Revisiting Graph-theoretic Models for Genome Assembly in the Era of Long Reads

Chirag Jain
Assistant Professor
Computational and Data Sciences
Indian Institute of Science

A human genome is a set of 46 strings

Image source: NHGRI

Human-genome sequencing

Genome assembly: Reconstruction of the original genome from reads

Latest: Long and accurate sequencing

- Enables de novo genome assembly of both maternal and paternal haplotypes
- Was not feasible using previous technologies

Latest: Long and accurate sequencing

Figure from Kovaka et al. 2023, "Approaching complete genomes, transcriptomes and epi-omes with accurate long-read sequencing"

Graph-theoretic models for assembly

- Input: Set of reads R
- De Bruijn graph : $B_{k}(R) \quad$ [ldury and Waterman 1995]
- Vertices are distinct k-mers observed in R
- An edge implies a suffix-prefix overlap of length $k-1$ between two k-mers

Graph-theoretic models for assembly

- Input: Set of reads R
- De Bruijn graph : $B_{k}(R)$
[Idury and Waterman 1995]
- Vertices are distinct k-mers observed in R
- An edge implies a suffix-prefix overlap of length $k-1$ between two k-mers
- Overlap graph : $O_{k}(R)$
- Vertices are input reads
- An edge implies an exact suffix-prefix match of length $\geq k$ between two reads

Graph-theoretic models for assembly

- Input: Set of reads R
- De Bruijn graph : $B_{k}(R)$
[Idury and Waterman 1995]
- Vertices are distinct k-mers observed in R
- An edge implies a suffix-prefix overlap of length $k-1$ between two k-mers
- Overlap graph : $O_{k}(R)$
- Vertices are input reads
- An edge implies an exact suffix-prefix match of length $\geq k$ between two reads
- String graph : $S_{k}(R) \quad[$ Myers 1995, 2005]
- Subgraph of $O_{k}(R)$
- Next slide...

String graph

- Used in most long-read assemblers
- Sub-graph of overlap graph [Myers 1995, 2005]
- Keep only the longest suffix-prefix overlap between a pair of reads
- Remove contained reads

$$
\begin{gathered}
\text { ACTGCTTAC } \\
\text { CTGCTT }_{\times}
\end{gathered}
$$

- Remove transitive edges

Graph sparsification cannot be avoided in practice

Overlap graph obtained using a subset of simulated nanopore reads from human chr20

Are graph models "coverage-preserving"?

- Suppose input reads cover the entire genome, do we have a guarantee that the "true" chromosomes can be spelled as a walk in the graph?
.

Are graph models "coverage-preserving"?

- Suppose input reads cover the entire genome, do we have a guarantee that each candidate chromosome can be spelled as a walk in the graph?

Say $R=$ TATACA, CATATA

Candidate 1

Candidate 2

Are graph models "coverage-preserving"?

- Suppose input reads cover the entire genome, do we have a guarantee that each candidate chromosome can be spelled as a walk in the graph?

Say $R=$ TATACA, CATATA

Candidate 1

Candidate 2

- Circular string z is a candidate if $\exists l_{1}, l_{2} \in \mathbb{N}, l_{2}>l_{1}$ such that all intervals of length l_{1} in z include the starting position of at least one read of length l_{2}

Theoretical evaluation

- Input: set of reads R

Graph model	Guarantee?	Proof technique
de Bruijn graph $B_{k}(R)$	YES $\forall k \leq l_{2}-l_{1}+1$	By contradiction
Overlap graph $O_{k}(R)$	YES $\forall k \leq l_{2}-l_{1}$	Algorithm to identify a closed walk n the graph for each candidate
String graph $S_{k}(R)$	NO for any k	Counter-example

Consistent with prior works [e.g., Hui et al. ISIT 2016]

Theoretical evaluation

- Input: set of reads R

Graph model	Guarantee?	Proof technique
de Bruijn graph $B_{k}(R)$	YES $\forall k \leq l_{2}-l_{1}+1$	By contradiction
Overlap graph $O_{k}(R)$	YES $\forall k \leq l_{2}-l_{1}$	Algorithm to identify a closed walk in the graph for each candidate
String graph $S_{k}(R)$	NO for any k	Counter-example

Consistent with prior works [e.g., Hui et al. ISIT 2016]

Proof sketch

Assembly-graph model	Coverage-preserving?	Proof technique
de Bruijn graph $B_{k}(R)$	YES $\forall k \leq l_{2}-l_{1}+1$	By contradiction

- Assume there is a candidate chromosome z not spelled by graph
\Rightarrow At least one k-mer in z is absent from the set of vertices

