Efficient (Propositional) Proofs of Statements in Combinatorial Topology and Related Areas

Gabriel Istrate
gabrielistrate@acm.org

Acknowledgment

- Research program. Multiple papers (SAT'14, ICALP 2015, 2021), plus work in progress.
- Coauthors (chronologically): Adrian Crãciun (Timişoara), James Aisenberg (Seattle), Sam Buss (San Diego), Maria-Luisa Bonet (Barcelona), Cosmin Bonchiş (Timişoara).

"Philosophical" Summary/Outline

Mathematics (in particular Algebraic Topology) often works with exponential size objects (nonconstructive proofs).
 (When) can we make them "small"/constructive?

- Concrete statement: Kneser-Lovász Theorem, hard to prove (mathematically). Is its propositional encoding hard in proof complexity ?
- Surprise: easy to prove (mathematically) (with disclaimers)
- How? Why?
- Spoiler: versions of notions of kernelization/data reduction from parameterized complexity theory.

Proof Complexity

Given a class of unsatisfiable propositional formulas, how hard it is to refute them in a certain proof system ?

- Hardness: length/"complexity" of the proof
- ... difficulty of finding it also relevant.
- Proof systems: e.g. resolution ...
- (extended) Frege systems
- cutting planes, polynomial calculus, nullenstellensatz, sums of squares, semi-algebraic proofs, IPS

Boundaries of proof complexity: Frege proofs

"Textbook-style" proof systems.
Cook-Reckhow: all Frege proof sys poly simulate eachother

- Example, for concreteness [Hilbert Ackermann]
- propositional variables p_{1}, p_{2}, \ldots.
- Connectives \neg, or .
- Axiom schemas:

1. $\neg(A$ or $A)$ or A
2. $\neg A$ or $(A$ or $B)$
3. $\neg(A$ or $B)$ or $(B$ or $A)$
4. $\neg(\neg A$ or $B)$ or $(\neg(C$ or $A)$ or $(C$ or $B))$

- Rule: From A and $\neg A$ or B derive B.

Superpolynomial lower bounds: restricted (e.g. depth) versions of Frege.

Proof complexity of the pigeonhole principle

n pigeons in $n-1$ holes \Rightarrow at least two pigeons in same hole !

- E.g. Pigeonhole formula(s): $P H P_{n}^{n-1}$
- $X_{i, j}=1$ "pigeon i goes to hole j ".
- $X_{i, 1}$ or $X_{i, 2}$ or \ldots or $X_{i, n-1}, 1 \leq i \leq n$ (each pigeon goes to (at least) one hole)
- $\overline{X_{k, j}}$ or $\overline{X_{k, i}}$ (pigeon k goes to at most one hole).
- $\overline{X_{k, j}}$ or $\overline{X_{l, j}}$ (pigeons k and $/$ do not go together to hole j).
- Resolution complexity: exponential! (Haken)

Theorem (Buss): $P H P_{n}$ has poly-size Frege proofs.

Extended Frege proofs

Frege proofs + variable substitutions.
We may introduce variable names for formulas $X \Leftrightarrow \Phi(Y)$.
Proves the same formulas but potentially with great reductions in size.

OPEN PROBLEM: Is extended Frege strictly more powerful than Frege ? Most natural candidates for separation turned out to have subexponential Frege proofs.

Wishful thinking: Perhaps translating into SAT a mathematical statement that is (mathematically) hard to prove would yield a natural candidate for the separation.

Kneser's Conjecture

- Stated in 1955 (Martin Kneser, Jaresbericht DMV)

$$
\begin{aligned}
& \text { Let } n \geq 2 k-1 \geq 1 \text {. Let } c:\binom{n}{k} \rightarrow[n-2 k+1] \text {. Then } \\
& \text { there exist two disjoint sets } A \text { and } B \text { with } \\
& c(A)=c(B) \text {. }
\end{aligned}
$$

- $k=1$ Pigeonhole principle!
- $k=2,3$ combinatorial proofs (Stahl, Garey \& Johnson)
- $k \geq 4$ only proved in 1977 (Lovász) using Algebraic Topology.
- Combinatorial proofs known (Matousek, Ziegler). "Hide" Alg. Topology in combinatorics.

