational Dialectica : a reverse Differential λ-calculus

”Behind every successful proof there is a program”, Gödel’s wife

28 / 1

A computational Dialectica

Making Dialectica act on λ-terms instead of formulas.

λ-terms with an extra type allowing for sums

Γ ⊢ ∅ : MA

Γ ⊢ m1 : MA Γ ⊢ m2 : MA

Γ ⊢ m1 ⊛m2 : MA

Γ ⊢ t : A
Γ ⊢ {t} : MA

Γ ⊢ m : MA Γ ⊢ f : A⇒MB

Γ ⊢ m>>= f : MB

W(A⇒ B) := (W(A)⇒W(B))
×(C(B)⇒W(A)⇒MC(A))

C(A⇒ B) := W(A)× C(B)

29 / 1

Pédrot’s Dialectica Transformation

Soundness [Ped14]

If Γ ⊢ t : A in the source then we have in the target

▶ W(Γ) ⊢ t• : W(A)

▶ W(Γ) ⊢ tx : C(A)⇒MC(X) provided x : X ∈ Γ.

A global and a local transformation

x• := x (λx. t)• := (λx. t•, λπx. tx π)
xx := λπ. {π} (λx. t)y := λπ. (λx. ty) π.1 π.2
xy := λπ.∅ if x ̸= y (t u)• := (t•.1) u•

(t u)y := λπ. (ty (u
•, π))⊛ ((t•.2)π u• >>=uy)

30 / 1

Flashback: Differential λ-calculus [Ehrhard, Regnier 04]

Inspired by denotational models of Linear Logic in vector spaces of sequences,
it introduces a differentiation of λ-terms.

D(λx.t) is the linearization of λx.t, it substitute x linearly, and then it
remains a term t′ where x is free.

Syntax:

Λd : S, T, U, V ::= 0 | s | s+T
Λs : s, t, u, v ::= x | λx.s | sT | Ds·t

Operational Semantics:

(λx.s)T →β s[T/x]
D(λx.s) · t→βD

λx. ∂s∂x · t

where ∂s
∂x · t is the linear substitution of x by t in s.

31 / 1

Linearity in Linear Logic

Linearity is about resources: A proof/program is linear iff it uses only
once its hypotheses/argument.

Linear Non-linear
A ⊢ A ∨B A ⊢ A ∧A
λfλx.fxx λx.λf.fxx

Differentiation is about making a λ-term linear :

⇝ about making a λ-term have a linear usage of its arguments.

λxλf.fxx⇝ ?

32 / 1

Linearity in Linear Logic

Linearity is about resources: A proof/program is linear iff it uses only
once its hypotheses/argument.

Linear Non-linear
A ⊢ A ∨B A ⊢ A ∧A
λfλx.fxx λx.λf.fxx

Differentiation is about making a λ-term linear :

⇝ about making a λ-term have a linear usage of its arguments.

D(λxλf.fxx) · v := λx.λf.vx+ ?

32 / 1

Linearity in Linear Logic

Linearity is about resources: A proof/program is linear iff it uses only
once its hypotheses/argument.

Linear Non-linear
A ⊢ A ∨B A ⊢ A ∧A
λfλx.fxx λx.λf.fxx

Differentiation is about making a λ-term linear :

⇝ about making a λ-term have a linear usage of its arguments.

D(λxλf.fxx) · v := λx.λf.vx+ λx.λf.Dxv

32 / 1

The linear substitution ...

... which is not exactly a substitution

∂y

∂x
· t = { t if x = y

0 otherwise

∂

∂x
(tu) · s = (

∂t

∂x
· s)u+ (Dt · (∂u

∂x
· s))u

∂

∂x
(λy.s) · t = λy.

∂s

∂x
· t ∂

∂x
(Ds · u) · t = D(

∂s

∂x
· t) · u+Ds · (∂u

∂x
· t)

∂0

∂x
· t = 0

∂

∂x
(s+ u) · t = ∂s

∂x
· t+ ∂u

∂x
· t

∂s
∂x · t represents s where x is linearly (i.e. one time) substituted by t.

33 / 1

The linear substitution ...

The computational Dialectica

∂y

∂x
· t = { t if x = y

0 otherwise

∂

∂x
(tu) · s = (

∂t

∂x
· s)u+ (Dt · (∂u

∂x
· s))u

xy · π = { π if x = y
∅ otherwise

(t u)y := λπ. (ty (u
•, π))⊛ ((t•.2)π u• >>=uy)

∂

∂x
(λy.s) · t = λy.

