

Revisiting Graph-theoretic Models for Genome Assembly in the Era of Long Reads

Chirag Jain Assistant Professor Computational and Data Sciences Indian Institute of Science

Based on Bioinformatics paper https://doi.org/10.1093/bioinformatics/btad124

CiE (Computability in Europe) 2023 July 24, 2023

A human genome is a set of 46 strings

Two "copies", inherited from father and mother (~99.9% identical)

> Sum total length is about 6 billion characters

Image source: NHGRI

Human-genome sequencing

A sequencing instrument

TNTTCGTTTCTCTTCTGCTATCTGTGGTCTGTG TCTGGGATGCTGACTGTCTCCCTGGGAAGGCAG AACTCTCGTGACCCCAGCCTGGAGGCCCACATT TTCTGCTTCTTTGTGATATCATCCTGTGCTGCC GGCGCGACAAAATAGGGGTGATGGTTTGTGTT GAGCACGCGCGGCAGAGAGGAAAAATGGGCTC CCAAAGCGCCTCGGGAGATGGGGGAGGGTAGCC

Text file with the 46 strings

Reads

Genome assembly: Reconstruction of the original genome from reads

Latest: Long and accurate sequencing

- Enables de novo genome assembly of both maternal and paternal haplotypes
- Was not feasible using previous technologies

State-of-the-art assemblies: 3 Gbp (collapsed) 6 Gbp haplotype-resolved	100%	
	Long-read accuracy	
	80%	
	10	kbp
	Long-read	d len

PacBio HiFi: Accuracy = 99.8%, Avg. length > 10 kbp Nanopore: Accuracy = ~99%, Avg. length > 40 kbp

igth (kb) ----->

2020

onwards

2010-20

Latest: Long and accurate sequencing

Figure from Kovaka et al. 2023, "Approaching complete genomes, transcriptomes and epi-omes with accurate long-read sequencing" 5

Thanks to long-read assemblers !

Graph-theoretic models for assembly

- Input: Set of reads *R*
 - **De Bruijn graph** : $B_k(R)$
 - Vertices are distinct k-mers observed in R

[Idury and Waterman 1995]

• An edge implies a suffix-prefix overlap of length k-1 between two k-mers

Graph-theoretic models for assembly

- Input: Set of reads *R*
 - **De Bruijn graph** : $B_k(R)$
 - Vertices are distinct k-mers observed in R
 - Overlap graph : $O_k(R)$
 - Vertices are input reads

[Idury and Waterman 1995]

• An edge implies a suffix-prefix overlap of length k-1 between two k-mers

• An edge implies an exact suffix-prefix match of length $\geq k$ between two reads

Graph-theoretic models for assembly

- Input: Set of reads *R*
 - **De Bruijn graph** : $B_k(R)$
 - Vertices are distinct k-mers observed in R
 - Overlap graph : $O_k(R)$
 - Vertices are input reads
 - String graph : $S_k(R)$ [Myers 1995, 2005]
 - Subgraph of $O_k(R)$
 - Next slide...

[Idury and Waterman 1995]

• An edge implies a suffix-prefix overlap of length k-1 between two k-mers

• An edge implies an exact suffix-prefix match of length $\geq k$ between two reads

String graph

- Used in most long-read assemblers
- Sub-graph of overlap graph [Myers 1995, 2005]
 - Keep only the longest suffix-prefix overlap between a pair of reads
 - Remove contained reads
 - Remove transitive edges

ACTGCTTAC

CTGCTT_×

Graph sparsification cannot be avoided in practice

Overlap graph obtained using a subset of simulated nanopore reads from human chr20

Are graph models "coverage-preserving"?

 Suppose input reads cover the entire genome, do we have a guarantee that the "true" chromosomes can be spelled as a walk in the graph?

Are graph models "coverage-preserving"?

Say R = TATACA, CATATA

 Suppose input reads cover the entire genome, do we have a guarantee that each candidate chromosome can be spelled as a walk in the graph?

Are graph models "coverage-preserving"?

Say R = TATACA, CATATA

• Circular string z is a candidate if $\exists l_1, l_2 \in \mathbb{N}, l_2 > l_1$ such that all intervals of

 Suppose input reads cover the entire genome, do we have a guarantee that each candidate chromosome can be spelled as a walk in the graph?

length l_1 in z include the starting position of at least one read of length l_2

Theoretical evaluation

• Input: set of reads R

Graph model	Guarantee?
de Bruijn graph $B_k(R)$	$YES \forall \ k \leq l_2 -$
Overlap graph $O_k(R)$	$YES \forall \ k \leq l_2 -$
String graph $S_k(R)$	NO for any k

Theoretical evaluation

• Input: set of reads R

Graph model	Guarantee?	
de Bruijn graph $B_k(R)$	$YES \forall \ k \leq l_2 -$	
Overlap graph $O_k(R)$	$YES \forall \ k \leq l_2 -$	
String graph $S_k(R)$	NO for any k	

