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Motivating Question
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Let  be a field withL

 = ring of integers of , which is subring of 𝒪L L L

Ring of integers of  is ℚ ℤ

“Base Case”: . Is  -definable in  ?L = ℚ ℤ ∃ ℚ

ℚ

L

ℚ

Question: When is  -definable in ?𝒪L ∃ L
ℤ

𝒪L

⊇

⊇

Question is of interest because it is connected to Hilbert’s Tenth Problem

This question is already too difficult!



Alternate Question

3

If the “base case” is already too difficult, what can we 
show instead?

ℚ

L

ℚ
Theorem (E-Miller-Springer-Westrick): 

 is “small”.S := {L ⊆ ℚ : 𝒪L is ∃-definable in L}

ℤ

𝒪L

⊇

⊇

Goal: Introduce topology on set of algebraic 
extensions of  and show that  is meager in 
that topology.

ℚ S



Hilbert’s Tenth Problem

Matiyasevich (1970): No such algorithm exists.

Matiyasevich’s proof was based on work by 
Davis, Putnam, and Robinson.

Hilbert’s Tenth Problem over :ℤ

Find an algorithm that decides, given a 
multivariate polynomial equation  
with coefficients in the ring  of integers, 
whether there is a solution with .

f(x1, …, xn) = 0
ℤ

x1, …, xn ∈ ℤ
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We say that Hilbert’s Tenth Problem is undecidable.

Original Problem: Posed by Hilbert in 1900.



Equivalent Problems

Equivalent since f1 = f2 = 0 ⟺ f 2
1 + f 2

2 = 0.

Find an algorithm to decide the truth of 
positive existential sentences.
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Find an algorithm that decides whether a system of 
equations as above has integer solutions.



Hilbert’s Tenth Problem 
(H10) over ℚ
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Can consider analogous problem for :ℚ

Find an algorithm that decides, given a multivariate 
polynomial equation with coefficients in , whether 
it has a solution in .

ℚ
ℚ

This problem is still open!

One possible way to resolve H10 for :ℚ

Use the following lemma:
Lemma: If  is existentially definable in , then H10 
for  is undecidable.

ℤ ℚ
ℚ



Existentially defining ℤ
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Proof of lemma is by reduction:

Lemma: If  is existentially definable in , then H10 
for  is undecidable.

ℤ ℚ
ℚ

Suppose by means of contradiction that  is existentially 
definable in  and that there is an algorithm for H10/ .

ℤ
ℚ ℚ

Will get contradiction by showing this would give an 
algorithm for H10/ :ℤ
Given an equation with integer coefficients.

-Algorithm for H10/  tells us if there is a rational solution. ℚ
-Existential definition of  in  allows us to force 
solution to take integer values. 

ℤ ℚ

Contradiction since no algorithm for H10/  exists!ℤ



Is  -definable in ?ℤ ∃ ℚ
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This question is still open. 

If Mazur’s conjecture holds the answer is no.

Mazur’s conjecture: If  is a variety over , then 
the topological closure of  in  has only 
finitely many components.

X ℚ
X(ℚ) X(ℝ)



Defining a topology on 
algebraic extensions ℚ
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 = algebraic closure of ℚ ℚ

Definition: Given field ,
ring of integers  = elements in  that are roots of 
monic polynomial with integer coefficients. 

L ⊆ ℚ
𝒪L L

Example: L = ℚ( 3)

𝒪L = ℤ[ 3]
Main fact we will need: 𝒪L ∩ ℚ = ℤ

 is small.S := {L ⊆ ℚ : 𝒪L is ∃-definable in L}
Want to show:

Setup:



first-order 
definability results
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For  = finite extension of  (i.e.  is a number field):K ℚ K

 is first-order definable in  (Julia Robinson, 1959)𝒪K K

 is -definable in  (Koenigsmann, Park)𝒪K ∀ K

For  = infinite extension of :K ℚ

Very little is known.

