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A human genome is a set of 46 strings
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Image source: NHGRI

Sum total length is 
about 6 billion 

characters

Two “copies”, inherited 
from father and mother 

(~99.9% identical)
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Human-genome sequencing
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Human DNA
A sequencing 

instrument

Text file with the 46 strings

(IDEAL)

C C G T
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G T C C

T C A C T T A C

C C G T

G T C C
C T C C

T C A C A T A C
(ACTUAL)

Genome assembly: Reconstruction of the original genome from reads 

Reads

 Indian Institute of Science



Latest: Long and accurate sequencing
• Enables de novo genome assembly of both maternal and paternal haplotypes


• Was not feasible using previous technologies

Long-read length (kb)

80%

100%

Long-read 
accuracy 2010-20

PacBio HiFi: Accuracy = 99.8%, Avg. length > 10 kbp 
Nanopore:    Accuracy = ~99%,  Avg. length > 40 kbp

2020 

onwards

10 kbp
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State-of-the-art assemblies:  
3 Gbp (collapsed) 

6 Gbp haplotype-resolved
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Latest: Long and accurate sequencing
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Figure from Kovaka et al. 2023, “Approaching complete genomes, transcriptomes and epi-omes with accurate long-read sequencing”

                                          
Assembly submission year (NCBI database)

        

 Mean contig 
N50 (Mbp) 
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Thanks to long-read assemblers !

O
N

T 
D

up
le

x

PB
 H

iF
i

O
N

T
Pr

om
et

hI
O

N

PB
 S

eq
ue

l

O
N

T 
M

in
IO

N



Graph-theoretic models for assembly
• Input: Set of reads  


•  De Bruijn graph : 


• Vertices are distinct -mers observed in 


• An edge implies a suffix-prefix overlap of length  between two -mers


• Overlap graph : 


• Vertices are input reads


• An edge implies an exact suffix-prefix match of length 


• String graph : 


• Subgraph of 


• Next slide…

R

Bk(R)

k R

k − 1 k

Ok(R)

≥ k

Sk(R)

Ok(R)
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[Idury and Waterman 1995]

[Myers 1995, 2005]
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String graph
• Used in most long-read assemblers


• Sub-graph of overlap graph       [Myers 1995, 2005] 
• Keep only the longest suffix-prefix overlap between a pair of reads


• Remove contained reads 


• Remove transitive edges
ACTGCT
CTGCTG
TGCTGA

ACTGCT CTGCTG TGCTGA

ACTGCTTAC
CTGCTT
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Graph sparsification cannot be avoided in practice

Overlap graph obtained using a subset of simulated 
nanopore reads from human chr20
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Remove 
contained reads

Remove 
transitive edges

String graph
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• Suppose input reads cover the entire genome, do we have a guarantee 
that the “true” chromosomes can be spelled as a walk in the graph?
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Are graph models “coverage-preserving”?
 Indian Institute of Science



• Suppose input reads cover the entire genome, do we have a guarantee 
that each candidate chromosome can be spelled as a walk in the graph?

C
A

TA
T

A
TATACA, CATATA Say R =

C
A
T

A

T
A

T
A
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Candidate 1 Candidate 2

Are graph models “coverage-preserving”?
 Indian Institute of Science



C
A

TA
T

A
TATACA, CATATA Say R =

C
A
T

A

T
A

T
A

Candidate 1 Candidate 2
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• Circular string  is a candidate if  such that all intervals of 
length  in  include the starting position of at least one read of length 

z ∃l1, l2 ∈ ℕ, l2 > l1
l1 z l2

• Suppose input reads cover the entire genome, do we have a guarantee 
that each candidate chromosome can be spelled as a walk in the graph?