∂s

∂x
· t ∂

∂x
(Ds · u) · t = D(

∂s

∂x
· t) · u+Ds · (∂u

∂x
· t)

∂0

∂x
· t = 0

∂

∂x
(s+ u) · t = ∂s

∂x
· t+ ∂u

∂x
· t

33 / 1

Tracking differentiation in Dialectica

xx := λπ. {π} x• := x

xy := λπ.∅ if x ̸= y (λx. t)• := (λx. t•, λxπ. tx π)

(λx. t)y := λπ. (λx. ty) π.1 π.2 (t u)• := (t•.1) u•

(t u)y := λπ. (ty (u
•, π))⊛ ((t•.2)u• π>>=uy)

34 / 1

Tracking differentiation in Dialectica

xx := λπ. {π} x• := x

xy := λπ.∅ if x ̸= y (λx. t)• := (λx. t•, λxπ. tx π)

(λx. t)y := λπ. (λx. ty) π.1 π.2 (t u)• := (t•.1) u•

(t u)y := λπ. (ty (u
•, π))⊛ ((t•.2)u• π>>=uy)

34 / 1

Tracking differentiation in Dialectica

xx := λπ. ∂x
∂x

· π x• := x

xy := λπ. ∂x
∂y

· π if x ̸= y (λx. t)• := (λx. t•, λxπ. tx π)

(λx. t)y := λπ. (λx. ty) π.1 π.2 (t u)• := ≡ (λx. (tx)•) u•

(t u)y := λπ. (ty (u
•, π))⊛ ((t•.2)u• π>>=uy)

That’s reverse differentiation
▶ ()•.2 obeys the chain rule, ()• is the functorial differentiation.

▶ tx is contravariant in x, representing a reverse linear substitution.

Theorem [K. Pédrot 22]

Ju>>= tx[Γ←
−→
r•]K ≡β,η λz. (JuK ((∂x.t[Γ← −→r])z))

34 / 1

Tracking differentiation in Dialectica

xx := λπ. ∂x
∂x

· π x• := x

xy := λπ. ∂x
∂y

· π if x ̸= y (λx. t)• := (λx. t•, λxπ. tx π)

(λx. t)y := λπ. (λx. ty) π.1 π.2 (t u)• ≡ (λx. (tx)•) u•

That’s reverse differentiation
▶ ()•.2 obeys the chain rule, ()• is the functorial differentiation.

▶ tx is contravariant in x, representing a reverse linear substitution.

Theorem [K. Pédrot 22]

Ju>>= tx[Γ←
−→
r•]K ≡β,η λz. (JuK ((∂x.t[Γ← −→r])z))

34 / 1

Dialectica is differentiation in categories

That’s already known through lenses !

35 / 1

What’s categorical differentiation ?

To cook a good differential category, one needs :

▶ A category of regular/continuous/non-linear functions

C(A,B) = !A⊸ B .

▶ A category of linear functions, in which differentiation embeds

L (A,B) = A⊸ B.

▶ Something which linearizes :

d̄ : A→ !A

▶ A notion of duality, if one wants to encode reverse. differentiation.

⇝ Basically, one wants a categorical model of DiLL.

36 / 1

Dialectica categories

Categories representing specific relations

Consider a category C. Dial(C) is constructed as follows:

▶ Objects : relations α ⊆ U ×X, β ⊆ V × Y .

▶ Maps from α to β :

(f : U → V, F : U × Y → X)

▶ Composition : the chain rule !

Consider
(f, F) : α ⊆ (A,X) → β ⊆ (B, Y)

and (g,G) : β ⊆ (B, Y) → γ ⊆ (C,Z)

two arrows of the Dialectica category. Then their composition is defined as

(g,G) ◦ (f, F) := (g ◦ f, (a, z) 7→ F (a,G(f(a), z))).

37 / 1

Dialectica categories through Differential Categories
In a ∗-autonomous differential category :

∂ : Id⊗ !→ !

L(B ⊗A,C⊥) ≃ L(A, (B ⊗ C)⊥)
from f : !A→ B one constructs :

←−
D(f) ∈ L(!A⊗B⊥, A⊥).