Kneser's Conjecture (II)

- the chromatic number of a certain graph $K n_{n, k}$ (at least) $n-2 k+2$. (exact value)
- Vertices: $\binom{n}{k}$. Edges: disjoint sets.
- E.g. $k=2, n=5$: Petersen's graph has chromatic number (at least) three.
- "Internal graph" also chromatic number $n-2 k+2$ (Schrijver's theorem).

Lovász-Kneser as an (unsatisfiable) SAT formula

- naïve encoding $X_{A, k}=$ TRUE iff A colored with color k.
- $X_{A, 1}$ or $X_{A, 2}$ or \ldots or $X_{A, n-2 k+1}$ "every set is colored with (at least) one color"
- $\overline{X_{A, j}}$ or $\overline{X_{B, j}}(A \cap B=\emptyset)$ "no two disjoint sets are colored with the same color"
- $\overline{X_{A, j}}$ or $\overline{X_{A, k}}$ "no set has two colors".
- Fixed k : $K_{n e s e r}^{k, n}$ has poly-size (in n).
- Extends encoding of PHP

Our results in a nutshell

- Kneser ${ }_{n}^{k}$ reduces to (is a special case of) Kneser n_{n-2}^{k+1}.
- Thus all known lower bounds that hold for PHP hold for any $K_{n e s e r}^{k}$.
- Cases with combinatorial proofs:
- $k=2$: polynomial size Frege proofs
- $k=3$: polynomial size extended Frege proofs
- $k \geq 4$: surprisingly, quasipoly Frege/poly extended Frege proofs.

Most important, "take-home" message: for every fixed k, $K_{n e s e r}^{k}$ can be proved (mathematically) by an
easy-to-describe reduction to a finite set of values of n, (to be checked, perhaps on a computer) completely bypassing Algebraic Topology!
(ICALP 2015/Information and Computation 2018, but written in the language of proof complexity)

Proof idea

Assume there was a $(n-2 k+1)$-coloring of Kneser r_{n}^{k}.
A color class C_{l} is star shaped if the intersection of all members is nonempty.
Theorem: If C_{l} is not star-shaped then $\left|C_{l}\right| \leq k^{2}\binom{n-2}{k-2}$.
Reduction, assuming theorem:
If $n>k^{4}$ then $\binom{n}{k}>(n-2 k+1) k^{2}\binom{n-2}{k-2}$, hence some color class is star-shaped C_{l}. Remove C_{l} and the central element of class C_{l}.

Conclusion: We get a $(n-2 k)$-coloring of Kneser r_{-1}^{k}.

Proof of the theorem

Let C_{l} be a non-star-shaped color class.

- Fix some $S=\left\{a_{1}, \ldots, a_{k}\right\} \in C_{l}$.
- For every a_{i} let $S_{i} \in P_{l}, a_{i} \notin S_{i}$ (C_{l} not star-shaped)
- To specify arbitrary $T \in C_{/}$:
- Specify $a_{i} \in T(S \cap T \neq \emptyset)$
- Specify $x \in S_{i} \cap T$.
- Specify the remaining $k-2$ elements.

Nr. of choices: $k \cdot k \cdot\binom{n-2}{k-2}$.

If Kneser is not difficult, then what is ?

Discrete version of Borsuk-Ulam: Octahedral Tucker's lemma.

- Intuition: Borsuk-Ulam - no continuous (a.k.a simplicial) antipodal map from the n-ball to the n-sphere.
- For any labeling of T with vertices from $\{ \pm 1, \ldots, \pm(n-1)\}$ antipodal on the boundary there exist two adjacent vertices $v \sim w$ with $c(v)=-c(w)$.

