Efficient (Propositional) Proofs of Statements in Combinatorial Topology and Related Areas

Gabriel Istrate gabrielistrate@acm.org

Acknowledgment

- Research program. Multiple papers (SAT'14, ICALP 2015, 2021), plus work in progress.
- Coauthors (chronologically): Adrian Craciun (Timişoara),
 James Aisenberg (Seattle), Sam Buss (San Diego),
 Maria-Luisa Bonet (Barcelona), Cosmin Bonchiş
 (Timişoara).

"Philosophical" Summary/Outline

Mathematics (in particular Algebraic Topology) often works with exponential size objects (nonconstructive proofs).

(When) can we make them "small"/constructive?

- Concrete statement: Kneser-Lovász Theorem, hard to prove (mathematically). Is its propositional encoding hard in proof complexity?
- Surprise: easy to prove (mathematically) (with disclaimers)
- How? Why?
- Spoiler: versions of notions of kernelization/data reduction from parameterized complexity theory.

Proof Complexity

Given a class of unsatisfiable propositional formulas, how hard it is to refute them in a certain proof system?

- Hardness: length/"complexity" of the proof
- ... difficulty of finding it also relevant.
- Proof systems: e.g. resolution ...
- (extended) Frege systems
- cutting planes, polynomial calculus, nullenstellensatz, sums of squares, semi-algebraic proofs, IPS

Boundaries of proof complexity: Frege proofs

"Textbook-style" proof systems.

Cook-Reckhow: all Frege proof sys poly simulate eachother

- Example, for concreteness [Hilbert Ackermann]
 - propositional variables p_1, p_2, \ldots
 - Connectives ¬, or.
 - · Axiom schemas:
 - 1. $\neg (A \text{ or } A) \text{ or } A$
 - 2. $\neg A$ or (A or B)
 - 3. $\neg (A \text{ or } B) \text{ or } (B \text{ or } A)$
 - 4. $\neg(\neg A \text{ or } B) \text{ or } (\neg(C \text{ or } A) \text{ or } (C \text{ or } B))$
 - Rule: From A and $\neg A$ or B derive B.

Superpolynomial lower bounds: restricted (e.g. depth) versions of Frege.

Proof complexity of the pigeonhole principle

n pigeons in n-1 holes ⇒ at least two pigeons in same hole!

- E.g. Pigeonhole formula(s): PHP_n^{n-1}
- $X_{i,j} = 1$ "pigeon i goes to hole j".
- $X_{i,1}$ or $X_{i,2}$ or ... or $X_{i,n-1}$, $1 \le i \le n$ (each pigeon goes to (at least) one hole)
- $\overline{X_{k,j}}$ or $\overline{X_{k,i}}$ (pigeon k goes to at most one hole).
- $\overline{X_{k,j}}$ or $\overline{X_{l,j}}$ (pigeons k and l do not go together to hole j).
- Resolution complexity: exponential! (Haken)

Theorem (Buss): PHP_n has poly-size Frege proofs.

Extended Frege proofs

Frege proofs + variable substitutions.

We may introduce variable names for formulas $X \Leftrightarrow \Phi(Y)$. Proves the same formulas but potentially with great reductions in size.

<u>OPEN PROBLEM:</u> Is extended Frege **strictly** more powerful than Frege? <u>Most natural candidates for separation</u> turned out to have subexponential Frege proofs.

Wishful thinking: Perhaps translating into SAT a mathematical statement that is (mathematically) hard to prove would yield a natural candidate for the separation.

Kneser's Conjecture

- Stated in 1955 (Martin Kneser, Jaresbericht DMV)

```
Let n \ge 2k - 1 \ge 1. Let c : \binom{n}{k} \to [n - 2k + 1]. Then there exist two disjoint sets A and B with c(A) = c(B).
```

- *k* = 1 Pigeonhole principle!
- k = 2,3 combinatorial proofs (Stahl, Garey & Johnson)
- $k \ge 4$ only proved in 1977 (Lovász) using Algebraic Topology.
- Combinatorial proofs known (Matousek, Ziegler). "Hide"
 Alg. Topology in combinatorics.

Kneser's Conjecture (II)

- the chromatic number of a certain graph $Kn_{n,k}$ (at least) n-2k+2. (exact value)
- Vertices: $\binom{n}{k}$. Edges: disjoint sets.
- E.g. k = 2, n = 5: Petersen's graph has chromatic number (at least) three.
- "Internal graph" also chromatic number n-2k+2 (Schrijver's theorem).