Are graph models “coverage-preserving”?
 Indian Institute of Science



Graph model   Guarantee? Proof technique

de Bruijn graph   YES By contradiction

Overlap graph   YES 
Algorithm to identify a 
closed walk in the graph 
for each candidate

String graph   NO   for any Counter-example

Consistent with prior works 
[e.g., Hui et al. ISIT 2016]

Bk(R)

Ok(R)

Sk(R)
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∀ k ≤ l2 − l1

∀ k ≤ l2 − l1 + 1

• Input: set of reads R

Jain “Coverage-preserving sparsification of overlap graphs for long-read assembly” Bioinformatics 2023

Theoretical evaluation
 Indian Institute of Science
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Graph model   Guarantee? Proof technique

de Bruijn graph   YES By contradiction

Overlap graph   YES 
Algorithm to identify a 
closed walk in the graph 
for each candidate

String graph   NO   for any Counter-example

Bk(R)

Ok(R)

Sk(R) k
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∀ k ≤ l2 − l1

∀ k ≤ l2 − l1 + 1

• Input: set of reads R

Jain “Coverage-preserving sparsification of overlap graphs for long-read assembly” Bioinformatics 2023

Consistent with prior works 
[e.g., Hui et al. ISIT 2016]

Theoretical evaluation
 Indian Institute of Science
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Proof sketch

Assembly-graph model   Coverage-preserving? Proof technique

de Bruijn graph   YES  By contradictionBk(R) ∀ k ≤ l2 − l1 + 1

• Assume there is a candidate chromosome  not spelled 
by graph


 At least one -mer in  is absent from the set of vertices

z

⇒ k z z

interval of 
length  l1 read of length ≥ l2

 Indian Institute of Science



Proof sketch

Assembly-graph model   Coverage-preserving?  Proof technique

Overlap graph   YES Proposed algorithm to identify a 
closed walk for each candidateOk(R)

intervals

z z z z

Candidate circular 
chromosome   z

All intervals of 
length  in l1 z

Pull out reads of length  
that start in the intervals

≥ l2 Identify a subset of these reads 
with suffix-prefix overlaps

reads reads
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∀ k ≤ l2 − l1
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Counter example for string graph

C
A
C

G

T
G

T
G

C
A
C

G

G
G

T
G

Candidate 1 cannot be spelled in graph 
after contained read CACGTG is removed

Candiate 1 Candiate 2
CACGTG 

CACGTGG 

Say R = TGTGCA 

TGGGCA 
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Assembly-graph model   Coverage-preserving?

String graph   NO for any k
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Further questions addressed
• Does it really matter for genome assembly quality in reality?


• Is there an alternate method to sparsify overlap graph that is 
practical and provably-good? 

• Good heuristics to recover non-redundant contained reads?

19
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‘Safe’ rules to sparsify overlap graph
• It is safe to remove a vertex (or edge) if the set of circular string walks 

remains unchanged 


• Transitive edge reduction in [Myers 2005] is safe

• Removing a contained read is safe if it maps to only a single candidate 
genome at a unique location         [formal proof in paper] 

candiate 1

candiate 2

candiate 3

Practical?

parent 
read p contained 

read x

20
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Heuristic - 1
• By computing all-versus-all read alignments, we can estimate if a 

contained read maps uniquely within a single haplotype (either paternal or 
maternal) 

overlapping reads

(using hifiasm)

contained read A
A
A
A
C
CC
C

check for heterozygous mutations

C

21
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Heuristic - 2

p1
p2

•  = set of -mers observed within bounded length string walks in the 
assembly graph from a contained read  
κ1 k

•  = set of -mers observed similarly from its “parent” readsκ2 k

• Estimate if contained read contributes a “novel” string walk in the graph

• Remove contained read if  κ1⊆ κ2

22

κ1

κ2

x

p1
p2

graph

AACTGCTTACTC
CTGCTT

ACTGCTTGG

read x
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ContainX

Input:  

(a) Long reads 

(b) all-vs-all 
alignments

Prototype implementation in C++

Discard contained     
reads with het 
mutations

Build overlap graph

Discard contained 
reads which lack novel 
walks

Output non-
redundant contained 
reads

Apply transitive-edge 
reduction [Myers 2005]

23

Heuristic 1 Heuristic 2

github.com/at-cg/ContainX
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Benchmark datasets