Octahedral Tucker Lemma

Definition: Let $n \geq 1$. The octahedral ball \mathcal{B}^{n} is:

$$
\mathcal{B}^{n}:=\{(A, B): A, B \subseteq[n] \text { and } A \cap B=\emptyset\}
$$

Definition: Two pairs $\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right)$ in \mathcal{B}^{n} are complementary with respect to λ if $\mathbf{A}_{\mathbf{1}} \subseteq \mathbf{A}_{\mathbf{2}}, \mathbf{B}_{\mathbf{1}} \subseteq \mathbf{B}_{\mathbf{2}}$ and $\lambda\left(A_{1}, B_{1}\right)=-\lambda\left(A_{2}, B_{2}\right)$.

Theorem (Octahedral Tucker lemma)
If $\lambda: \mathcal{B}^{n} \rightarrow\{1, \pm 2, \ldots, \pm n\}$ is antipodal, then there are two elements in \mathcal{B}^{n} that are complementary.

- barycentric subdivision \Rightarrow exponentially large formula!

A class of "hard" formulas based on Octahedral Tucker Lemma

- Kneser follows from a new "low dimensional" Tucker lemma.
- Avoid barycentric subdivision. Instead "truncated version".

Definition: Let $1 \leq k \leq n$. The truncated octahedral ball $\mathcal{B}_{\leq k}^{n}$ is:

$$
\mathcal{B}_{\leq k}^{n}:=\left\{(A, B) \in \mathcal{B}^{n}:|A| \leq k,|B| \leq k\right\} .
$$

Definition: Let \preceq be the partial order on sets in $\binom{n}{\leq k}$ defined by $\mathbf{A} \preceq \mathbf{B}$ iff $(\mathbf{A} \cup \mathbf{B})_{\leq k}=\mathbf{B}$.

Definition: For $\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right)$ in $\mathcal{B}_{\leq k}^{n}$, write $\left(A_{1}, B_{1}\right) \preceq\left(A_{2}, B_{2}\right)$ when $A_{1} \preceq A_{2}, B_{1} \preceq B_{2}$, and $A_{i} \cap B_{j}=\emptyset$ for $i, j \in\{1,2\}$. The pairs $\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right)$ are k-complementary with respect to an antipodal map λ on $\mathcal{B}_{\leq k}^{n}$ if $\left(A_{1}, B_{1}\right) \preceq\left(A_{2}, B_{2}\right)$ and $\lambda\left(A_{1}, B_{1}\right)=-\lambda\left(A_{2}, B_{2}\right)$.

Truncated Octahedral Tucker Lemma

THEOREM: Let $n \geq k \geq 1$. If $\lambda: \mathcal{B}_{\leq k}^{n} \rightarrow\{1, \pm 2 \ldots, \pm n\}$ is antipodal, then there are two elements in $\mathcal{B}_{\leq k}^{n}$ that are k-complementary.

- (Mathematically) follows from "ordinary" octahedral Tucker lemma.
- k-truncated Tucker Implies Kneser $_{k}$.
- Translates (naturally) to formulas Truncated ${ }_{n}^{k}$, whose proof complexity unknown.
- Generates search problem Truncated $_{k}$.

Complexity of Truncated Tucker Lemma

THEOREM: [ABCCI, journal version] Formulas Tucker ${ }_{n}^{1}$ have poly-size extended Frege proofs.
THEOREM: (Aisenberg) Tucker $_{k} \preceq_{m}$ Tucker $_{k+1}$.
THEOREM: (Aisenberg) Tucker $_{k}$ hard for PPP.
CONCLUSION: Kneser $_{k}$ may not be "hard", but Tucker (which encodes the topological principle used to prove it) probably is!

Why is Kneser easy? What else is?

