Primitive recursive degree spectra of structures

Kalimullin I.Sh.

Kazan Federal University e-mail:ikalimul@gmail.com

Computability in Europe Batumi, July 25, 2023

Computable structures

▶ A structure \mathcal{A} is computable if the domain $|\mathcal{A}| \subseteq \mathbb{N}$ is computable and all relations and operations from \mathcal{A} are computable.

→ ∃ >

Computable structures

- ▶ A structure \mathcal{A} is computable if the domain $|\mathcal{A}| \subseteq \mathbb{N}$ is computable and all relations and operations from \mathcal{A} are computable.
- A computable presentation of a countable structure \mathcal{A} is any computable isomorphic copy of \mathcal{A} .

→

Computable structures

- ▶ A structure \mathcal{A} is computable if the domain $|\mathcal{A}| \subseteq \mathbb{N}$ is computable and all relations and operations from \mathcal{A} are computable.
- A computable presentation of a countable structure \mathcal{A} is any computable isomorphic copy of \mathcal{A} .
- ▶ $(\mathbb{N}, +1, P)$ has a computable copy iff P is computable.

Computable structures

- ▶ A structure \mathcal{A} is computable if the domain $|\mathcal{A}| \subseteq \mathbb{N}$ is computable and all relations and operations from \mathcal{A} are computable.
- A computable presentation of a countable structure \mathcal{A} is any computable isomorphic copy of \mathcal{A} .
- ▶ $(\mathbb{N}, +1, P)$ has a computable copy iff P is computable.
- All operations can be equivalently transformed into ralations, e.g., +1 can be replaced by the successor relation.

伺い イヨト イヨト ニヨ

Primitive recursive structures

• A structure \mathcal{A} is primitive recursive if the domain $|\mathcal{A}|$ is primitive recursive and all relations and operations in \mathcal{A} are primitive recursive.

Primitive recursive structures

- A structure \mathcal{A} is primitive recursive if the domain $|\mathcal{A}|$ is primitive recursive and all relations and operations in \mathcal{A} are primitive recursive.
- A primitive recursive presentation of a countable structure
 A is any primitive recursive isomorphic copy of A.

Primitive recursive structures

- A structure \mathcal{A} is primitive recursive if the domain $|\mathcal{A}|$ is primitive recursive and all relations and operations in \mathcal{A} are primitive recursive.
- A primitive recursive presentation of a countable structure
 A is any primitive recursive isomorphic copy of A.
- (from Kleene's Normal Form). Every computable structure in a relational language has a primitive recursive presentation.

Primitive recursive structures

- A structure \mathcal{A} is primitive recursive if the domain $|\mathcal{A}|$ is primitive recursive and all relations and operations in \mathcal{A} are primitive recursive.
- A primitive recursive presentation of a countable structure
 A is any primitive recursive isomorphic copy of A.
- (from Kleene's Normal Form). Every computable structure in a relational language has a primitive recursive presentation.
- (Alaev, 2016). Every computable locally finite structure in a relational language has a primitive recursive presentation.

글 에 에 글 어

Primitive recursive structures

- A structure \mathcal{A} is primitive recursive if the domain $|\mathcal{A}|$ is primitive recursive and all relations and operations in \mathcal{A} are primitive recursive.
- A primitive recursive presentation of a countable structure
 A is any primitive recursive isomorphic copy of A.
- (from Kleene's Normal Form). Every computable structure in a relational language has a primitive recursive presentation.
- (Alaev, 2016). Every computable locally finite structure in a relational language has a primitive recursive presentation.
- $(\mathbb{N}, +1, P)$ has a primitive recursive presentation iff P is primitive recursive.

伺下 イヨト イヨト

Punctual structures

▶ A structure \mathcal{A} is punctual if \mathcal{A} is finite or $|\mathcal{A}| = \mathbb{N}$ and all relations and operations in \mathcal{A} are primitive recursive.

Punctual structures

- ▶ A structure \mathcal{A} is punctual if \mathcal{A} is finite or $|\mathcal{A}| = \mathbb{N}$ and all relations and operations in \mathcal{A} are primitive recursive.
- A punctual presentation of a countable structure \mathcal{A} is any punctual isomorphic copy of \mathcal{A} .

