UNDECIDABILITY AND UNDEFINABILITY IN ALGEBRAIC EXTENSIONS OF THE RATIONALS

KIRSTEN EISENTRÄGER

PENN STATE

#### **MOTIVATING QUESTION**

 $\overline{\mathbb{Q}}$ 

Let *L* be a field with  $L \supseteq \mathcal{O}_L$  $| \qquad |$  $\mathbb{Q} \supseteq \mathbb{Z}$ 

Question: When is  $\mathcal{O}_L \exists$ -definable in *L*?

 $\ll \mathcal{O}_L = \text{ring of integers of } L$ , which is subring of L $\ll \text{Ring of integers of } Q$  is  $\mathbb{Z}$ 

"Base Case":  $L = \mathbb{Q}$ . Is  $\mathbb{Z}$   $\exists$ -definable in  $\mathbb{Q}$ ?

Question is of interest because it is connected to Hilbert's Tenth Problem This question is already too difficult!

#### **ALTERNATE QUESTION**

If the "base case" is already too difficult, what can we show instead?

 $\overline{\mathbb{O}}$ 

 $L \supset \mathcal{O}_I$ 

7

 $\bigcirc \supset$ 

**Theorem** (E-Miller-Springer-Westrick):  $S := \{L \subseteq \overline{\mathbb{Q}} : \mathcal{O}_L \text{ is } \exists \text{-definable in } L\} \text{ is "small".}$ 

**Goal:** Introduce topology on set of algebraic extensions of  $\mathbb{Q}$  and show that *S* is meager in that topology.

## HILBERT'S TENTH PROBLEM Original Problem: Posed by Hilbert in 1900. Hilbert's Tenth Problem over Z:

Find an algorithm that decides, given a multivariate polynomial equation  $f(x_1, ..., x_n) = 0$  with coefficients in the ring  $\mathbb{Z}$  of integers, whether there is a solution with  $x_1, ..., x_n \in \mathbb{Z}$ .



Matiyasevich (1970): No such algorithm exists.

Matiyasevich's proof was based on work by Davis, Putnam, and Robinson.

We say that Hilbert's Tenth Problem is undecidable.

#### EQUIVALENT PROBLEMS

Find an algorithm that decides whether a system of equations as above has integer solutions.

Equivalent since  $f_1 = f_2 = 0 \iff f_1^2 + f_2^2 = 0$ .

Find an algorithm to decide the truth of positive existential sentences.

## HILBERT'S TENTH PROBLEM (H10) OVER Q

Can consider analogous problem for Q:

Find an algorithm that decides, given a multivariate polynomial equation with coefficients in  $\mathbb{Q}$ , whether it has a solution in  $\mathbb{Q}$ .

This problem is still open!

One possible way to resolve H10 for Q:

Use the following lemma:

**Lemma:** If  $\mathbb{Z}$  is existentially definable in  $\mathbb{Q}$ , then H10 for  $\mathbb{Q}$  is undecidable.

## Existentially defining $\mathbb{Z}$

**Lemma:** If  $\mathbb{Z}$  is existentially definable in  $\mathbb{Q}$ , then H10 for  $\mathbb{Q}$  is undecidable.

Proof of lemma is by reduction:

Suppose by means of contradiction that  $\mathbb{Z}$  is existentially definable in  $\mathbb{Q}$  and that there is an algorithm for H10/ $\mathbb{Q}$ .

Will get contradiction by showing this would give an algorithm for H10/ $\mathbb{Z}$ :

Given an equation with integer coefficients.

-Algorithm for H10/Q tells us if there is a rational solution. -Existential definition of  $\mathbb{Z}$  in Q allows us to force solution to take integer values.

Contradiction since no algorithm for H10/Z exists!

# Is $\mathbb{Z}$ 3-definable in $\mathbb{Q}$ ?

This question is still open.

If Mazur's conjecture holds the answer is no.

**Mazur's conjecture:** If *X* is a variety over  $\mathbb{Q}$ , then the topological closure of *X*( $\mathbb{Q}$ ) in *X*( $\mathbb{R}$ ) has only finitely many components.

