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"Philosophical" Summary/Outline

Mathematics (in particular Algebraic Topology) often works
with exponential size objects (nonconstructive proofs).

(When) can we make them "small"/constructive ?

- Concrete statement: Kneser-Lovász Theorem, hard to
prove (mathematically). Is its propositional encoding
hard in proof complexity ?

- Surprise: easy to prove (mathematically) (with
disclaimers)

- How ? Why ?
- Spoiler: versions of notions of kernelization/data

reduction from parameterized complexity theory.
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Proof Complexity

Given a class of unsatisfiable propositional formulas, how
hard it is to refute them in a certain proof system ?

- Hardness: length/"complexity" of the proof
- ... difficulty of finding it also relevant.
- Proof systems: e.g. resolution ...
- (extended) Frege systems
- cutting planes, polynomial calculus, nullenstellensatz,

sums of squares, semi-algebraic proofs, IPS ....
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Boundaries of proof complexity: Frege proofs

"Textbook-style" proof systems.

Cook-Reckhow: all Frege proof sys poly simulate eachother

• Example, for concreteness [Hilbert Ackermann]
• propositional variables p1,p2, . . . .

• Connectives ¬, or .
• Axiom schemas:

1. ¬(A or A) or A
2. ¬A or (A or B)

3. ¬(A or B) or (B or A)
4. ¬(¬A or B) or (¬(C or A) or (C or B))

• Rule: From A and ¬A or B derive B.

Superpolynomial lower bounds: restricted (e.g. depth)
versions of Frege.
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Proof complexity of the pigeonhole principle

n pigeons in n − 1 holes ⇒ at least two pigeons in same hole !

• E.g. Pigeonhole formula(s): PHPn−1
n

• Xi,j = 1 "pigeon i goes to hole j".
• Xi,1 or Xi,2 or . . . or Xi,n−1, 1 ≤ i ≤ n (each pigeon goes to

(at least) one hole)
• Xk ,j or Xk ,i (pigeon k goes to at most one hole).
• Xk ,j or Xl,j (pigeons k and l do not go together to hole j).
• Resolution complexity: exponential ! (Haken)

Theorem (Buss): PHPn has poly-size Frege proofs.
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Extended Frege proofs

Frege proofs + variable substitutions.

We may introduce variable names for formulas X ⇔ Φ(Y ).
Proves the same formulas but potentially with great
reductions in size.

OPEN PROBLEM: Is extended Frege strictly more powerful
than Frege ? Most natural candidates for separation
turned out to have subexponential Frege proofs.

Wishful thinking: Perhaps translating into SAT a
mathematical statement that is (mathematically) hard to
prove would yield a natural candidate for the separation.
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Kneser’s Conjecture

- Stated in 1955 (Martin Kneser, Jaresbericht DMV)

Let n ≥ 2k − 1 ≥ 1. Let c :
(n

k

)
→ [n − 2k + 1]. Then

there exist two disjoint sets A and B with
c(A) = c(B).

- k = 1 Pigeonhole principle!
- k = 2,3 combinatorial proofs (Stahl, Garey & Johnson)
- k ≥ 4 only proved in 1977 (Lovász) using Algebraic

Topology.
- Combinatorial proofs known (Matousek, Ziegler). "Hide"

Alg. Topology in combinatorics.

No "purely combinatorial" proof was known 8



Kneser’s Conjecture (II)

- the chromatic number of a certain graph Knn,k (at least)
n − 2k + 2. (exact value)

- Vertices:
(n

k

)
. Edges: disjoint sets.

- E.g. k = 2, n = 5: Petersen’s graph has chromatic number
(at least) three.