Punctual structures

- A structure \mathcal{A} is punctual if \mathcal{A} is finite or $|\mathcal{A}| = \mathbb{N}$ and all relations and operations in \mathcal{A} are primitive recursive.
- A punctual presentation of a countable structure \mathcal{A} is any punctual isomorphic copy of \mathcal{A} .
- Every primitive recursive structure which is not locally finite has a punctual recursive presentation.

Punctual structures

- A structure \mathcal{A} is punctual if \mathcal{A} is finite or $|\mathcal{A}| = \mathbb{N}$ and all relations and operations in \mathcal{A} are primitive recursive.
- A punctual presentation of a countable structure \mathcal{A} is any punctual isomorphic copy of \mathcal{A} .
- Every primitive recursive structure which is not locally finite has a punctual recursive presentation.
- (KMN, 2017). There is a computable graph without a punctual presentation

• = •

Punctual structures

- A structure \mathcal{A} is punctual if \mathcal{A} is finite or $|\mathcal{A}| = \mathbb{N}$ and all relations and operations in \mathcal{A} are primitive recursive.
- A punctual presentation of a countable structure \mathcal{A} is any punctual isomorphic copy of \mathcal{A} .
- Every primitive recursive structure which is not locally finite has a punctual recursive presentation.
- ▶ (KMN, 2017). There is a computable graph without a punctual presentation, while it has a primitive recursive one.

Punctual structures

- A structure \mathcal{A} is punctual if \mathcal{A} is finite or $|\mathcal{A}| = \mathbb{N}$ and all relations and operations in \mathcal{A} are primitive recursive.
- A punctual presentation of a countable structure \mathcal{A} is any punctual isomorphic copy of \mathcal{A} .
- Every primitive recursive structure which is not locally finite has a punctual recursive presentation.
- ▶ (KMN, 2017). There is a computable graph without a punctual presentation, while it has a primitive recursive one.
- ▶ $(\mathbb{N}, +1, P)$ has a punctual presentation iff P is primitive recursive.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Sets coded into the structures

Let \boldsymbol{P} is arbitrary, and \boldsymbol{X} is a Turing oracle.

Kalimullin I.Sh. Primitive recursive degree spectra of structures

Sets coded into the structures

Let \boldsymbol{P} is arbitrary, and \boldsymbol{X} is a Turing oracle.

▶ $(\mathbb{N}, +1, P)$ has an X-computable copy iff $P \leq_T X$.

Sets coded into the structures

Let \boldsymbol{P} is arbitrary, and \boldsymbol{X} is a Turing oracle.

- ▶ $(\mathbb{N}, +1, P)$ has an X-computable copy iff $P \leq_T X$.
- The same is true if we replace +1 by the successor relation.

Sets coded into the structures

Let \boldsymbol{P} is arbitrary, and \boldsymbol{X} is a Turing oracle.

- ▶ $(\mathbb{N}, +1, P)$ has an X-computable copy iff $P \leq_T X$.
- ▶ The same is true if we replace +1 by the successor relation.
- ▶ (Ash, Knight, 2000). Suppose

 \mathcal{A} has an X-computable copy $\implies P \leq_T X$

for every \boldsymbol{X} .

Sets coded into the structures

Let \boldsymbol{P} is arbitrary, and \boldsymbol{X} is a Turing oracle.

- ▶ $(\mathbb{N}, +1, P)$ has an X-computable copy iff $P \leq_T X$.
- ▶ The same is true if we replace +1 by the successor relation.
- ▶ (Ash, Knight, 2000). Suppose

 \mathcal{A} has an X-computable copy $\implies P \leq_T X$

for every X. Then for some fixed parameters $\vec{a} \in \mathcal{A}$ there are computable mappings into quantifier-free formulae $n \mapsto \Phi_n$ and $n \mapsto \Psi_n$ such that

$$n \in P \iff \mathcal{A} \models (\exists \vec{x}) \Phi_n(\vec{x}, \vec{a});$$
$$n \notin P \iff \mathcal{A} \models (\exists \vec{x}) \Psi_n(\vec{x}, \vec{a}).$$

PR-reducibility

▶ We write $g \leq_{PR} f$ if g can be obtained from $o(x), s(x), l_m^n$ and f by composition and primitive recursion.