Data set Count of reads N50 length Max length

HAPLOID-20x-ONT-1 3.7M 40K 570K

HAPLOID-20x-ONT-2 3.7M  40K 540K

HAPLOID-20x-HiFi-1  2.9M  21K 49K

HAPLOID-20x-HiFi-2  2.9M 21K 49K

DIPLOID-30x-ONT-1 5.3M 40K 540K

DIPLOID-30x-ONT-2 5.3M 40K 570K

DIPLOID-30x-HiFi-1  4.2M 21K 49K

DIPLOID-30x-HiFi-2  4.2M 21K 49K

• Simulated error-free long reads; length distribution matches real data


• Human genomes: CHM13 (haploid), HG002 (diploid)

24 Nurk et al. "The complete sequence of a human genome" (2022)Cheng et al. "Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm" (2021)
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Coverage gaps observed by removing contained reads
• Step 1: Identify contained reads by all-vs-all read alignments 


• Step 2: map non-contained reads to genome

Data Count of contained reads
Coverage-gaps

Count Maximum length
HAPLOID-20x-ONT-1 3.2M 0 -
HAPLOID-20x-ONT-2 3.2M 0 -
HAPLOID-20x-HiFi-1  1.9M 0 -
HAPLOID-20x-HiFi-2  1.9M 0 -

25
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A. Bridging conditions and Optimal assembly
In [1], the authors derive necessary and sufficient conditions

for assembly in terms of bridging conditions of repeats. These
conditions are used to characterize the information limit for
the feasibility of the assembly problem. In this section, we
recall the main ideas behind this characterization, which serve
as motivation to our approach.

A double repeat of length ` � 0 in g is a substring x 2 ⌃`

appearing at distinct positions i1 and i2 in g; i.e., g[i1 : i1 + `�
1] = g[i2 : i2+`�1] = x. Similarly, a triple repeat of length ` is
a substring x that appears at three distinct locations in s (possibly
overlapping); i.e., g[i1 : i1 + ` � 1] = g[i2 : i2 + ` � 1] = g[i3 :
i3 + ` � 1] = x for distinct i1, i2 and i3 (modulo G, given the
circular assumption on g). If x is a double repeat but not a triple
repeat, we say that it is precisely a double repeat. A double
repeat x is maximal if it is not a substring of any strictly longer
double repeat. Finally, if x = g [i1 : i1 + l] = g [i2 : i2 + l] and
y = g [j1 : j1 + l

0] = g [j2 : j2 + l
0] for some i1, i2, l, j1j2, l

0

where x, y are maximal and i1 < j1 < i2 < j2, then x and y

form an interleaved repeat. Examples are shown in Fig. 1.

maximal double repeat double repeat

triple repeat (also a double repeat)

interleaved repeats

Fig. 1. Examples of various kinds of repeats.

A repeat consists of several copies, starting at distinct locations
i1, i2, and so forth. A read r = g [j1 : j2] is said to bridge a copy
g [i : i + l] if j1 < i and j2 > i + l, as illustrated in Fig. 2. A

r

Fig. 2. A read bridging one copy of a triple repeat.

repeat is bridged if at least one copy is bridged by some read,
and all-bridged if every copy is bridged by some read. A set
of reads R is said to cover g if every base in g is covered by
some read. In the context of two reads r1, r2 which both contain
some string of interest s, r1 and r2 are said to be inconsistent
if, when aligned with respect to s, they disagree at some base,
as illustrated in Fig. 3.

r1

Y
X r2

s

Fig. 3. Reads r1 and r2 are inconsistent with respect to the shared string s.

In [1], the authors proposed a de Bruijn graph-based assembly
algorithm called MULTIBRIDGING and proved it to have the
following theoretical guarantee, stated in terms of bridging
conditions:

Theorem 1. [1] MULTIBRIDGING correctly reconstructs the
target genome g if R covers g and

B1. Every triple repeat is all-bridged.
B2. Every interleaved repeat is bridged (i.e. of its four copies,

at least one is bridged).