- kernelization: reduce instance (x, k) to "kernel instance" $\left(x^{\prime}, k^{\prime}\right)$, s.t. $(x, k) \in L$ iff $\left(x^{\prime}, k^{\prime}\right) \in L$ and $\left|x^{\prime}\right|, k^{\prime} \leq g(k)$ for some computable g.
- data reduction: algorithm A that maps in time poly $(|x|+k)(x, k)$ to $\left(x^{\prime}, k^{\prime}\right)$ s.t. $(x, k) \in L$ iff $\left(x^{\prime}, k^{\prime}\right) \in L$ and $\left|x^{\prime}\right| \leq|x|$.
- given r data reductions A_{1}, \ldots, A_{r}, a data reduction chain for instance (x, k) of L : seq. $\left(x_{0}, k_{0}\right),\left(x_{1}, k_{1}\right), \ldots,\left(x_{m}, k_{m}\right)$, where
$\left(x_{0}, k_{0}\right)=(x, k), A_{t}\left(x_{m}, k_{m}\right)=\left(x_{m}, k_{m}\right)$ for $t=1, \ldots r$ and, for $i=1, \ldots, m \exists j \in 1, \ldots, r$ s.t. $\left(x_{i}, k_{i}\right)=A_{j}\left(x_{i-1}, k_{i-1}\right)$.

Main idea

- "Negative" instance (x, k) of parameterized problem in NP maps "canonically" to formula $\Phi(x, k) \in \overline{S A T}$.
- If Π_{i} proof for soundness of the reduction rule $\left(x_{i}, k_{i}\right)=A_{j}\left(x_{i-1}, k_{i-1}\right)$ and Π_{m+1} is a "brute force proof of unsatisfiability" for the kernel instance then one can prove $\Phi(x, k) \in \overline{S A T}$ by "concatenating" Π_{1}, \ldots, Π_{m} and Π_{m+1}.
- Need: data reduction of length $O(\log (n))$ to unwind variable substitutions.

Applications of Kernelization Techniques to Proof Complexity

- Extend results on Kneser to Schrijver's theorem.
- classical (ad-hoc) kernelization for VertexCover \Rightarrow for every fixed k, negative instances of VC with parameter k have poly-size Frege proofs.
- crown decomposition for DualColoring \Rightarrow negative instances of VC with parameter k poly-size Frege proofs.
- improved (ad-hoc) kernelization for EDGE CLIQUE COLOR \Rightarrow negative instances (G,k) of EDGE CLIQUE COVER have extended Frege proofs of poly size and Frege proofs of quasipoly size.
- sunflower lemma-based kernelization of d-HittingSet \Rightarrow negative instances of d-HittingSet extended Frege proofs of poly size.
- NEW Turing kernelization: Instances of CLIQUE(VC) have poly-size Frege proofs.

Applications to Computational Social Choice

- Arrow, Gibbard-Satterthwaite: Fundamental impossibility results on ranking m objects by n agents.
- Tang \& Lin (artificial Intelligence, 2009): Arrow's Theorem has computer-assisted propositional proofs by reducing the general case to the case $n=2, m=3$. Similar results (2008) for the Gibbard-Satterthwaite theorem.
- Their proofs: data reductions of length $\Theta(n+m)$.

We give: data reductions of length $O(n)$, whose soundness can be witnessed by efficient Frege proofs.

Theorem
${\text { Formulas } \text { Arrow }_{m, n}, G S_{m, n} \text { have: }}$

- quasipoly size Frege proofs
- poly size Frege proofs for fixed n.

Further work \& Open problems

- Proof complexity of parameterized intractable (W[1] and higher) problems ?
- Open problem: search complexity of the Octahedral Tucker Lemma?
- Open problem Proof complexity of cutting planes for Kneser ${ }_{n}^{2}$?
- Logics for implicit proof systems ? Other combinatorial principles?

Thank you. Questions ?