PR-reducibility

▶ We write $g \leq_{PR} f$ if g can be obtained from $o(x), s(x), I_m^n$ and f by composition and primitive recursion. We write $f \equiv_{PR} g$ if $f \leq_{PR} g$ and $g \leq_{PR} f$.

PR-reducibility

- ▶ We write $g \leq_{PR} f$ if g can be obtained from $o(x), s(x), l_m^n$ and f by composition and primitive recursion. We write $f \equiv_{PR} g$ if $f \leq_{PR} g$ and $g \leq_{PR} f$.
- ▶ In general, $f \not\equiv_{PR} graph(f)$.

PR-reducibility

- ▶ We write $g \leq_{PR} f$ if g can be obtained from $o(x), s(x), I_m^n$ and f by composition and primitive recursion. We write $f \equiv_{PR} g$ if $f \leq_{PR} g$ and $g \leq_{PR} f$.
- ▶ In general, $f \neq_{PR} graph(f)$. But if $f \leq_{PR} X$ for a set X then f is dominated by a primitive recursive function, so that $f \equiv_{PR} graph(f)$.

PR-reducibility

- ▶ We write $g \leq_{PR} f$ if g can be obtained from $o(x), s(x), l_m^n$ and f by composition and primitive recursion. We write $f \equiv_{PR} g$ if $f \leq_{PR} g$ and $g \leq_{PR} f$.
- ▶ In general, $f \not\equiv_{PR} graph(f)$. But if $f \leq_{PR} X$ for a set X then *f* is dominated by a primitive recursive function, so that $f \equiv_{PR} graph(f)$. Thus, the sets form a proper ideal in the *PR*-degrees of functions.

PR-reducibility

- ▶ We write $g \leq_{PR} f$ if g can be obtained from $o(x), s(x), l_m^n$ and f by composition and primitive recursion. We write $f \equiv_{PR} g$ if $f \leq_{PR} g$ and $g \leq_{PR} f$.
- ▶ In general, $f \not\equiv_{PR} graph(f)$. But if $f \leq_{PR} X$ for a set X then *f* is dominated by a primitive recursive function, so that $f \equiv_{PR} graph(f)$. Thus, the sets form a proper ideal in the *PR*-degrees of functions.
- ► A structure \mathcal{A} is *f*-punctual if \mathcal{A} is finite or $|\mathcal{A}| = \mathbb{N}$ and all relations and operations in \mathcal{A} are $\leq_{PR} f$.

PR-reducibility

- ▶ We write $g \leq_{PR} f$ if g can be obtained from $o(x), s(x), I_m^n$ and f by composition and primitive recursion. We write $f \equiv_{PR} g$ if $f \leq_{PR} g$ and $g \leq_{PR} f$.
- ▶ In general, $f \not\equiv_{PR} graph(f)$. But if $f \leq_{PR} X$ for a set X then *f* is dominated by a primitive recursive function, so that $f \equiv_{PR} graph(f)$. Thus, the sets form a proper ideal in the *PR*-degrees of functions.
- ▶ A structure \mathcal{A} is *f*-punctual if \mathcal{A} is finite or $|\mathcal{A}| = \mathbb{N}$ and all relations and operations in \mathcal{A} are $\leq_{PR} f$. An *f*-punctual presentation of a countable structure \mathcal{A} is any *f*-punctual isomorphic copy of \mathcal{A} .

- 4 周 ト 4 日 ト - 日 ト - 日

Sets PR-coded into the structures

Let P is arbitrary, and f is a PR-oracle.

Kalimullin I.Sh. Primitive recursive degree spectra of structures

∃ >

Sets PR-coded into the structures

Let P is arbitrary, and f is a PR-oracle.

▶ $(\mathbb{N}, +1, P)$ has an *f*-punctual copy iff $P \leq_{PR} f$.

→ ∃ →

Sets PR-coded into the structures

Let P is arbitrary, and f is a PR-oracle.