- "Internal graph" also chromatic number n − 2k + 2
(Schrijver’s theorem).
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Lovász-Kneser as an (unsatisfiable) SAT formula

- naïve encoding XA,k = TRUE iff A colored with color k .
- XA,1 or XA,2 or . . . or XA,n−2k+1 "every set is colored with

(at least) one color"
- XA,j or XB,j (A ∩ B = ∅) "no two disjoint sets are colored

with the same color"
- XA,j or XA,k "no set has two colors".
- Fixed k : Kneserk ,n has poly-size (in n).
- Extends encoding of PHP
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Our results in a nutshell

- Kneser k
n reduces to (is a special case of) Kneser k+1

n−2 .
- Thus all known lower bounds that hold for PHP hold for

any Kneserk .
- Cases with combinatorial proofs:

• k = 2: polynomial size Frege proofs
• k = 3: polynomial size extended Frege proofs

- k ≥ 4: surprisingly, quasipoly Frege/poly extended Frege
proofs.

Most important, "take-home" message: for every fixed k ,
Kneser k

∗ can be proved (mathematically) by an
easy-to-describe reduction to a finite set of values of n,
(to be checked, perhaps on a computer)
completely bypassing Algebraic Topology !
(ICALP 2015/Information and Computation 2018, but written in the language of proof complexity)
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Proof idea

Assume there was a (n − 2k + 1)-coloring of Kneser k
n .

A color class Cl is star shaped if the intersection of all
members is nonempty.

Theorem: If Cl is not star-shaped then |Cl | ≤ k2(n−2
k−2

)
.

Reduction, assuming theorem:
If n > k4 then

(n
k

)
> (n − 2k + 1)k2(n−2

k−2

)
, hence some color

class is star-shaped Cl . Remove Cl and the central element of
class Cl .

Conclusion: We get a (n − 2k)-coloring of Kneser k
n−1.
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Proof of the theorem

Let Cl be a non-star-shaped color class.

• Fix some S = {a1, ...,ak} ∈ Cl .
• For every ai let Si ∈ Pl , ai ̸∈ Si (Cl not star-shaped)
• To specify arbitrary T ∈ Cl :

• Specify ai ∈ T (S ∩ T ̸= ∅)
• Specify x ∈ Si ∩ T .

• Specify the remaining k − 2 elements.

Nr. of choices: k · k ·
(n−2

k−2

)
.
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If Kneser is not difficult, then what is ?

Discrete version of Borsuk-Ulam: Octahedral Tucker’s lemma.
• Intuition: Borsuk-Ulam - no continuous (a.k.a simplicial) antipodal map from the n-ball to the n-sphere.

• For any labeling of T with vertices from {±1, . . . ,±(n − 1)} antipodal on the boundary there exist two
adjacent vertices v ∼ w with c(v) = −c(w).
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Octahedral Tucker Lemma

Definition: Let n ≥ 1. The octahedral ball Bn is:

Bn := {(A,B) : A,B ⊆ [n] and A ∩ B = ∅}.

Definition: Two pairs (A1,B1) and (A2,B2) in Bn are
complementary with respect to λ if A1 ⊆ A2, B1 ⊆ B2 and
λ(A1,B1) = −λ(A2,B2).

Theorem (Octahedral Tucker lemma)

If λ : Bn → {1,±2, . . . ,±n} is antipodal, then there are two
elements in Bn that are complementary.

- barycentric subdivision ⇒ exponentially large formula !
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A class of "hard" formulas based on Octahedral Tucker Lemma

- Kneser follows from a new "low dimensional" Tucker lemma.
- Avoid barycentric subdivision. Instead "truncated version".

Definition: Let 1 ≤ k ≤ n. The truncated octahedral ball Bn
≤k is:

Bn
≤k :=

{
(A,B) ∈ Bn : |A| ≤ k , |B| ≤ k}.

Definition: Let ⪯ be the partial order on sets in
( n
≤k

)
defined

by A ⪯ B iff (A ∪ B)≤k = B.

Definition: For (A1,B1) and (A2,B2) in Bn
≤k , write

(A1,B1) ⪯ (A2,B2) when A1 ⪯ A2, B1 ⪯ B2, and Ai ∩ Bj = ∅ for
i , j ∈ {1,2}. The pairs (A1,B1) and (A2,B2) are
k-complementary with respect to an antipodal map λ on Bn

≤k
if (A1,B1) ⪯ (A2,B2) and λ(A1,B1) = −λ(A2,B2).

16



Truncated Octahedral Tucker Lemma

THEOREM: Let n ≥ k ≥ 1. If λ : Bn
≤k → {1,±2 . . . ,±n} is

antipodal, then there are two elements in Bn
≤k that are

k-complementary.