Lovász-Kneser as an (unsatisfiable) SAT formula

- naïve encoding $X_{A,k} = TRUE$ iff A colored with color k.
- $X_{A,1}$ or $X_{A,2}$ or ... or $X_{A,n-2k+1}$ "every set is colored with (at least) one color"
- $\overline{X_{A,j}}$ or $\overline{X_{B,j}}$ ($A \cap B = \emptyset$) "no two disjoint sets are colored with the same color"
- $\overline{X_{A,j}}$ or $\overline{X_{A,k}}$ "no set has two colors".
- Fixed k: $Kneser_{k,n}$ has poly-size (in n).
- Extends encoding of PHP

Our results in a nutshell

- Kneser_n^k reduces to (is a special case of) Kneser_{n-2}^{k+1}.
- Thus all known lower bounds that hold for PHP hold for any Kneser_k.
- Cases with combinatorial proofs:
 - k = 2: polynomial size Frege proofs
 - k = 3: polynomial size <u>extended</u> Frege proofs
- $k \ge 4$: surprisingly, quasipoly Frege/poly extended Frege proofs.

Most important, "take-home" message: for every fixed k, $Kneser_*^k$ can be proved (mathematically) by an easy-to-describe reduction to a finite set of values of n, (to be checked, perhaps on a computer) completely bypassing Algebraic Topology!

11

Proof idea

Assume there was a (n-2k+1)-coloring of *Kneser*_n^k.

A color class C_l is star shaped if the intersection of all members is nonempty.

Theorem: If C_l is **not** star-shaped then $|C_l| \le k^2 \binom{n-2}{k-2}$.

Reduction, assuming theorem:

If $n > k^4$ then $\binom{n}{k} > (n-2k+1)k^2\binom{n-2}{k-2}$, hence some color class is star-shaped C_l . Remove C_l and the central element of class C_l .

<u>Conclusion:</u> We get a (n-2k)-coloring of $Kneser_{n-1}^k$.

Proof of the theorem

Let C_l be a non-star-shaped color class.

- Fix some $S = \{a_1, ..., a_k\} \in C_l$.
- For every a_i let $S_i \in P_I$, $a_i \notin S_i$ (C_I not star-shaped)
- To specify arbitrary $T \in C_l$:
 - Specify $a_i \in T (S \cap T \neq \emptyset)$
 - Specify $x \in S_i \cap T$.
 - Specify the remaining k-2 elements.

Nr. of choices: $k \cdot k \cdot \binom{n-2}{k-2}$.

If Kneser is not difficult, then what is?

Discrete version of Borsuk-Ulam: Octahedral Tucker's lemma.

- Intuition: Borsuk-Ulam no continuous (a.k.a simplicial) antipodal map from the n-ball to the n-sphere.
- For any labeling of T with vertices from $\{\pm 1, \ldots, \pm (n-1)\}$ antipodal on the boundary there exist two adjacent vertices $v \sim w$ with c(v) = -c(w).

Octahedral Tucker Lemma

<u>Definition:</u> Let $n \ge 1$. The *octahedral ball* \mathcal{B}^n is:

$$\mathcal{B}^n := \{(A, B) : A, B \subseteq [n] \text{ and } A \cap B = \emptyset\}.$$

<u>Definition:</u> Two pairs (A_1, B_1) and (A_2, B_2) in \mathcal{B}^n are complementary with respect to λ if $\mathbf{A_1} \subseteq \mathbf{A_2}$, $\mathbf{B_1} \subseteq \mathbf{B_2}$ and $\lambda(A_1, B_1) = -\lambda(A_2, B_2)$.

Theorem (Octahedral Tucker lemma)

If $\lambda: \mathcal{B}^n \to \{1, \pm 2, \dots, \pm n\}$ is antipodal, then there are two elements in \mathcal{B}^n that are complementary.

barycentric subdivision ⇒ exponentially large formula!

A class of "hard" formulas based on Octahedral Tucker Lemma

- Kneser follows from a new "low dimensional" Tucker lemma.
- Avoid barycentric subdivision. Instead "truncated version".

<u>Definition</u>: Let $1 \le k \le n$. The truncated octahedral ball $\mathcal{B}_{\le k}^n$ is:

$$\mathcal{B}^n_{\leq k} := \left\{ (A, B) \in \mathcal{B}^n : |A| \leq k, |B| \leq k \right\}.$$

<u>Definition:</u> Let \leq be the partial order on sets in $\binom{n}{\leq k}$ defined by $\mathbf{A} \leq \mathbf{B}$ iff $(\mathbf{A} \cup \mathbf{B})_{\leq k} = \mathbf{B}$.

<u>Definition:</u> For (A_1, B_1) and (A_2, B_2) in $\mathcal{B}_{\leq k}^n$, write $(A_1, B_1) \preceq (A_2, B_2)$ when $A_1 \preceq A_2$, $B_1 \preceq B_2$, and $A_i \cap B_j = \emptyset$ for $i, j \in \{1, 2\}$. The pairs (A_1, B_1) and (A_2, B_2) are k-complementary with respect to an antipodal map λ on $\mathcal{B}_{\leq k}^n$ if $(A_1, B_1) \preceq (A_2, B_2)$ and $\lambda(A_1, B_1) = -\lambda(A_2, B_2)$.