- ▶ $(\mathbb{N}, +1, P)$ has an *f*-punctual copy iff $P \leq_{PR} f$.
- The same is true if we consider the locally finite structure (\mathbb{N}, \circ, P) , where $x \circ y = \max(x + 1, y)$.

• = •

Sets PR-coded into the structures

Let P is arbitrary, and f is a PR-oracle.

▶ $(\mathbb{N}, +1, P)$ has an *f*-punctual copy iff $P \leq_{PR} f$.

The same is true if we consider the locally finite structure (\mathbb{N}, \circ, P) , where $x \circ y = \max(x + 1, y)$.

▶ (KMM, 2021). Suppose

 $\mathcal{A} \text{ has an } f\text{-punctual copy } \implies P \leq_{PR} f$

for every f. Then for some fixed parameters $\vec{a} \in \mathcal{A}$ there are primitive recursive mappings into quantifier-free formulae $n \mapsto \Phi_n$ and $n \mapsto \Psi_n$ such that for every tuple \vec{x} of pairwisely distinct elements

$$n \in P \iff \mathcal{A} \models \Phi_n(\vec{x}, \vec{a});$$
$$n \notin P \iff \mathcal{A} \models \Psi_n(\vec{x}, \vec{a}).$$

Questions arised

Kalimullin I.Sh. Primitive recursive degree spectra of structures

イロト イヨト イヨト イヨト

æ

Questions arised

1. Are there examples among relational structures?

Kalimullin I.Sh. Primitive recursive degree spectra of structures

A B K A B K

Questions arised

- 1. Are there examples among relational structures?
- 2. Can we code arbitrary functions, not only the sets?

Kalimullin I.Sh. Primitive recursive degree spectra of structures

→ ∃ →

Question 1

▶ Are there examples among relational structures?

Kalimullin I.Sh. Primitive recursive degree spectra of structures

3 × 4 3 ×

Question 1

Are there examples among relational structures?No.

A B F A B F

Question 1

- ▶ Are there examples among relational structures?
- ► No.
- ▶ Because Ramsey's Theorem says that every infinite relational structure contains an infinite substructure isomorphic to a quantifier-free interpretation in (N, <)

Question 1

- ▶ Are there examples among relational structures?
- ► No.
- ▶ Because Ramsey's Theorem says that every infinite relational structure contains an infinite substructure isomorphic to a quantifier-free interpretation in (N, <) (which is obviously primitive recursive).

→ ∃ → ...

Question 2

▶ Can we code arbitrary functions, not only the sets?

A B M A B M

Question 2

Can we code arbitrary functions, not only the sets?No.

A B F A B F

Question 2

- ▶ Can we code arbitrary functions, not only the sets?
- ► No.
- Because every *f*-punctual structure can be isomorphically transformed into an *f*-punctual structure whose operations are primitively recursively bounded

글 에 너 글 어디

Question 2

- Can we code arbitrary functions, not only the sets?
- ► No.
- ▶ Because every *f*-punctual structure can be isomorphically transformed into an *f*-punctual structure whose operations are primitively recursively bounded , i.e., there is a set $X \leq_{PR} f$ such that the structure has an *X*-punctual presentation.

Turing degree spectra

• The Turing degree spectrum $Sp_T(\mathcal{A})$ is the collection of all sets X such that \mathcal{A} has an X-computable presentation.

- - E - E

Turing degree spectra

- The Turing degree spectrum $Sp_T(\mathcal{A})$ is the collection of all sets X such that \mathcal{A} has an X-computable presentation.
- $\blacktriangleright Sp_T(\mathbb{N},+1,P) = \{X : P \leq_T X\}.$

• = •

Turing degree spectra

- The Turing degree spectrum $Sp_T(\mathcal{A})$ is the collection of all sets X such that \mathcal{A} has an X-computable presentation.
- $\blacktriangleright Sp_T(\mathbb{N},+1,P) = \{X : P \leq_T X\}.$
- ▶ (Folklore). If $P \mid_T Q$ then the collection $\{X : P \leq_T X\} \cup \{X : Q \leq_T X\}$ is not a Turing degree spectrum.