The motivation for appealing to conditions B1 and B2 stems
from the observation that, under a uniform sampling model
where N reads of a fixed length L are sampled uniformly
at random from the genome, these conditions nearly match
necessary conditions for assembly [1]. Motivated by this near-
characterization of the information limits for perfect assembly
and the advantages of overlap-based assembly for long-read
technologies, we describe an overlap-based algorithm with the
same performance guarantees. That is, provided conditions B1
and B2 are satisfied, our assembly algorithm will correctly
reconstruct the target genome g. The analysis in [1] shows that,
when B1 and B2 are not met, the assembly problem is likely to be
infeasible, and there is inherent ambiguity in the target genome
given the set of observed reads. In this sense, our algorithm can
be considered to be a near-optimal overlap-based assembler.

III. ALGORITHM OVERVIEW

Let’s begin with a description of the overall structure of our
approach. The algorithm starts with a set R of variable-length
reads, as illustrated in Fig. 4(a). Notice that in general R may
contain many reads that are essentially useless - for example,
a read consisting only of a single letter. Hence we begin by
discarding some of these useless reads. A typical discarding
strategy (used, for example, in the string graph approach [2, 4]),
consists of simply discarding any read that is contained within
another read. However, such reads can potentially encode useful
information about the genome (see example in Figure 5). Thus,
we first process the reads using a more careful rule described in
Section IV to only throw away reads that are truly useless. This
yields a trimmed-down set of reads as shown in Fig. 4(b).

The next step, the read extension, is the most complex part of
the algorithm. For each read, we consider its potential successors
and predecessors and carefully decide whether it can be extended
to the right and to the left in an unambiguous way. Whenever
B1 is satisfied, our extension algorithm is guaranteed to extend
all reads correctly. Moreover, we can keep extending the reads
in both directions until we hit the end of a double repeat. At this
point we are not sure how to proceed and we stop, obtaining a
set of extended reads as shown in Fig. 4(c).

In the third step, we merge reads that contain certain unique
“signatures” and must belong together. Although the example
in Fig. 3 does not show it, in this step we may also merge
nonidentical reads. If a double repeat is bridged by some read,
this merging process will merge the bridging read with the
correct reads to the left and right, thus “resolving” the repeat.
The merging operation produces a new set of reads as illustrated
in Fig. 4(d). At this point the only remaining ambiguity comes
from unbridged double repeats.

Finally, we resolve the residual ambiguity by constructing a
graph. Notice that for each unbridged double repeat, we have two
reads going in, and two going out, but we do not know the correct
matching. We express this structure as a graph, where each long
read is a node and each unbridged double repeat is also a (single)
node, as illustrated in Fig. 4(e). Since each of the unbridged
double repeats has in- and out-degree two, the graph is Eulerian,
and contains at least one Eulerian cycle. Whenever condition B2
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In [1], the authors proposed a de Bruijn graph-based assembly
algorithm called MULTIBRIDGING and proved it to have the
following theoretical guarantee, stated in terms of bridging
conditions:

Theorem 1. [1] MULTIBRIDGING correctly reconstructs the
target genome g if R covers g and

B1. Every triple repeat is all-bridged.
B2. Every interleaved repeat is bridged (i.e. of its four copies,

at least one is bridged).

The motivation for appealing to conditions B1 and B2 stems
from the observation that, under a uniform sampling model
where N reads of a fixed length L are sampled uniformly
at random from the genome, these conditions nearly match
necessary conditions for assembly [1]. Motivated by this near-
characterization of the information limits for perfect assembly
and the advantages of overlap-based assembly for long-read
technologies, we describe an overlap-based algorithm with the
same performance guarantees. That is, provided conditions B1
and B2 are satisfied, our assembly algorithm will correctly
reconstruct the target genome g. The analysis in [1] shows that,
when B1 and B2 are not met, the assembly problem is likely to be
infeasible, and there is inherent ambiguity in the target genome
given the set of observed reads. In this sense, our algorithm can
be considered to be a near-optimal overlap-based assembler.

III. ALGORITHM OVERVIEW

Let’s begin with a description of the overall structure of our
approach. The algorithm starts with a set R of variable-length
reads, as illustrated in Fig. 4(a). Notice that in general R may
contain many reads that are essentially useless - for example,
a read consisting only of a single letter. Hence we begin by
discarding some of these useless reads. A typical discarding
strategy (used, for example, in the string graph approach [2, 4]),
consists of simply discarding any read that is contained within
another read. However, such reads can potentially encode useful
information about the genome (see example in Figure 5). Thus,
we first process the reads using a more careful rule described in
Section IV to only throw away reads that are truly useless. This
yields a trimmed-down set of reads as shown in Fig. 4(b).