Proof sketch

Assembly-graph model	Coverage-preserving?	Proof technique
Overlap graph $O_{k}(R)$	YES $\forall k \leq l_{2}-l_{1}$	Proposed algorithm to identify a closed walk for each candidate

Counter example for string graph

Assembly-graph model	Coverage-preserving?
String graph	NO for any k

$$
\begin{array}{ll}
\text { Say } R=\begin{array}{l}
\text { TGTGCA } \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\end{array} \text { TACGGGCA }
\end{array}
$$

\triangle
Candidate 1 cannot be spelled in graph after contained read CACGTG is removed

Further questions addressed

- Does it really matter for genome assembly quality in reality?
- Is there an alternate method to sparsify overlap graph that is practical and provably-good?
- Good heuristics to recover non-redundant contained reads?

'Safe' rules to sparsify overlap graph

- It is safe to remove a vertex (or edge) if the set of circular string walks remains unchanged
- Transitive edge reduction in [Myers 2005] is safe
- Removing a contained read is safe if it maps to only a single candidate genome at a unique location [formal proof in paper]

Heuristic - 1

- By computing all-versus-all read alignments, we can estimate if a contained read maps uniquely within a single haplotype (either paternal or maternal)

Heuristic - 2

- Estimate if contained read contributes a "novel" string walk in the graph
- $\kappa_{1}=$ set of k-mers observed within bounded length string walks in the assembly graph from a contained read
- $\kappa_{2}=$ set of k-mers observed similarly from its "parent" reads
- Remove contained read if $\kappa_{1} \subseteq \kappa_{2}$

```
read x CTGCTT
    p
    p
```


ContainX

Prototype implementation in C++

Input:
(a) Long reads

Heuristic 2
Discard contained reads which lack novel walks

Output nonredundant contained reads

Benchmark datasets

- Simulated error-free long reads; length distribution matches real data
- Human genomes: CHM13 (haploid), HG002 (diploid)

Data set	Count of reads	N50 length	Max length
HAPLOID-20x-ONT-1	3.7 M	40 K	570 K
HAPLOID-20x-ONT-2	3.7 M	40 K	540 K
HAPLOID-20x-HiFi-1	2.9 M	21 K	49 K
HAPLOID-20x-HiFi-2	2.9 M	21 K	49 K
DIPLOID-30x-ONT-1	5.3 M	40 K	540 K
DIPLOID-30x-ONT-2	5.3 M	40 K	570 K
DIPLOID-30x-HiFi-1	4.2 M	21 K	49 K
DIPLOID-30x-HiFi-2	4.2 M	21 K	49 K

Coverage gaps observed by removing contained reads

- Step 1: Identify contained reads by all-vs-all read alignments
- Step 2: map non-contained reads to genome

Data	Count of contained reads	Coverage-gaps	
		Count	Maximum length
HAPLOID-20x-ONT-1	3.2 M	0	-
HAPLOID-20x-ONT-2	3.2 M	0	-
HAPLOID-20x-HiFi-1	1.9 M	0	-
HAPLOID-20x-HiFi-2	1.9 M	0	-

Coverage gaps observed by removing contained reads

- Step 1: Identify contained reads by all-vs-all read alignments
- Step 2: map non-contained reads to genome

Data	Count of contained reads	Coverage-gaps	
		Count	Maximum length
HAPLOID-20x-ONT-1	3.2 M	0	-
HAPLOID-20x-ONT-2	3.2 M	0	-
HAPLOID-20x-HiFi-1	1.9 M	0	-
HAPLOID-20x-HiFi-2	1.9 M	0	-

Coverage gaps observed by removing contained reads

- Step 1: Identify contained reads by all-vs-all read alignments
- Step 2: map non-contained reads to genome

Data	Count of contained reads	Coverage-gaps	
		Count	Maximum length
DIPLOID-30x-ONT-1	4.6 M	46	53 K
DIPLOID-30x-ONT-2	4.6 M	54	101 K
DIPLOID-30x-HiFi-1	2.5 M	1	2 K
DIPLOID-30x-HiFi-2	2.5 M	1	0.2 K

Coverage gaps observed by removing contained reads

- Step 1: Identify contained reads by all-vs-all read alignments
- Step 2: map non-contained reads to genome

Data	Count of contained reads	Coverage-gaps	
		Count	Maximum length
DIPLOID-30x-ONT-1	4.6 M	46	53 K
DIPLOID-30x-ONT-2	4.6 M	54	101 K
DIPLOID-30x-HiFi-1	2.5 M	1	2 K
DIPLOID-30x-HiFi-2	2.5 M	1	0.2 K

Read length distributions

Oxford Nanopore (ONT)