Spectra of Slaman-Wehner type

▶ (Slaman, Wehner, 1998). The collection $\{X : X \leq_T \emptyset\}$ is the Turing degree spectrum of a structure.

- - E - E

Spectra of Slaman-Wehner type

- ▶ (Slaman, Wehner, 1998). The collection $\{X : X \leq_T \emptyset\}$ is the Turing degree spectrum of a structure.
- ▶ (K, 2008). If A is c.e. then the collection $\{X : X \leq_T A\}$ is the Turing degree spectrum of a structure.

→ ∃ > ...

Spectra of Slaman-Wehner type

- ▶ (Slaman, Wehner, 1998). The collection $\{X : X \leq_T \emptyset\}$ is the Turing degree spectrum of a structure.
- ▶ (K, 2008). If A is c.e. then the collection $\{X : X \leq_T A\}$ is the Turing degree spectrum of a structure. Unions of finitely many such collections again form degree spectra.

Spectra of Slaman-Wehner type

- ▶ (Slaman, Wehner, 1998). The collection $\{X : X \leq_T \emptyset\}$ is the Turing degree spectrum of a structure.
- ▶ (K, 2008). If A is c.e. then the collection $\{X : X \leq_T A\}$ is the Turing degree spectrum of a structure. Unions of finitely many such collections again form degree spectra.
- ▶ (AKKLMM, 2016). The collection $\{X : X \leq_T \emptyset''\}$ is not a Turing degree spectra.

The idea of the Wehner's proof

▶ We can code into a structure the family of finite sets

$$\mathcal{W} = \{\{n\} \oplus F : F \neq \varphi_n\},\$$

where φ_n is the *n*-th partially computable function.

→ ∃ →

The idea of the Wehner's proof

▶ We can code into a structure the family of finite sets

$$\mathcal{W} = \{\{n\} \oplus F : F \neq \varphi_n\},\$$

where φ_n is the *n*-th partially computable function.

▶ The family \mathcal{W} has an X-computable enumeration if and only if $X \not\leq_T \emptyset$.

The idea of the Wehner's proof

▶ We can code into a structure the family of finite sets

$$\mathcal{W} = \{\{n\} \oplus F : F \neq \varphi_n\},\$$

where φ_n is the *n*-th partially computable function.

- ▶ The family \mathcal{W} has an X-computable enumeration if and only if $X \leq_T \emptyset$.
- Indeed, \mathcal{W} has no computable enumeration by Recursion Theorem.

The idea of the Wehner's proof

▶ We can code into a structure the family of finite sets

$$\mathcal{W} = \{\{n\} \oplus F : F \neq \varphi_n\},\$$

where φ_n is the *n*-th partially computable function.

- ▶ The family \mathcal{W} has an X-computable enumeration if and only if $X \leq_T \emptyset$.
- ▶ Indeed, \mathcal{W} has no computable enumeration by Recursion Theorem. If $X \not\leq_T \emptyset$ we can use X as a sample to extend every unsuccessfull guess $F \neq \varphi_n$.

The idea of the Wehner's proof

▶ We can code into a structure the family of finite sets

$$\mathcal{W} = \{\{n\} \oplus F : F \neq \varphi_n\},\$$

where φ_n is the *n*-th partially computable function.

- ▶ The family \mathcal{W} has an X-computable enumeration if and only if $X \leq_T \emptyset$.
- ▶ Indeed, \mathcal{W} has no computable enumeration by Recursion Theorem. If $X \not\leq_T \emptyset$ we can use X as a sample to extend every unsuccessfull guess $F \neq \varphi_n$.
- ▶ Some modification of the family gives the degree spectrum of the hyperimmune degrees (CK, 2010).

伺 ト イヨト イヨト

PR-degree spectra

• The *PR*-degree spectrum $Sp_{PR}(\mathcal{A})$ is the collection of all functions f such that \mathcal{A} has an f-punctual presentation.

- - E - E

PR-degree spectra

• The *PR*-degree spectrum $Sp_{PR}(\mathcal{A})$ is the collection of all functions f such that \mathcal{A} has an f-punctual presentation.