The next step, the read extension, is the most complex part of
the algorithm. For each read, we consider its potential successors
and predecessors and carefully decide whether it can be extended
to the right and to the left in an unambiguous way. Whenever
B1 is satisfied, our extension algorithm is guaranteed to extend
all reads correctly. Moreover, we can keep extending the reads
in both directions until we hit the end of a double repeat. At this
point we are not sure how to proceed and we stop, obtaining a
set of extended reads as shown in Fig. 4(c).

In the third step, we merge reads that contain certain unique
“signatures” and must belong together. Although the example
in Fig. 3 does not show it, in this step we may also merge
nonidentical reads. If a double repeat is bridged by some read,
this merging process will merge the bridging read with the
correct reads to the left and right, thus “resolving” the repeat.
The merging operation produces a new set of reads as illustrated
in Fig. 4(d). At this point the only remaining ambiguity comes
from unbridged double repeats.

Finally, we resolve the residual ambiguity by constructing a
graph. Notice that for each unbridged double repeat, we have two
reads going in, and two going out, but we do not know the correct
matching. We express this structure as a graph, where each long
read is a node and each unbridged double repeat is also a (single)
node, as illustrated in Fig. 4(e). Since each of the unbridged
double repeats has in- and out-degree two, the graph is Eulerian,
and contains at least one Eulerian cycle. Whenever condition B2

Identical 
repeats

Reads

Haploid genome

contained
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Coverage gaps observed by removing contained reads

Data Count of contained reads
Coverage-gaps

Count Maximum length
HAPLOID-20x-ONT-1 3.2M 0 -
HAPLOID-20x-ONT-2 3.2M 0 -
HAPLOID-20x-HiFi-1  1.9M 0 -
HAPLOID-20x-HiFi-2  1.9M 0 -
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repeat is bridged if at least one copy is bridged by some read,
and all-bridged if every copy is bridged by some read. A set
of reads R is said to cover g if every base in g is covered by
some read. In the context of two reads r1, r2 which both contain
some string of interest s, r1 and r2 are said to be inconsistent
if, when aligned with respect to s, they disagree at some base,
as illustrated in Fig. 3.
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Y
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s
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In [1], the authors proposed a de Bruijn graph-based assembly
algorithm called MULTIBRIDGING and proved it to have the
following theoretical guarantee, stated in terms of bridging
conditions:

Theorem 1. [1] MULTIBRIDGING correctly reconstructs the
target genome g if R covers g and

B1. Every triple repeat is all-bridged.
B2. Every interleaved repeat is bridged (i.e. of its four copies,

at least one is bridged).

The motivation for appealing to conditions B1 and B2 stems
from the observation that, under a uniform sampling model
where N reads of a fixed length L are sampled uniformly
at random from the genome, these conditions nearly match
necessary conditions for assembly [1]. Motivated by this near-
characterization of the information limits for perfect assembly
and the advantages of overlap-based assembly for long-read
technologies, we describe an overlap-based algorithm with the
same performance guarantees. That is, provided conditions B1
and B2 are satisfied, our assembly algorithm will correctly
reconstruct the target genome g. The analysis in [1] shows that,
when B1 and B2 are not met, the assembly problem is likely to be
infeasible, and there is inherent ambiguity in the target genome
given the set of observed reads. In this sense, our algorithm can
be considered to be a near-optimal overlap-based assembler.

III. ALGORITHM OVERVIEW

Let’s begin with a description of the overall structure of our
approach. The algorithm starts with a set R of variable-length
reads, as illustrated in Fig. 4(a). Notice that in general R may
contain many reads that are essentially useless - for example,
a read consisting only of a single letter. Hence we begin by
discarding some of these useless reads. A typical discarding
strategy (used, for example, in the string graph approach [2, 4]),
consists of simply discarding any read that is contained within
another read. However, such reads can potentially encode useful
information about the genome (see example in Figure 5). Thus,
we first process the reads using a more careful rule described in
Section IV to only throw away reads that are truly useless. This
yields a trimmed-down set of reads as shown in Fig. 4(b).