Proof sketch

Assembly-graph model	Cover
de Bruijn graph $B_k(R)$	YES

• Assume there is a candidate chromosome *z* not spelled by graph

 \Rightarrow At least one k-mer in z is absent from the set of vertices

Proof sketch

Assembly-graph model Coverage-

Overlap graph $O_k(R)$

YES $\forall k \leq$

Candidate circular chromosome z

All intervals of length l_1 in z

preserving?	Proof technique
$\leq l_2 - l_1$	Proposed algorithm to identify a closed walk for each candidate

Pull out reads of length $\geq l_2$ that start in the intervals

Identify a subset of these reads with suffix-prefix overlaps

Counter example for string graph

Assembly-graph mo	del Coverage-
String graph	NO for any

Indian Institute of Science

k

Candidate 1 cannot be spelled in graph after contained read CACGTG is removed

Further questions addressed

Does it really matter for genome assembly quality in reality?

- Is there an alternate method to sparsify overlap graph that is practical and provably-good?
- Good heuristics to recover non-redundant contained reads?

'Safe' rules to sparsify overlap graph

- remains unchanged
- Transitive edge reduction in [Myers 2005] is safe
- genome at a unique location [formal proof in paper]

• It is *safe* to remove a vertex (or edge) if the set of circular string walks

• Removing a contained read is *safe* if it maps to only a single candidate

Heuristic - 1

 By computing all-versus-all read alignments, we can estimate if a maternal)

contained read maps uniquely within a single haplotype (either paternal or

check for heterozygous mutations

Heuristic - 2

- Estimate if contained read contributes a "novel" string walk in the graph
- κ_1 = set of k-mers observed within bounded length string walks in the assembly graph from a contained read
- κ_2 = set of k-mers observed similarly from its "parent" reads
- Remove contained read if $\kappa_1 \subseteq \kappa_2$

read x (|G(|)|CIGCIIACIC p_{\perp} ACTGCTTGG p_2

ContainX

Prototype implementation in C++

Build overlap graph

github.com/at-cg/ContainX

Heuristic 2

Discard contained reads which lack novel walks

Output nonredundant contained reads

Apply transitive-edge reduction [Myers 2005]

Benchmark datasets

- Simulated error-free long reads; length distribution matches real data
- Human genomes: CHM13 (haploid), HG002 (diploid)

Data set	Count of reads	N50 length	Max length
HAPLOID-20x-ONT-1	3.7M	40K	570K
HAPLOID-20x-ONT-2	3.7M	40K	540K
HAPLOID-20x-HiFi-1	2.9M	21K	49K
HAPLOID-20x-HiFi-2	2.9M	21K	49K
DIPLOID-30x-ONT-1	5.3M	40K	540K
DIPLOID-30x-ONT-2	5.3M	40K	570K
DIPLOID-30x-HiFi-1	4.2M	21K	49K
DIPLOID-30x-HiFi-2	4.2M	21K	49K

Nurk et al. "The complete sequence of a human genome" (2022)

- Step 1: Identify contained reads by all-vs-all read alignments
- Step 2: map non-contained reads to genome

Data	Count of contained reads	Coverage-gaps		
		Count	Maximum length	
HAPLOID-20x-ONT-1	3.2M	0	_	
HAPLOID-20x-ONT-2	3.2M	0	_	
HAPLOID-20x-HiFi-1	1.9M	0	_	
HAPLOID-20x-HiFi-2	1.9M	0	_	

- Step 1: Identify contained reads by all-vs-all read alignments
- Step 2: map non-contained reads to genome

Data	Count of contained reads	Coverage-gaps	
		Count	Maximum length
HAPLOID-20x-ONT-1	3.2M	0	_
HAPLOID-20x-ONT-2	3.2M	0	_
HAPLOID-20x-HiFi-1	1.9M	0	_
HAPLOID-20x-HiFi-2	1.9M	0	_

- Step 1: Identify contained reads by all-vs-all read alignments
- Step 2: map non-contained reads to genome

Data	Count of contained reads	Coverage-gaps		
		Count	Maximum length	
DIPLOID-30x-ONT-1	4.6M	46	53K	
DIPLOID-30x-ONT-2	4.6M	54	101K	
DIPLOID-30x-HiFi-1	2.5M	1	2K	
DIPLOID-30x-HiFi-2	2.5M	1	0.2K	

- Step 1: Identify contained reads by all-vs-all read alignments
- Step 2: map non-contained reads to genome

Data	Count of contained reads	Coverage-gaps		
		Count	Maximum length	
DIPLOID-30x-ONT-1	4.6M	46	53K	
DIPLOID-30x-ONT-2	4.6M	54	101K	
DIPLOID-30x-HiFi-1	2.5M	1	2K	
DIPLOID-30x-HiFi-2	2.5M	1	0.2K	