•
$$Sp_{PR}(\mathbb{N},+1,P) = \{f : P \leq_{PR} f\}.$$

- - E - E

PR-degree spectra

▶ The *PR*-degree spectrum $Sp_{PR}(\mathcal{A})$ is the collection of all functions f such that \mathcal{A} has an f-punctual presentation.

•
$$Sp_{PR}(\mathbb{N},+1,P) = \{f : P \leq_{PR} f\}.$$

▶ (Folklore). If $P \mid_{PR} Q$ then the collection $\{f : P \leq_{PR} f\} \cup \{f : Q \leq_{PR} f\}$ is not a *PR*-degree spectrum.

PR-degree spectra

• The *PR*-degree spectrum $Sp_{PR}(\mathcal{A})$ is the collection of all functions f such that \mathcal{A} has an f-punctual presentation.

$$\blacktriangleright Sp_{PR}(\mathbb{N},+1,P) = \{f : P \leq_{PR} f\}.$$

- ▶ (Folklore). If $P \mid_{PR} Q$ then the collection $\{f : P \leq_{PR} f\} \cup \{f : Q \leq_{PR} f\}$ is not a *PR*-degree spectrum.
- ▶ (Set Basis Property). If $f \in Sp_{PR}(\mathcal{A})$ then $X \in Sp_{PR}(\mathcal{A})$ for some $X \leq_{PR} f$.

Set Basis Property for $\{f : f \not\leq_{PR} \emptyset\}$

► (Kristiansen, 1996). If $f \not\leq_{PR} \emptyset$ then $X \not\leq_{PR} \emptyset$ for some $X \leq_{PR} f$.

伺下 イヨト イヨト

Set Basis Property for $\{f : f \not\leq_{PR} \emptyset\}$

- ► (Kristiansen, 1996). If $f \not\leq_{PR} \emptyset$ then $X \not\leq_{PR} \emptyset$ for some $X \leq_{PR} f$.
- ▶ Indeed, if $graph(f) \leq_{PR} \emptyset$ we are done.

Set Basis Property for $\{f : f \not\leq_{PR} \emptyset\}$

- ► (Kristiansen, 1996). If $f \not\leq_{PR} \emptyset$ then $X \not\leq_{PR} \emptyset$ for some $X \leq_{PR} f$.
- ▶ Indeed, if $graph(f) \not\leq_{PR} \emptyset$ we are done. If $graph(f) \leq_{PR} \emptyset$ then f is not dominated by primitive recursive functions, so that we can use a "hyperimmune-permitting-like" argument.

Set Basis Property for $\{f : f \not\leq_{PR} \emptyset\}$

- ► (Kristiansen, 1996). If $f \not\leq_{PR} \emptyset$ then $X \not\leq_{PR} \emptyset$ for some $X \leq_{PR} f$.
- ▶ Indeed, if $graph(f) \not\leq_{PR} \emptyset$ we are done. If $graph(f) \leq_{PR} \emptyset$ then f is not dominated by primitive recursive functions, so that we can use a "hyperimmune-permitting-like" argument.
- ▶ Note that the proof can be made uniform.

Punctual families

▶ A countable family $\mathcal{F} \subseteq 2^{\mathbb{N}}$ is punctual if there is a $\{0, 1\}$ -valued primitive recursive function p such that

$$X \in \mathcal{F} \iff (\exists i)(\forall x)[x \in X \leftrightarrow p\langle i, x \rangle = 1]$$

for all \boldsymbol{X} .

▶ For a function f a countable family $\mathcal{F} \subseteq 2^{\mathbb{N}}$ is f-punctual if there is a $\{0, 1\}$ -valued function $p \leq_{PR} f$ such that

$$X \in \mathcal{F} \iff (\exists i)(\forall x)[x \in X \leftrightarrow p\langle i, x \rangle = 1]$$

for all X.

Coding families

▶ For a countable family $\mathcal{F} \subseteq 2^{\mathbb{N}}$ define the algebraic structure $\mathcal{A}(\mathcal{F})$ in the language $\{r, s, l\}$ on the domain $\mathcal{F} \times \mathbb{N} \times \mathbb{N}$ such that the unary operations r and s are defined by

$$r(X, x, y) = (X, 0, y);$$

 $s(X, x, y) = (X, x + 1, y);$

and the unary predicate \boldsymbol{I} is defined by

$$I(X, x, y) \leftrightarrow x \in X.$$

▶ A countable family $\mathcal{F} \subseteq \mathbf{2}^{\mathbb{N}}$ is *f*-punctual if and only if $f \in Sp_{PR}(\mathcal{A}(\mathcal{F}))$.