The next step, the read extension, is the most complex part of
the algorithm. For each read, we consider its potential successors
and predecessors and carefully decide whether it can be extended
to the right and to the left in an unambiguous way. Whenever
B1 is satisfied, our extension algorithm is guaranteed to extend
all reads correctly. Moreover, we can keep extending the reads
in both directions until we hit the end of a double repeat. At this
point we are not sure how to proceed and we stop, obtaining a
set of extended reads as shown in Fig. 4(c).

In the third step, we merge reads that contain certain unique
“signatures” and must belong together. Although the example
in Fig. 3 does not show it, in this step we may also merge
nonidentical reads. If a double repeat is bridged by some read,
this merging process will merge the bridging read with the
correct reads to the left and right, thus “resolving” the repeat.
The merging operation produces a new set of reads as illustrated
in Fig. 4(d). At this point the only remaining ambiguity comes
from unbridged double repeats.

Finally, we resolve the residual ambiguity by constructing a
graph. Notice that for each unbridged double repeat, we have two
reads going in, and two going out, but we do not know the correct
matching. We express this structure as a graph, where each long
read is a node and each unbridged double repeat is also a (single)
node, as illustrated in Fig. 4(e). Since each of the unbridged
double repeats has in- and out-degree two, the graph is Eulerian,
and contains at least one Eulerian cycle. Whenever condition B2

A. Bridging conditions and Optimal assembly
In [1], the authors derive necessary and sufficient conditions

for assembly in terms of bridging conditions of repeats. These
conditions are used to characterize the information limit for
the feasibility of the assembly problem. In this section, we
recall the main ideas behind this characterization, which serve
as motivation to our approach.

A double repeat of length ` � 0 in g is a substring x 2 ⌃`

appearing at distinct positions i1 and i2 in g; i.e., g[i1 : i1 + `�
1] = g[i2 : i2+`�1] = x. Similarly, a triple repeat of length ` is
a substring x that appears at three distinct locations in s (possibly
overlapping); i.e., g[i1 : i1 + ` � 1] = g[i2 : i2 + ` � 1] = g[i3 :
i3 + ` � 1] = x for distinct i1, i2 and i3 (modulo G, given the
circular assumption on g). If x is a double repeat but not a triple
repeat, we say that it is precisely a double repeat. A double
repeat x is maximal if it is not a substring of any strictly longer
double repeat. Finally, if x = g [i1 : i1 + l] = g [i2 : i2 + l] and
y = g [j1 : j1 + l

0] = g [j2 : j2 + l
0] for some i1, i2, l, j1j2, l

0

where x, y are maximal and i1 < j1 < i2 < j2, then x and y

form an interleaved repeat. Examples are shown in Fig. 1.

maximal double repeat double repeat

triple repeat (also a double repeat)

interleaved repeats

Fig. 1. Examples of various kinds of repeats.

A repeat consists of several copies, starting at distinct locations
i1, i2, and so forth. A read r = g [j1 : j2] is said to bridge a copy
g [i : i + l] if j1 < i and j2 > i + l, as illustrated in Fig. 2. A

r

Fig. 2. A read bridging one copy of a triple repeat.

repeat is bridged if at least one copy is bridged by some read,
and all-bridged if every copy is bridged by some read. A set
of reads R is said to cover g if every base in g is covered by
some read. In the context of two reads r1, r2 which both contain
some string of interest s, r1 and r2 are said to be inconsistent
if, when aligned with respect to s, they disagree at some base,
as illustrated in Fig. 3.

r1

Y
X r2

s

Fig. 3. Reads r1 and r2 are inconsistent with respect to the shared string s.