- (Mathematically) follows from "ordinary" octahedral
Tucker lemma.

- k-truncated Tucker Implies Kneserk .
- Translates (naturally) to formulas Truncatedk

n , whose
proof complexity unknown.

- Generates search problem Truncatedk .
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Complexity of Truncated Tucker Lemma

THEOREM: [ABCCI, journal version] Formulas Tucker1
n have

poly-size extended Frege proofs.

THEOREM: (Aisenberg) Tuckerk ⪯m Tuckerk+1.

THEOREM: (Aisenberg) Tuckerk hard for PPP.

CONCLUSION: Kneserk may not be "hard", but Tuckerk (which
encodes the topological principle used to prove it) probably is!
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Why is Kneser easy? What else is?

- kernelization: reduce instance (x , k) to "kernel
instance" (x ′, k ′), s.t. (x , k) ∈ L iff (x ′, k ′) ∈ L and
|x ′|, k ′ ≤ g(k) for some computable g.

- data reduction: algorithm A that maps in time
poly(|x |+ k ) (x , k) to (x ′, k ′) s.t.
(x , k) ∈ L iff (x ′, k ′) ∈ L and |x ′| ≤ |x |.

- given r data reductions A1, . . . ,Ar , a data
reduction chain for instance (x , k) of L: seq.
(x0, k0), (x1, k1), . . . , (xm, km), where
(x0, k0) = (x , k), At(xm, km) = (xm, km) for
t = 1, . . . r and, for i = 1, . . . ,m ∃j ∈ 1, . . . , r s.t.
(xi , ki) = Aj(xi−1, ki−1).
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Main idea

- "Negative" instance (x , k) of parameterized problem in
NP maps "canonically" to formula Φ(x , k) ∈ SAT .

- If Πi proof for soundness of the reduction rule
(xi , ki) = Aj(xi−1, ki−1) and Πm+1 is a "brute force
proof of unsatisfiability" for the kernel instance
then one can prove Φ(x , k) ∈ SAT by
"concatenating" Π1, . . . ,Πm and Πm+1.

- Need: data reduction of length O(log(n)) to unwind
variable substitutions.
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Applications of Kernelization Techniques to Proof Complexity

- Extend results on Kneser to Schrijver’s theorem.
- classical (ad-hoc) kernelization for VertexCover ⇒ for every

fixed k , negative instances of VC with parameter k have
poly-size Frege proofs.

- crown decomposition for DualColoring ⇒ negative instances of
VC with parameter k poly-size Frege proofs.

- improved (ad-hoc) kernelization for EDGE CLIQUE COLOR ⇒
negative instances (G,k) of EDGE CLIQUE COVER have extended
Frege proofs of poly size and Frege proofs of quasipoly size.

- sunflower lemma-based kernelization of d-HittingSet⇒
negative instances of d-HittingSet extended Frege proofs of
poly size .

- NEW Turing kernelization: Instances of CLIQUE(VC) have
poly-size Frege proofs.
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Applications to Computational Social Choice

- Arrow, Gibbard-Satterthwaite: Fundamental impossibility
results on ranking m objects by n agents.

- Tang & Lin (Artificial Intelligence, 2009): Arrow’s Theorem has
computer-assisted propositional proofs by reducing the
general case to the case n = 2,m = 3. Similar results
(2008) for the Gibbard-Satterthwaite theorem.

- Their proofs: data reductions of length Θ(n + m).

We give: data reductions of length O(n), whose soundness
can be witnessed by efficient Frege proofs.
Theorem
Formulas Arrowm,n,GSm,n have:

• quasipoly size Frege proofs
• poly size Frege proofs for fixed n. 22



Further work & Open problems

- Proof complexity of parameterized intractable (W[1] and
higher) problems ?

- Open problem: search complexity of the Octahedral
Tucker Lemma ?

- Open problem Proof complexity of cutting planes for
Kneser2

n ?
- Logics for implicit proof systems ? Other combinatorial

principles ?
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Thank you. Questions ?

23