Read length distributions

Oxford Nanopore (ONT)

Data	Method	Count of contained reads retained	Count of junction vertices	Gaps introduced in the genome
DIPLOID-30x-ONT-1	ContainX			
DIPLOID-30x-HiFi-1	ContainX			

- Other solutions to identify "useful" contained reads
- [Hui et al. ISIT 2016]
 - Contained read is removed if it has an inconsistent pair of parent reads

- Hifiasm [Cheng et al. 2021]
 - Recovers contained reads which join a broken haplotype walk

- Other solutions to identify "useful" contained reads
- [Hui et al. ISIT 2016]
 - Contained read is removed if it has an inconsistent pair of parent reads

- Hifiasm Hybrid: PacBio HiFi + ultra-long ONT

[Cheng et al. 2023]

Identifies useful contained reads by aligning ultra-long nanopore reads to graph

vertices from contained reads

- Other solutions to identify "useful" contained reads
- [Hui et al. ISIT 2016]
 - Contained read is removed if it has an inconsistent pair of parent reads

- Hifiasm Hybrid: PacBio HiFi + ultra-long ONT

[Cheng et al. 2023]

• Identifies useful contained reads by aligning ultra-long nanopore reads to graph

vertices from contained reads

- Other solutions to identify "useful" contained reads
- [Hui et al. ISIT 2016]
 - Contained read is removed if it has an inconsistent pair of parent reads

- [Cheng et al. 2023] Hifiasm Hybrid: PacBio HiFi + ultra-long ONT
 - Identifies useful contained reads by aligning ultra-long nanopore reads to graph

Data	Method	Count of contained reads retained	Count of junction vertices	Gaps introduced in the genome
DIPLOID-30x-ONT-1	Retain all			
	Hui-2016			
	ContainX			
	Remove all			
DIPLOID-30x-HiFi-1	Retain all			
	Hui-2016			
	ContainX			
	Remove all			

Data	Method	Count of contained reads retained	Count of junction vertices	Gaps introduced in the genome
DIPLOID-30x-ONT-1	Retain all	2.8M	2.5M	0
	Hui-2016			
	ContainX			
	Remove all	0	38.9K	46
DIPLOID-30x-HiFi-1	Retain all	2.5M	3.4M	0
	Hui-2016			
	ContainX			
	Remove all	0	158.4K	1

LOWER IS BETTER

Data	Method	Count of contained reads retained	Count of junction vertices	Gaps introduced in the genome
DIPLOID-30x-ONT-1	Retain all	2.8M	2.5M	0
	Hui-2016	2.5M	2.3M	0
	ContainX	28.5K	53.9K	2
	Remove all	0	38.9K	46
DIPLOID-30x-HiFi-1	Retain all	2.5M	3.4M	0
	Hui-2016	2.5M	3.3M	0
	ContainX	39.8K	184.1K	0
	Remove all	0	158.4K	1

LOWER IS BETTER

Data	Method	Count of contained reads retained	Count of junction vertices	Gaps introduced in the genome
DIPLOID-30x-ONT-1	Retain all	2.8M	2.5M	0
	Hui-2016	2.5M	2.3M	0
	ContainX	28.5K	53.9K	2
	Hifiasm	4.0K	1.7K	33
	Remove all	0	38.9K	46
	Retain all	2.5M	3.4M	0
	Hui-2016	2.5M	3.3M	0
DIPLOID-30x-HiFi-1	ContainX	39.8K	184.1K	0
	Hifiasm	164	36.9K	0
	Remove all	0	158.4K	1
1	L	,	LOWER IS	LOWER IS

* Hifiasm is an end-to-end genome assembler, uses multiple graph sparsification heuristics

BETTER

BETTER

Conclusions

- Provably-good graph models will be useful for reliable and accurate human genome reconstruction
- String graph model is used commonly, but
 - it violates the 'safety' guarantee, both in theory and practice.
- Optimal sparsification of overlap graphs remains unsolved. We proposed *safe* rules and promising heuristics.

<u>chirag@iisc.ac.in</u>

github.com/at-cg/ContainX

Link to publication: https://doi.org/10.1093/bioinformatics/btad124

Acknowledgement

Mehak Bindra (Project staff), Sudhanva Shyam Kamath (Ph.D. student)

Valuable feedback from:

- Prof. Sunil Chandran, Prof. Debnath Pal [IISc]
- Haowen Zhang [Georgia Tech]
- Mile Sikic, Robert Vaser [Genome Institute of Singapore]
- Brian Walenz, Sergey Nurk [NHGRI]
- Haoyu Cheng [Dana Farber Cancer Institute]

विज्ञान एवं प्रौद्योगिकी विभाग DEPARTMENT OF SCIENCE & TECHNOLOGY

Indian Institute of Science