Know  is first-order definable in  for  special 
fields  (e.g.,  with = primitive -th 
root of unity (Fukuzaki, Shlapentokh, Videla)

𝒪K K
K K = ℚ(ζpn) ζpn pn



Undefinability 
results
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Here we know even less.

 is not definable in ℤtr ℚtr

Totally real integers Totally real algebraic numbers
undecidable (Robinson) decidable (Fried, Haran, Völklein)

 is not definable in ℤ ℚ



A topology on the 
subfields of  ℚ
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Let .Sub(ℚ) = {L ⊆ ℚ : L is a field}

Topology on : For each ,  is clopen. Sub(ℚ) a ∈ ℚ {L : a ∈ L}
Identify a subset  of  with its characteristic function.S ℚ

So can view  as a subset of .Sub(ℚ) 2ℚ

Basis for this topology:
For any pair  of finite subsets of , considerA, B ℚ

UA,B := {L ∈ Sub(ℚ) : A ⊆ L and B ∩ L = ∅} .
The  form basis for above topology.UA,B

Let S := {L ⊆ ℚ : 𝒪L is ∃-definable in L} .
Will show:  is a meager subset of . S Sub(ℚ)



Nowhere dense and 
meager sets
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Definition: A subset  of a topological space is 
meager if it is a countable union of nowhere dense 
sets.

S

Definition: A subset  of a topological space is 
nowhere dense if for every non-empty open , 
exists non-empty open  with .

S
U

V ⊆ U V ∩ S = ∅

Can show:  is homeomorphic to Cantor space .Sub(ℚ) {0,1}ℕ

This implies:
Every non-empty open subset of  is non-meager.Sub(ℚ)



Main Theorem
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Main Theorem (E-Miller-Springer-Westrick)(Simplified Form) 

Can state a more general theorem by introducing the 
notion of a thin set.

Our proof does not use the ring structure of .𝒪L

is meager.{L ⊆ ℚ : 𝒪L is ∃-definable or∀-definable in L}



-definable ring of 
integers

∃
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Let’s specialize further: show that
 is meager.S := {L ⊆ ℚ : 𝒪L is ∃-definable in L}

The proof has two main ingredients:
Proposition: Let  be such that 
 is irreducible over  and does not divide .

f, g ∈ ℚ[X, Y1, …, Ym]
f ℚ g

1.

Let .β(X) = ∃Y1, …, Ym[ f(X, ⃗Y = 0 ≠ g(X, ⃗Y )]
Then

Sβ := {L ⊆ ℚ : {x ∈ ℚ : β(x) holds in L} ⊆ ℤ}

is nowhere dense. 



Normal form Theorem for 
existential definitions

16

2. Theorem: Let  with  -definable in . 
Then  can be defined by a formula of the form

L ⊆ Sub(ℚ) 𝒪L ∃ L
𝒪L

α(X) =
r

⋁
i=1

βi(x)

with each  having one of two possible forms:βi

X = z0 for a fixed z0 ∈ L

(ii) ∃Y1, …, Ym f(X, Y1, …, Ym) = 0 ≠ g(X, Y1, …, Ym)

(i)

with ,  irreducible over  and 
not dividing .

f, g ∈ ℚ[X, Y1, …, Ym] f ℚ
g



Sketch of proof of Main 
Theorem using 1 and 2
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Main Theorem:  is meager.S := {L ⊆ ℚ : 𝒪L is ∃-definable in L}

Consider  with  as in  1.   ⋃
β

Sβ β

Recall  is nowhere dense by  1.Sβ = {L ⊆ Q : {x ∈ ℚ : β(x) holds in L} ⊆ ℤ}

β(X) = ∃Y1, …, Ym [ f(X, Y1, …, Ym) = 0 ≠ g(X, Y1, …, Ym)]

Claim: S ⊆ ⋃
β

Sβ

By 1. ,  is nowhere dense. Hence  is contained in a countable 
union of nowhere dense sets, which is meager.

Sβ S

Proof:

I.e.

Claim implies that  is meager:S

Last step: prove claim to finish the proof.



