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"Philosophical" Summary/Outline

(When) can we make them "small"/constructive ?

- Concrete statement: Kneser-Lovasz Theorem, hard to
prove (mathematically). Is its propositional encoding
hard in proof complexity ?

- Surprise: easy to prove (mathematically) (with
disclaimers)

- How ? Why ?

- Spoiler: versions of notions of kernelization/data
reduction from parameterized complexity theory.



Proof Complexity

Given a class of unsatisfiable propositional formulas, how
hard it is to refute them in a certain proof system ?

Hardness: of the proof

... difficulty of finding it also relevant.

Proof systems: e.g. resolution ...

(extended) Frege systems

cutting planes, polynomial calculus, nullenstellensatz,
sums of squares, semi-algebraic proofs, IPS ....



Boundaries of proof complexity: Frege proofs

"Textbook-style" proof systems.

’ Cook-Reckhow: all Frege proof sys poly simulate eachother ‘

« Example, for concreteness [Hilbert Ackermann]
+ propositional variables py, po, . ...
- Connectives —, or.
+ Axiom schemas:
1. =(AorA)orA
2. -Aor(AorB)
3. =(Aor B)or(BorA)
4. —(—AorB)or(—(CorA)or(CorB))
* Rule: From A and —A or B derive B.

Superpolynomial lower bounds: restricted (e.g. depth)
versions of Frege.



Proof complexity of the pigeonhole principle

’ n pigeons in n — 1 holes = at least two pigeons in same hole !‘

- E.g. Pigeonhole formula(s): PHP?~"

* X;j = 1"pigeon i goes to hole j"

* XiqorXioor...orX;, 1,1<i<n (each pigeon goes to
(at least) one hole)

» Xk, or X ; (pigeon k goes to at most one hole).

» Xy or X;; (pigeons k and / do not go together to hole j).

* Resolution complexity: exponential ! (Haken)

Theorem (Buss): ’ PHP,, has poly-size Frege proofs.‘




Extended Frege proofs

Frege proofs +

We may introduce variable names for formulas X < &(Y).
Proves the same formulas but potentially with great
reductions in size.

OPEN PROBLEM: Is extended Frege strictly more powerful
than Frege ? Most natural candidates for separation
turned out to have subexponential Frege proofs.

Wishful thinking: Perhaps translating into SAT a
mathematical statement that is (mathematically) hard to
prove would yield a natural candidate for the separation.



Kneser's Conjecture

- Stated in 1955 (Martin Kneser, Jaresbericht DMV)

Letn>2k—1>1.Letc: (}) — [n—2k+1]. Then
there exist two disjoint sets A and B with
c(A) = ¢(B).

- k = 1 Pigeonhole principle!

- k = 2,3 combinatorial proofs (Stahl, Garey & Johnson)

- k > 4 only proved in 1977 (Lovasz) using Algebraic
Topology.

- Combinatorial proofs known (Matousek, Ziegler). "Hide"
Alg. Topology in combinatorics.

No "purely combinatorial" proof was known



Kneser’s Conjecture (1I)

- the chromatic number of a certain graph Kn,, « (at least)
n— 2k + 2. (exact value)

- Vertices: (}). Edges: disjoint sets.

- E.g. k =2, n=5: Petersen’s graph has chromatic number
(at least) three.

- "Internal graph" also chromatic number n — 2k + 2
(Schrijver's theorem).
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Lovasz-Kneser as an (unsatisfiable) SAT formula

- naive encoding Xa x = TRUE iff A colored with color k.

- Xat10r Xao0r ... or Xan o1 "every setis colored with
(at least) one color"

- Xaj or X (AN B = () "no two disjoint sets are colored
with the same color"

- Xaj or X "no set has two colors".
- Fixed k: Knesery , has poly-size (in n).
- Extends encoding of PHP
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Our results in a nutshell

Kneser} reduces to (is a special case of) Kneser ™).

Thus all known lower bounds that hold for PHP hold for
any Knesery.
Cases with combinatorial proofs:

« k = 2: polynomial size Frege proofs

+ k = 3: polynomial size extended Frege proofs
k > 4: surprisingly, quasipoly Frege/poly extended Frege
proofs.

Most important, "take-home" message: for every fixed k,
Kneserk can be proved (mathematically) by an
easy-to-describe reduction to a finite set of values of n,
(to be checked, perhaps on a computer)

completely bypassing Algebraic Topology !
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Assume there was a (n — 2k + 1)-coloring of Kneserk.

A color class C; is star shaped if the intersection of all
members is nonempty.

Theorem: If C; is not star-shaped then |C| < k?(7~3).

Reduction, assuming theorem:

If n > k*then () > (n— 2k + 1)k?(;~5), hence some color
class is star-shaped C;. Remove C; and the central element of
class C,.

Conclusion: We get a (n — 2k)-coloring of KneserX_,.
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Proof of the theorem

Let C; be a non-star-shaped color class.

+ Fixsome S ={ay,...,ax} € C,.
+ For every a; let S; € P, a; ¢ S; (C, not star-shaped)
« To specify arbitrary T € C;:

* Specifya e T(SNT #0)

« Specifyx e §;n T.

+ Specify the remaining k — 2 elements.

Nr. of choices: k - k - (Z:g)
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If Kneser is not difficult, then what is ?

Discrete version of Borsuk-Ulam: Octahedral Tucker’s lemma.