Dialectica categories factorize through differential categories

If L is a model of DiLL such that L! has finite limits:
L! → D(L!)
A 7→ A×A⊥

f 7→ (f,
←−
D(f))

We have an obvious forgetful functor:

U :

 D(L !) → L !

α ⊆ A×X 7→ A
(f, F) 7→ f

which is left adjoint to R, forming a reflection on L oc.

To be declined in reverse/cartesian differential categories...

38 / 1

Recap

Programs Logic Semantics
fun (x:A)-> (t:B) Proof of A ⊢ B f : A→ B.

Types Formulas Objects
Execution Cut-elimination Equality

λ-calculus Min. Logic Normal functors

Linear Logic [Gir87]

Vectorial Models

Differential Linear

Logic [Ehrhard06]

Differential

λ-calculus [Ehr04]

39 / 1

Recap

Programs Logic Semantics
fun (x:A)-> (t:B) Proof of A ⊢ B f : A→ B.

Types Formulas Objects
Execution Cut-elimination Equality

λ-calculus Min. Logic Normal functors

Linear Logic [Gir87]

Vectorial Models

Differential Linear

Logic [Ehrhard06]

Differential

λ-calculus [Ehr04]

39 / 1

Recap

Programs Logic Semantics
fun (x:A)-> (t:B) Proof of A ⊢ B f : A→ B.

Types Formulas Objects
Execution Cut-elimination Equality

λ-calculus Min. Logic Normal functors

Linear Logic [Gir87]

Automatic
Differentiation [80s]

Dialectica [Göd58]

Vectorial Models

Differential Linear

Logic [Ehrhard06]

Differential

λ-calculus [Ehr04]

39 / 1

Recap

Programs Logic Semantics
fun (x:A)-> (t:B) Proof of A ⊢ B f : A→ B.

Types Formulas Objects
Execution Cut-elimination Equality

λ-calculus Min. Logic Normal functors

Linear Logic [Gir87]

Automatic
Differentiation [80s]

Dialectica [Göd58]

Vectorial Models

Differential Linear

Logic [Ehrhard06]

Differential

λ-calculus [Ehr04]

Differentiable Programming

39 / 1

Recap
Programs Logic Semantics

fun (x:A)-> (t:B) Proof of A ⊢ B f : A→ B.
Types Formulas Objects

Execution Cut-elimination Equality

λ-calculus Min. Logic Normal functors

Linear Logic [Gir87]

Automatic
Differentiation [80s]

Dialectica [Göd58]

Vectorial Models

Differential Linear

Logic [Ehrhard06]

Differential

λ-calculus [Ehr04]

Differentiable Programming

A good point for logicians : Gödel invented Dialectica 40 years before reverse
differentiation was put to light

39 / 1

Conclusion and applications

40 / 1

Take home message:

Dialectica is functorial reverse differentiation,
extracting intensional local content from proofs.

A new semantical correspondance between computations and mathematics :
intentional meaning of program is local behaviour of functions.

Program Proof Function
Quantitative Resources Linearity
Control Classical Principles Differentiation

Related work and potential applications:

▶ Markov’s principle and delimited continuations on positive formulas.

▶ Proof mining and backpropagation.

▶ Bar Induction and Taylor Exponentiation.

41 / 1

Dialectica is differentiation ...

... We knew it already !

Differentiation : (?P = (P ⊸ ⊥)⇒ ⊥)→ ((P ⊸ ⊥)⊸ ⊥) ≡ P)

Hugo Herbelin, “An intuitionistic logic that proves Markov’s principle”, LICS

’10 .

42 / 1

Differentiation and delimited continuations

Herbelin Lics’10
Markov’s principle is proved by allowing catch and throw operations on
hereditary positive formulas.

43 / 1

Proof Mining

Extracting quantitative information from proofs.

44 / 1

Proof Mining

Markov’s principle and the independence of premises are necessary for most of
mathematical analysis proofs :

Proof mining allows to refine these proofs by taking away thes principles as
guaranteed by (some variant of) Dialectica’s transformation.

Conjecture

Does it differentiate the function (ϵ→ η) in :

∀u, v1v2,∀ϵ > 0,∃η > 0, ∥G(u, v1)−G(u, v2)∥ < η → dV (v1, v2) < ϵ

?

Is proof mining (based on) reverse differentiation applied to proofs?

What else can we explain by differentiation ?

45 / 1

Thank you for Listening !

46 / 1