Last step: Proof of Claim 
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Claim: S ⊆ ⋃
β

Sβ

Proof by contradiction: assume there exists  with , .L L ∈ S L ∉ ⋃
β

Sβ

β(X ) = ∃Y1, …, Ym [ f(X, Y1, …, Ym) = 0 ≠ g(X, Y1, …, Ym)]

  is irreducible over  and does not divide .f ℚ g

Sβ = {L ⊆ ℚ : {x ∈ ℚ : β(x) holds in L} ⊆ ℤ}

 .S = {L ⊆ ℚ : 𝒪L is ∃-definable in L}

- By  2. : can find α(X) =
r

⋁
i=1

βi(X) defining  in 𝒪L L

with each  either (i) βi X = z0 .∃ ⃗Y f(X, ⃗Y ) = 0 ≠ g(X, ⃗Y )or (ii) 

-  is infinite: so at least one  must be as in (ii).𝒪L βi

- This means:  such that  and hence  holds.∃x ∈ ℚ − ℤ βi(x) α(x)

- But  defines  in , and , so  does not hold for 
, contradiction. This finishes proof of main theorem.

α(x) 𝒪L L ℚ ∩ 𝒪L = ℤ α(x)
x ∈ ℚ − ℤ

-By assumption: L ∉ Sβi
.



Generalizations
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1. Can prove Main Theorem with  replaced with 
.

Sub(ℚ)
Sub(ℚ)/ ≅

2. Proof of Main Theorem shows something stronger:
Theorem: Suppose  is any finite subset of  with  
-definable in . If , then A lies in .

A L A
∃ L A ∩ ℚ ⊆ ℤ ⋃

β

Sβ

3. Have analogous statement for -definable sets.∀

4. After seeing a talk byWestrick on this topic:
Dittmann-Fehm showed, using model theoretic methods, 
that  is meager in 

.
{L ∈ Sub(ℚ) : 𝒪L is first-order definable in L}

Sub(ℚ)



Open Question
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Can you prove a similar statement in terms of Lebesgue 
measure?

I.e., can you consider the Lebesgue measure on 
Cantor space and transfer it to  via some 
computable homeomorphism?

Sub(ℚ)/ ≅

Problem: resulting measure is not canonical.

Future Goal: investigate measure theoretic perspective.
Want to prove some statement like: set of fields where 
the ring of integers is existentially definable has 
measure zero.



Comparison with char p > 0
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Analogue in positive characteristic: function fields

Definability questions for subfields of : motivated 
by trying to prove undecidability results.

ℚ

Theorem (Julia Robinson): Let  be a finite extension of 
. Then  is definable in  and the first-order theory of 
 is undecidable.

K
ℚ 𝒪K K
K

In infinite extensions of : we know very littleℚ
Some people conjecture that there is some “threshold” 
above which the ring of integer is no longer definable. 
Our main theorem shows: non-definability of the ring of 
integers is the expected outcome.



Function Fields
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=field of positive characteristick
=polynomial ring in     (  transcendental element) k[t] t t

=fraction field of  = rational function field over  
in one variable
k(t) k[t] k

Definition: Let  be a finite algebraic extension of . 
We call  an (algebraic) function field in one variable.

K k(t)
K

Definition: The constant field of a function field  
as above is the algebraic closure of  in . 

K
k K



Definability Results
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Let  = function field of pos. char ,  a discrete 
valuation on .

K p ordq

K

Suffices to show the following two sets are existentially 
definable in : K

Lemma:

1. INTq = {x ∈ K : ordq(x) ≥ 0}

2. .p(K) = {(x, y) ∈ K2 : ∃s ∈ ℤ≥0 : y = xps}

Can do this when  does not contain the algebraic 
closure of a finite field (Pheidas, Videla, Shlapentokh, E).

K

To prove undecidability of existential theory of :K



Undecidability for function 
fields in positive 

characteristic
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Theorem (E-Shlapentokh): The existential theory of a 
function field of positive char. is undecidable in the 
language of rings provided that the constant field does 
not contain the algebraic closure of a finite field.



First-order Theory
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For first order theory: to prove undecidability, suffices to show

  is definable in .p(K) = {(x, y) ∈ K2 : ∃s ∈ ℤ≥0 : y = xps} K

Theorem (E-Shlapentokh): The first-order theory of any 
function field  of characteristic  is undecidable in the 
language of rings without parameters.

K p > 2

This approach was used to prove the following:



Conclusion
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For algebraic extensions of , obtaining (un)definability 
results for individual infinite extensions is very difficult.

ℚ

Topological approach on   gives a different 
perspective.

Sub(ℚ)

In positive characteristic: situation is much better 
understood. Only constraint for existential 
definability is dealing with algebraically closed 
constant fields.