In [1], the authors proposed a de Bruijn graph-based assembly
algorithm called MULTIBRIDGING and proved it to have the
following theoretical guarantee, stated in terms of bridging
conditions:

Theorem 1. [1] MULTIBRIDGING correctly reconstructs the
target genome g if R covers g and

B1. Every triple repeat is all-bridged.
B2. Every interleaved repeat is bridged (i.e. of its four copies,

at least one is bridged).

The motivation for appealing to conditions B1 and B2 stems
from the observation that, under a uniform sampling model
where N reads of a fixed length L are sampled uniformly
at random from the genome, these conditions nearly match
necessary conditions for assembly [1]. Motivated by this near-
characterization of the information limits for perfect assembly
and the advantages of overlap-based assembly for long-read
technologies, we describe an overlap-based algorithm with the
same performance guarantees. That is, provided conditions B1
and B2 are satisfied, our assembly algorithm will correctly
reconstruct the target genome g. The analysis in [1] shows that,
when B1 and B2 are not met, the assembly problem is likely to be
infeasible, and there is inherent ambiguity in the target genome
given the set of observed reads. In this sense, our algorithm can
be considered to be a near-optimal overlap-based assembler.

III. ALGORITHM OVERVIEW

Let’s begin with a description of the overall structure of our
approach. The algorithm starts with a set R of variable-length
reads, as illustrated in Fig. 4(a). Notice that in general R may
contain many reads that are essentially useless - for example,
a read consisting only of a single letter. Hence we begin by
discarding some of these useless reads. A typical discarding
strategy (used, for example, in the string graph approach [2, 4]),
consists of simply discarding any read that is contained within
another read. However, such reads can potentially encode useful
information about the genome (see example in Figure 5). Thus,
we first process the reads using a more careful rule described in
Section IV to only throw away reads that are truly useless. This
yields a trimmed-down set of reads as shown in Fig. 4(b).

The next step, the read extension, is the most complex part of
the algorithm. For each read, we consider its potential successors
and predecessors and carefully decide whether it can be extended
to the right and to the left in an unambiguous way. Whenever
B1 is satisfied, our extension algorithm is guaranteed to extend
all reads correctly. Moreover, we can keep extending the reads
in both directions until we hit the end of a double repeat. At this
point we are not sure how to proceed and we stop, obtaining a
set of extended reads as shown in Fig. 4(c).

In the third step, we merge reads that contain certain unique
“signatures” and must belong together. Although the example
in Fig. 3 does not show it, in this step we may also merge
nonidentical reads. If a double repeat is bridged by some read,
this merging process will merge the bridging read with the
correct reads to the left and right, thus “resolving” the repeat.
The merging operation produces a new set of reads as illustrated
in Fig. 4(d). At this point the only remaining ambiguity comes
from unbridged double repeats.

Finally, we resolve the residual ambiguity by constructing a
graph. Notice that for each unbridged double repeat, we have two
reads going in, and two going out, but we do not know the correct
matching. We express this structure as a graph, where each long
read is a node and each unbridged double repeat is also a (single)
node, as illustrated in Fig. 4(e). Since each of the unbridged
double repeats has in- and out-degree two, the graph is Eulerian,
and contains at least one Eulerian cycle. Whenever condition B2
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Coverage gaps observed by removing contained reads

Data Count of contained reads
Coverage-gaps

Count Maximum length
DIPLOID-30x-ONT-1 4.6M 46 53K
DIPLOID-30x-ONT-2 4.6M  54 101K
DIPLOID-30x-HiFi-1  2.5M  1 2K
DIPLOID-30x-HiFi-2  2.5M 1 0.2K
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Coverage gaps observed by removing contained reads

Data Count of contained reads
Coverage-gaps

Count Maximum length
DIPLOID-30x-ONT-1 4.6M 46 53K
DIPLOID-30x-ONT-2 4.6M  54 101K
DIPLOID-30x-HiFi-1  2.5M  1 2K
DIPLOID-30x-HiFi-2  2.5M 1 0.2K
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Read length distributions
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Evaluation of proposed heuristics

Data Method Count of contained 
reads retained

Count of junction 
vertices

Gaps introduced in 
the genome

DIPLOID-30x-ONT-1
ContainX

DIPLOID-30x-HiFi-1
ContainX

LOWER IS 
BETTER
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Existing solutions besides ContainX
• Other solutions to identify “useful” contained reads 