## DEFINING A TOPOLOGY ON ALGEBRAIC EXTENSIONS Q

#### Setup:

 $\overline{\mathbb{Q}}$  = algebraic closure of  $\mathbb{Q}$ **Definition:** Given field  $L \subseteq \overline{\mathbb{Q}}$ , ring of integers  $\mathcal{O}_L$  = elements in L that are roots of monic polynomial with integer coefficients. **Example:**  $L = \mathbb{Q}(\sqrt{3})$  $\mathcal{O}_I = \mathbb{Z}[\sqrt{3}]$ Main fact we will need:  $\mathcal{O}_L \cap \mathbb{Q} = \mathbb{Z}$ Want to show:  $S := \{L \subseteq \overline{\mathbb{Q}} : \mathcal{O}_L \text{ is } \exists \text{-definable in } L\} \text{ is small.}$ 

## FIRST-ORDER DEFINABILITY RESULTS

For K = finite extension of  $\mathbb{Q}$  (i.e. K is a number field):

 $\mathcal{O}_K$  is first-order definable in K (Julia Robinson, 1959)

 $\mathcal{O}_K$  is  $\forall$ -definable in K (Koenigsmann, Park)

For K = infinite extension of  $\mathbb{Q}$ :

Very little is known.

Know  $\mathcal{O}_K$  is first-order definable in *K* for special fields *K* (e.g.,  $K = \mathbb{Q}(\zeta_{p^n})$  with  $\zeta_{p^n} =$  primitive  $p^n$ -th root of unity (Fukuzaki, Shlapentokh, Videla)

## UNDEFINABILITY RESULTS

Here we know even less.

 $\mathbb{Z}^{tr}$  is not definable in  $\mathbb{Q}^{tr}$ 

Totally real integers undecidable (Robinson)

Totally real algebraic numbers decidable (Fried, Haran, Völklein)

#### $\overline{\mathbb{Z}}$ is not definable in $\overline{\mathbb{Q}}$

## A TOPOLOGY ON THE SUBFIELDS OF $\mathbb{Q}$ Let Sub( $\overline{\mathbb{Q}}$ ) = { $L \subseteq \overline{\mathbb{Q}} : L$ is a field}.

**Topology on** Sub( $\overline{\mathbb{Q}}$ ): For each  $a \in \overline{\mathbb{Q}}$ , { $L : a \in L$ } is clopen. Identify a subset *S* of  $\overline{\mathbb{Q}}$  with its characteristic function. So can view Sub( $\overline{\mathbb{Q}}$ ) as a subset of  $2^{\overline{\mathbb{Q}}}$ .

#### **Basis for this topology:**

- For any pair *A*, *B* of finite subsets of  $\overline{\mathbb{Q}}$ , consider  $U_{A,B} := \{L \in \operatorname{Sub}(\overline{\mathbb{Q}}) : A \subseteq L \text{ and } B \cap L = \emptyset\}$ . The  $U_{A,B}$  form basis for above topology.
- Let  $S := \{L \subseteq \overline{\mathbb{Q}} : \mathcal{O}_L \text{ is } \exists \text{-definable in } L\}$ . Will show: *S* is a meager subset of  $\text{Sub}(\overline{\mathbb{Q}})$ .

#### NOWHERE DENSE AND MEAGER SETS

**Definition:** A subset *S* of a topological space is **nowhere dense** if for every non-empty open *U*, exists non-empty open  $V \subseteq U$  with  $V \cap S = \emptyset$ .

**Definition:** A subset *S* of a topological space is **meager** if it is a countable union of nowhere dense sets.

**Can show:** Sub( $\overline{\mathbb{Q}}$ ) is homeomorphic to Cantor space  $\{0,1\}^{\mathbb{N}}$ . This implies:

Every non-empty open subset of  $Sub(\overline{\mathbb{Q}})$  is non-meager.

# MAIN THEOREM

Main Theorem (E-Miller-Springer-Westrick) (Simplified Form)

 $\{L \subseteq \overline{\mathbb{Q}} : \mathcal{O}_L \text{ is } \exists \text{-definable or } \forall \text{-definable in } L\} \text{ is meager.}$ 

Can state a more general theorem by introducing the notion of a thin set.

Our proof does not use the ring structure of  $\mathcal{O}_L$ .

# **B**-DEFINABLE RING OF INTEGERS

Let's specialize further: show that  $S := \{L \subseteq \overline{\mathbb{Q}} : \mathcal{O}_L \text{ is } \exists \text{-definable in } L\}$  is meager.