An analogue of the Wehner's family

• Let p_n is the *n*-th primive recursive function.

Kalimullin I.Sh. Primitive recursive degree spectra of structures

A B M A B M

An analogue of the Wehner's family

▶ Let p_n is the *n*-th primive recursive function. Then the family of finite sets

$$\mathcal{V} = \{\{n\} \oplus F : F \neq p_n\}$$

An analogue of the Wehner's family

▶ Let p_n is the *n*-th primive recursive function. Then the family of finite sets

$$\mathcal{V} = \{\{n\} \oplus F : F \neq p_n\}$$

is punctual.

3 × 4 3 ×

An analogue of the Wehner's family

▶ Let p_n is the *n*-th primive recursive function. Then the family of finite sets

$$\mathcal{V} = \{\{n\} \oplus F : F \neq p_n\}$$

is punctual.

▶ Just because we can start to enumerate the sets $\{n\} \oplus F$ with $F(i) \neq p_n(i)$ after the value $p_n(i)$ become computed.

The correct analogue of the Wehner's family

Kalimullin I.Sh. Primitive recursive degree spectra of structures

3 × 4 3 ×

The correct analogue of the Wehner's family

▶ The family of finite sets

$$\mathcal{V} = \{\{n\} \oplus F : F \neq p_{\varphi_n(n)}\}$$

Kalimullin I.Sh. Primitive recursive degree spectra of structures

3 × 4 3 ×

The correct analogue of the Wehner's family

▶ The family of finite sets

$$\mathcal{V} = \{\{n\} \oplus F : F \neq p_{\varphi_n(n)}\}$$

is *f*-punctual if and only if $f \not\leq_{PR} \emptyset$.

The correct analogue of the Wehner's family

▶ The family of finite sets

$$\mathcal{V} = \{\{n\} \oplus F : F \neq p_{\varphi_n(n)}\}$$

is f-punctual if and only if $f \not\leq_{PR} \emptyset$.

▶ Indeed, if \mathcal{V} is punctual then for every n we can computably find an s(n) such that $p_{s(n)} \neq p_{\varphi_n(n)}$. But then $s(n) \neq \varphi_n(n)$. A contradiction.

The correct analogue of the Wehner's family

▶ The family of finite sets

$$\mathcal{V} = \{\{n\} \oplus F : F \neq p_{\varphi_n(n)}\}$$

is f-punctual if and only if $f \not\leq_{PR} \emptyset$.

- ▶ Indeed, if \mathcal{V} is punctual then for every n we can computably find an s(n) such that $p_{s(n)} \neq p_{\varphi_n(n)}$. But then $s(n) \neq \varphi_n(n)$. A contradiction.
- ▶ If $X \leq_{PR} \emptyset$ we can use X as a sample to extend every unsucessfull guess $F \neq p_{\varphi_n(n)}$.

The correct analogue of the Wehner's family

▶ The family of finite sets

$$\mathcal{V} = \{\{n\} \oplus F : F \neq p_{\varphi_n(n)}\}$$

is f-punctual if and only if $f \not\leq_{PR} \emptyset$.

- ▶ Indeed, if \mathcal{V} is punctual then for every n we can computably find an s(n) such that $p_{s(n)} \neq p_{\varphi_n(n)}$. But then $s(n) \neq \varphi_n(n)$. A contradiction.
- ▶ If $X \leq_{PR} \emptyset$ we can use X as a sample to extend every unsucessfull guess $F \neq p_{\varphi_n(n)}$.
- ▶ Now it is enough to apply Set Basis Property for $\{f : f \leq_{PR} \emptyset\}$.

• = •

PR-Spectra of Slaman-Wehner type

▶ The collection $\{f : f \leq_{PR} \emptyset\}$ is the *PR*-degree spectra of a structure.