+ Intuition: Borsuk-Ulam - no continuous (a.k.a simplicial) antipodal map from the n-ball to the n-sphere.

« Forany labeling of T with vertices from {+£1, ..., +(n — 1)} antipodal on the boundary there exist two

adjacent vertices v ~ w with ¢(v) = —c(w).
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Octahedral Tucker Lemma

Definition: Let n > 1. The octahedral ball B" is:

B" .= {(A,B): A /BC[njand AN B = 0}.

Definition: Two pairs (A, B;) and (Az, By) in B" are
complementary with respect to X if A; C Ay, By C B, and
A(A1, By) = —\(As, Bo).

Theorem (Octahedral Tucker lemma)

If\:B"— {1,£2,...,4+n} is antipodal, then there are two
elements in B" that are complementary.

- barycentric subdivision = exponentially large formula!
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A class of "hard" formulas based on Octahedral Tucker Lemma

- Kneser follows from a new "low dimensional" Tucker lemma.
- Avoid barycentric subdivision. Instead "truncated version".

Definition: Let 1 < k < n. The truncated octahedral ball ng is:

BL, = {(A, B) e B": |Al <k, |B| < k}.

Definition: Let < be the partial order on sets in (}) defined
by A < B iff (AUB)< = B. -

Definition: For (A¢, By) and (Ag, Bo) in BZ,, write

(A1, By) < (Az, By) when Ay < A, By < By, and A;n B; = () for
i,j € {1,2}. The pairs (A1, By) and (Aq, B,) are
k-complementary with respect to an antipodal map A on BZ,
if (A1, By) = (A2, Bo) and A(Ay, By) = —A(Az, Bo). -
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Truncated Octahedral Tucker Lemma

THEOREM: Let n > k > 1. If A B2, — {1,42... +n}is
antipodal, then there are two elements in B2, that are
k-complementary.

- (Mathematically) follows from "ordinary" octahedral
Tucker lemma.

- k-truncated Tucker Implies Knesery.

- Translates (naturally) to formulas Truncated,’;, whose
proof complexity unknown.

- Generates search problem Truncatedy.

17



Complexity of Truncated Tucker Lemma

THEOREM: [ABCCI, journal version] Formulas Tucker! have
poly-size extended Frege proofs.

THEOREM: (Aisenberg) Tuckery =<, Tucker..
THEOREM: (Aisenberg) Tuckery hard for PPP.

CONCLUSION: Kneser, may not be "hard", but Tucker, (which
encodes the topological principle used to prove it) probably is!
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is Kneser easy? What else is?

- kernelization: reduce instance (x, k) to "kernel
instance" (x', k'), st. (x, k) € Liff (x', k") € L and
|x'|, k" < g(k) for some computable g.

Kernelization . . L
- data reduction: algorithm A that maps in time

poly(|x| + k) (x, k) to (x’, K) s.t.
(x,k) € Liff (x',k') € Land |x| < |x|.

- given r data reductions Ay, ..., A,, a data
reduction chain for instance (x, k) of L: seq.

(X0, ko) = (X, k), At(Xm, km) = (Xm, km) for
t=1,...rand,fori=1,... m3je, ... rst
(Xi, ki) = Ai(Xi—1, ki—1).
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- "Negative" instance (x, k) of parameterized problem in
NP maps "canonically" to formula ¢(x, k) € SAT.

- If N; proof for soundness of the reduction rule
(Xi, ki) = Aj(Xi—1, ki—1) and M4 is a "brute force
proof of unsatisfiability" for the kernel instance
then one can prove ®(x, k) € SAT by
"concatenating" My, ..., My and My, 4.

- Need: data reduction of length O(log(n)) to unwind
variable substitutions.

20



Applications of Kernelization Techniques to Proof Complexity

- Extend results on Kneser to Schrijver’'s theorem.

- classical (ad-hoc) kernelization for VertexCover = for every
fixed k, negative instances of VC with parameter k have
poly-size Frege proofs.

- crown decomposition for DualColoring = negative instances of
VC with parameter k poly-size Frege proofs.

- improved (ad-hoc) kernelization for EDGE CLIQUE COLOR =
negative instances (G,k) of EDGE CLIQUE COVER have extended
Frege proofs of poly size and Frege proofs of quasipoly size.

- sunflower lemma-based kernelization of d-HittingSet=
negative instances of d-HittingSet extended Frege proofs of
poly size.

- NEW Turing kernelization: Instances of CLIQUE(VC) have

poly-size Frege proofs. ,
1



Applications to Computational Social Choice

- Arrow, Gibbard-Satterthwaite: Fundamental impossibility
results on ranking m objects by n agents.

- Tang & Lin (rificial inteliigence, 2000): Arrow’s Theorem has
computer-assisted propositional proofs by reducing the
general case to the case n =2, m = 3. Similar results
(2008) for the Gibbard-Satterthwaite theorem.

- Their proofs: data reductions of length ©(n+ m).

We give: data reductions of length O(n), whose soundness
can be witnessed by efficient Frege proofs.

Theorem
Formulas Arrowm n, GSm n have:

* quasipoly size Frege proofs

« poly size Frege proofs for fixed n. 2



Further work & Open problems

- Proof complexity of parameterized intractable (W[1] and
higher) problems ?

- Open problem:

- Open problem Proof complexity of cutting planes for
Kneser? ?

- Logics for implicit proof systems ? Other combinatorial
principles ?
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Thank you.