• [Hui et al. ISIT 2016] 

• Contained read is removed if it has an inconsistent pair of parent reads

• Hifiasm [Cheng et al. 2021]  

• Recovers contained reads which join a broken haplotype walk
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Existing solutions besides ContainX
• Other solutions to identify “useful” contained reads 

• [Hui et al. ISIT 2016] 

• Contained read is removed if it has an inconsistent pair of parent reads

• Hifiasm Hybrid: PacBio HiFi + ultra-long ONT          [Cheng et al. 2023] 

• Identifies useful contained reads by aligning ultra-long nanopore reads to graph
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Existing solutions besides ContainX
• Other solutions to identify “useful” contained reads 

• [Hui et al. ISIT 2016] 

• Contained read is removed if it has an inconsistent pair of parent reads

• Hifiasm Hybrid: PacBio HiFi + ultra-long ONT          [Cheng et al. 2023] 

• Identifies useful contained reads by aligning ultra-long nanopore reads to graph
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Existing solutions besides ContainX
• Other solutions to identify “useful” contained reads 

• [Hui et al. ISIT 2016] 

• Contained read is removed if it has an inconsistent pair of parent reads

• Hifiasm Hybrid: PacBio HiFi + ultra-long ONT          [Cheng et al. 2023] 

• Identifies useful contained reads by aligning ultra-long nanopore reads to graph
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Evaluation of proposed heuristics

Data Method Count of contained 
reads retained

Count of junction 
vertices

Gaps introduced in 
the genome

DIPLOID-30x-ONT-1

Retain all

Hui-2016

ContainX

Remove all

DIPLOID-30x-HiFi-1

Retain all

Hui-2016

ContainX

Remove all

LOWER IS 
BETTER
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Evaluation of proposed heuristics

Data Method Count of contained 
reads retained

Count of junction 
vertices

Gaps introduced in 
the genome

DIPLOID-30x-ONT-1

Retain all 2.8M 2.5M 0

Hui-2016

ContainX

Remove all 0 38.9K  46

DIPLOID-30x-HiFi-1

Retain all 2.5M 3.4M 0

Hui-2016

ContainX

Remove all 0 158.4K 1

LOWER IS 
BETTER
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Evaluation of proposed heuristics

Data Method Count of contained 
reads retained

Count of junction 
vertices

Gaps introduced in 
the genome

DIPLOID-30x-ONT-1

Retain all 2.8M 2.5M 0

Hui-2016 2.5M  2.3M  0

ContainX 28.5K 53.9K 2

Remove all 0 38.9K  46

DIPLOID-30x-HiFi-1

Retain all 2.5M 3.4M 0

Hui-2016 2.5M 3.3M 0

ContainX 39.8K 184.1K 0

Remove all 0 158.4K 1

LOWER IS 
BETTER
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Data Method Count of contained 
reads retained

Count of junction 
vertices

Gaps introduced in 
the genome

DIPLOID-30x-ONT-1

Retain all 2.8M 2.5M 0
Hui-2016 2.5M  2.3M  0
ContainX 28.5K 53.9K 2
Hifiasm 4.0K 1.7K 33

Remove all 0 38.9K  46

DIPLOID-30x-HiFi-1

Retain all 2.5M 3.4M 0
Hui-2016 2.5M 3.3M 0
ContainX 39.8K 184.1K 0
Hifiasm 164 36.9K 0

Remove all 0 158.4K 1
LOWER IS 
BETTER

38

LOWER IS 
BETTER* Hifiasm is an end-to-end genome assembler, 

uses multiple graph sparsification heuristics

Evaluation of proposed heuristics

 Indian Institute of Science



Conclusions
• Provably-good graph models will be useful for reliable and accurate 

human genome reconstruction


• String graph model is used commonly, but 
 
it violates the ‘safety’ guarantee, both in theory and practice.


• Optimal sparsification of overlap graphs remains unsolved. We 
proposed  rules and promising heuristics.safe

chirag@iisc.ac.in

github.com/at-cg/ContainX
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