- ▶ The collection $\{f : f \leq_{PR} \emptyset\}$ is the *PR*-degree spectra of a structure.
- ▶ If graph(g) is primitive recursive then the collection $\{f : f \leq_{PR} g\}$ is also a *PR*-degree spectra.

- ▶ The collection $\{f : f \leq_{PR} \emptyset\}$ is the *PR*-degree spectra of a structure.
- ▶ If graph(g) is primitive recursive then the collection $\{f : f \leq_{PR} g\}$ is also a *PR*-degree spectra.
- \blacktriangleright Let *h* be the Ackerman's function,

- ▶ The collection $\{f : f \leq_{PR} \emptyset\}$ is the *PR*-degree spectra of a structure.
- ▶ If graph(g) is primitive recursive then the collection $\{f : f \leq_{PR} g\}$ is also a *PR*-degree spectra.
- ► Let h be the Ackerman's function, P_n^h be the n-th set $\leq_{PR} h$,

- ▶ The collection $\{f : f \leq_{PR} \emptyset\}$ is the *PR*-degree spectra of a structure.
- ▶ If graph(g) is primitive recursive then the collection $\{f : f \leq_{PR} g\}$ is also a *PR*-degree spectra.
- ► Let *h* be the Ackerman's function, P_n^h be the *n*-th set $\leq_{PR} h, P^h = \bigoplus_n P_n^h$.

- ▶ The collection $\{f : f \leq_{PR} \emptyset\}$ is the *PR*-degree spectra of a structure.
- ▶ If graph(g) is primitive recursive then the collection $\{f : f \not\leq_{PR} g\}$ is also a *PR*-degree spectra.
- ▶ Let *h* be the Ackerman's function, P_n^h be the *n*-th set $\leq_{PR} h, P^h = \bigoplus_n P_n^h$. Then the collection $\{f : f \not\leq_{PR} P^h\}$ has no Set Basis Property

- ▶ The collection $\{f : f \leq_{PR} \emptyset\}$ is the *PR*-degree spectra of a structure.
- ▶ If graph(g) is primitive recursive then the collection $\{f : f \leq_{PR} g\}$ is also a *PR*-degree spectra.
- ▶ Let *h* be the Ackerman's function, P_n^h be the *n*-th set $\leq_{PR} h, P^h = \bigoplus_n P_n^h$. Then the collection $\{f : f \not\leq_{PR} P^h\}$ has no Set Basis Property, and so is not a *PR*-degree spectra.

Open questions

Kalimullin I.Sh. Primitive recursive degree spectra of structures

イロト イヨト イヨト イヨト

æ

Open questions

► For which g the collection $\{f : f \leq_{PR} g\}$ is a *PR*-degree spectra?

Image: A image: A

Open questions

► For which g the collection $\{f : f \leq_{PR} g\}$ is a PR-degree spectra? E.g, the collection $\{f : f \leq_{PR} P\}$, where $P = \bigoplus_n P_n$.

→ ∃ > ...

Open questions

- ► For which g the collection $\{f : f \leq_{PR} g\}$ is a PR-degree spectra? E.g, the collection $\{f : f \leq_{PR} P\}$, where $P = \bigoplus_n P_n$.
- ▶ If graph(g) is primitive recursive then the collection $\{f : f \leq_{PR} g\}$ is also a *PR*-degree spectra.

• = •

Open questions

- ► For which g the collection $\{f : f \leq_{PR} g\}$ is a PR-degree spectra? E.g, the collection $\{f : f \leq_{PR} P\}$, where $P = \bigoplus_n P_n$.
- ▶ If graph(g) is primitive recursive then the collection $\{f : f \leq_{PR} g\}$ is also a *PR*-degree spectra.
- ▶ The *T*-degree spectra are closed under jumps and jump-inversions, so we have collections of the high degrees $\{X : \emptyset'' \leq_T X'\}$ and of the non-low degrees $\{X : X' \leq_T \emptyset'\}$. Are there *PR*-analogues of these?

Thank you!

Kalimullin I.Sh. Primitive recursive degree spectra of structures

▶ < 문 ▶ < 문 ▶</p>

æ