PacBio HiFi

Evaluation of proposed heuristics

Existing solutions besides ContainX

- Other solutions to identify "useful" contained reads
- [Hui et al. ISIT 2016]
- Contained read is removed if it has an inconsistent pair of parent reads

- Hifiasm [Cheng et al. 2021]
- Recovers contained reads which join a broken haplotype walk

Existing solutions besides ContainX

- Other solutions to identify "useful" contained reads
- [Hui et al. ISIT 2016]
- Contained read is removed if it has an inconsistent pair of parent reads

- Hifiasm Hybrid: PacBio HiFi + ultra-long ONT
[Cheng et al. 2023]
- Identifies useful contained reads by aligning ultra-long nanopore reads to graph

Existing solutions besides ContainX

- Other solutions to identify "useful" contained reads
- [Hui et al. ISIT 2016]
- Contained read is removed if it has an inconsistent pair of parent reads

- Hifiasm Hybrid: PacBio HiFi + ultra-long ONT
[Cheng et al. 2023]
- Identifies useful contained reads by aligning ultra-long nanopore reads to graph

Existing solutions besides ContainX

- Other solutions to identify "useful" contained reads
- [Hui et al. ISIT 2016]
- Contained read is removed if it has an inconsistent pair of parent reads

- Hifiasm Hybrid: PacBio HiFi + ultra-long ONT
[Cheng et al. 2023]
- Identifies useful contained reads by aligning ultra-long nanopore reads to graph

Evaluation of proposed heuristics

Data	Method	Count of contained reads retained	Count of junction vertices	Gaps introduced in the genome
DIPLOID-30x-ONT-1	Retain all			
	Hui-2016			
	ContainX			
	Remove all			
DIPLOID-30x-HiFi-1	Retain all			
	Hui-2016			
	ContainX			
	Remove all			
LOWER IS BETTER BEWER IS				

Evaluation of proposed heuristics

Data	Method	Count of contained reads retained	Count of junction vertices	Gaps introduced in the genome
DIPLOID-30x-ONT-1	Retain all	2.8M	2.5M	0
	Hui-2016			
	ContainX			
	Remove all	0	38.9K	46
DIPLOID-30x-HiFi-1	Retain all	2.5M	3.4 M	0
	Hui-2016			
	ContainX			
	Remove all	0	158.4K	1
			LOWER IS BETTER	LOWER IS BETTER

Evaluation of proposed heuristics

Data	Method	Count of contained reads retained	Count of junction vertices	Gaps introduced in the genome
	Retain all	2.8 M	2.5 M	0
	Hui-2016	2.5 M	2.3 M	0
	ContainX	28.5 K	53.9 K	2
	Remove all	0	38.9 K	46
DIPLOID-30x-HiFi-1	Retain all	2.5 M	3.4 M	0
	Hui-2016	2.5 M	3.3 M	0
	ContainX	39.8 K	184.1 K	0
	Remove all	0	158.4 K	1

LOWER IS
LOWER IS
BETTER
BETTER

Evaluation of proposed heuristics

Data	Method	Count of contained reads retained	Count of junction vertices	Gaps introduced in the genome
	Retain all	2.8 M	2.5 M	0
	Hui-2016	2.5 M	2.3 M	0
	ContainX	28.5 K	53.9 K	2
	Hifiasm	4.0 K	1.7 K	33
	Remove all	0	38.9 K	46
DIPLOID-30x-HiFi-1	Retain all	2.5 M	3.4 M	0
	Hui-2016	2.5 M	3.3 M	0
	ContainX	39.8 K	184.1 K	0
	Hifiasm	164	36.9 K	0
	Remove all	0	158.4 K	1

* Hifiasm is an end-to-end genome assembler,

> LOWER IS
> BETTER

BETTER

Conclusions

- Provably-good graph models will be useful for reliable and accurate human genome reconstruction
- String graph model is used commonly, but
it violates the 'safety' guarantee, both in theory and practice.
- Optimal sparsification of overlap graphs remains unsolved. We proposed safe rules and promising heuristics.

《 chirag@iisc.ac.in
(5) github.com/at-cg/ContainX

Link to publication:
https://doi.org/10.1093/bioinformatics/btad124

Acknowledgement

Mehak Bindra (Project staff), Sudhanva Shyam Kamath (Ph.D. student)

Valuable feedback from:

- Prof. Sunil Chandran, Prof. Debnath Pal [IISc]
- Haowen Zhang [Georgia Tech]
- Mile Sikic, Robert Vaser [Genome Institute of Singapore]

- Brian Walenz, Sergey Nurk [NHGRI]
- Haoyu Cheng [Dana Farber Cancer Institute]

विज्ञान एवं प्रौद्योगिकी विभाग
DEPARTMENT OF
SCIENCE \& TECHNOLOGY