Truncated Octahedral Tucker Lemma

<u>THEOREM:</u> Let $n \ge k \ge 1$. If $\lambda : \mathcal{B}^n_{\le k} \to \{1, \pm 2, \ldots, \pm n\}$ is antipodal, then there are two elements in $\mathcal{B}^n_{\le k}$ that are k-complementary.

- (Mathematically) follows from "ordinary" octahedral Tucker lemma.
- k-truncated Tucker Implies Kneserk.
- Translates (naturally) to formulas $Truncated_n^k$, whose proof complexity unknown.
- Generates search problem *Truncated*_k.

Complexity of Truncated Tucker Lemma

THEOREM: [ABCCI, journal version] Formulas $Tucker_n^1$ have poly-size extended Frege proofs.

THEOREM: (Aisenberg) Tucker_k \leq_m Tucker_{k+1}.

THEOREM: (Aisenberg) $Tucker_k$ hard for PPP.

CONCLUSION: Kneser_k may not be "hard", but $Tucker_k$ (which encodes the topological principle used to prove it) probably is!

Why is Kneser easy? What else is?

- **kernelization**: reduce instance (x, k) to "kernel instance" (x', k'), s.t. $(x, k) \in L$ iff $(x', k') \in L$ and $|x'|, k' \leq g(k)$ for some computable g.
- **data reduction:** algorithm A that maps in time poly(|x| + k) (x, k) to (x', k') s.t. $(x, k) \in L$ iff $(x', k') \in L$ and $|x'| \leq |x|$.
- given r data reductions A_1, \ldots, A_r , a **data reduction chain** for instance (x, k) of L: seq. $(x_0, k_0), (x_1, k_1), \ldots, (x_m, k_m)$, where $(x_0, k_0) = (x, k), A_t(x_m, k_m) = (x_m, k_m)$ for $t = 1, \ldots, r$ and, for $i = 1, \ldots, m \ \exists j \in 1, \ldots, r$ s.t. $(x_i, k_i) = A_j(x_{i-1}, k_{i-1})$.

Main idea

- "Negative" instance (x, k) of parameterized problem in NP maps "canonically" to formula $\Phi(x, k) \in \overline{SAT}$.
 - If Π_i proof for soundness of the reduction rule $(x_i,k_i)=A_j(x_{i-1},k_{i-1})$ and Π_{m+1} is a "brute force proof of unsatisfiability" for the kernel instance then one can prove $\Phi(x,k)\in \overline{SAT}$ by "concatenating" Π_1,\ldots,Π_m and Π_{m+1} .
- Need: data reduction of length $O(\log(n))$ to unwind variable substitutions.

Applications of Kernelization Techniques to Proof Complexity

- Extend results on Kneser to Schrijver's theorem.
- classical (ad-hoc) kernelization for VertexCover ⇒ for every fixed k, negative instances of VC with parameter k have poly-size Frege proofs.
- crown decomposition for DualColoring ⇒ negative instances of
 VC with parameter k poly-size Frege proofs.
- improved (ad-hoc) kernelization for EDGE CLIQUE COLOR ⇒
 negative instances (G,k) of EDGE CLIQUE COVER have extended
 Frege proofs of poly size and Frege proofs of quasipoly size.
- sunflower lemma-based kernelization of d-HittingSet ⇒
 negative instances of d-HittingSet extended Frege proofs of
 poly size.
- NEW Turing kernelization: Instances of CLIQUE(VC) have poly-size Frege proofs.

Applications to Computational Social Choice

- **Arrow, Gibbard-Satterthwaite:** Fundamental impossibility results on ranking *m* objects by *n* agents.
- Tang & Lin (Artificial Intelligence, 2009): Arrow's Theorem has computer-assisted propositional proofs by reducing the general case to the case n=2, m=3. Similar results (2008) for the Gibbard-Satterthwaite theorem.
- Their proofs: data reductions of length $\Theta(n+m)$.

We give: data reductions of length O(n), whose soundness can be witnessed by efficient Frege proofs.

Theorem

Formulas Arrow_{m,n}, $GS_{m,n}$ have:

- quasipoly size Frege proofs
- poly size Frege proofs for fixed n.

Further work & Open problems

- Proof complexity of parameterized intractable (W[1] and higher) problems?
- Open problem: search complexity of the Octahedral Tucker Lemma?
- Open problem Proof complexity of cutting planes for Kneser²?
- Logics for implicit proof systems? Other combinatorial principles?

Thank you. Questions?