The proof has two main ingredients:

1. **Proposition:** Let  $f, g \in \mathbb{Q}[X, Y_1, ..., Y_m]$  be such that f is irreducible over  $\overline{\mathbb{Q}}$  and does not divide g. Let  $\beta(X) = \exists Y_1, ..., Y_m[f(X, \overline{Y} = 0 \neq g(X, \overline{Y})].$ Then

 $S_{\beta} := \{ L \subseteq \overline{\mathbb{Q}} : \{ x \in \mathbb{Q} : \beta(x) \text{ holds in } L \} \subseteq \mathbb{Z} \}$ 

is nowhere dense.

#### NORMAL FORM THEOREM FOR EXISTENTIAL DEFINITIONS

**Theorem:** Let  $L \subseteq \operatorname{Sub}(\overline{\mathbb{Q}})$  with  $\mathcal{O}_L \exists$ -definable in L. Then  $\mathcal{O}_L$  can be defined by a formula of the form  $\alpha(X) = \bigvee_{i=1}^r \beta_i(x)$ 

with each  $\beta_i$  having one of two possible forms:

(i)  $X = z_0$  for a fixed  $z_0 \in L$ 

2.

(ii)  $\exists Y_1, ..., Y_m f(X, Y_1, ..., Y_m) = 0 \neq g(X, Y_1, ..., Y_m)$ with  $f, g \in \mathbb{Q}[X, Y_1, ..., Y_m]$ , *f* irreducible over  $\overline{\mathbb{Q}}$  and not dividing *g*.

## SKETCH OF PROOF OF MAIN THEOREM USING 1 AND 2

**Main Theorem:**  $S := \{L \subseteq \overline{\mathbb{Q}} : \mathcal{O}_L \text{ is } \exists \text{-definable in } L\}$  is meager.

**Proof:** Consider  $\bigcup_{\beta} S_{\beta}$  with  $\beta$  as in 1.

I.e.  $\beta(X) = \exists Y_1, \dots, Y_m [f(X, Y_1, \dots, Y_m) = 0 \neq g(X, Y_1, \dots, Y_m)]$ Recall  $S_\beta = \{L \subseteq \overline{Q} : \{x \in \mathbb{Q} : \beta(x) \text{ holds in } L\} \subseteq \mathbb{Z}\}$  is nowhere dense by 1. Claim:  $S \subseteq \bigcup_{\beta} S_\beta$ 

Claim implies that S is meager:

By 1.,  $S_{\beta}$  is nowhere dense. Hence *S* is contained in a countable union of nowhere dense sets, which is meager.

Last step: prove claim to finish the proof.

#### LAST STEP: PROOF OF CLAIM

**Claim:**  $S \subseteq \bigcup_{\beta} S_{\beta}$ 

 $S = \{L \subseteq \overline{\mathbb{Q}} : \mathcal{O}_L \text{ is } \exists \text{-definable in } L\}.$   $S_{\beta} = \{L \subseteq \overline{\mathbb{Q}} : \{x \in \mathbb{Q} : \beta(x) \text{ holds in } L\} \subseteq \mathbb{Z}\}$   $\beta(X) = \exists Y_1, \dots, Y_m \left[f(X, Y_1, \dots, Y_m) = 0 \neq g(X, Y_1, \dots, Y_m)\right]$  *f* is irreducible over  $\overline{\mathbb{Q}}$  and does not divide *g*.

**Proof by contradiction:** assume there exists *L* with  $L \in S$ ,  $L \notin \bigcup S_{\beta}$ .

- By 2.: can find  $\alpha(X) = \bigvee_{i=1}^{r} \beta_i(X)$  defining  $\mathcal{O}_L$  in Lwith each  $\beta_i$  either (i)  $X = z_0$  or (ii)  $\exists \vec{Y} f(X, \vec{Y}) = 0 \neq g(X, \vec{Y})$ .

- $\mathcal{O}_L$  is infinite: so at least one  $\beta_i$  must be as in (ii).
- -By assumption:  $L \notin S_{\beta_i}$ .
- This means:  $\exists x \in \mathbb{Q} \mathbb{Z}$  such that  $\beta_i(x)$  and hence  $\alpha(x)$  holds.

- But  $\alpha(x)$  defines  $\mathcal{O}_L$  in *L*, and  $\mathbb{Q} \cap \mathcal{O}_L = \mathbb{Z}$ , so  $\alpha(x)$  does not hold for  $x \in \mathbb{Q} - \mathbb{Z}$ , contradiction. This finishes proof of main theorem.

## GENERALIZATIONS

1. Can prove Main Theorem with  $Sub(\overline{\mathbb{Q}})$  replaced with  $Sub(\overline{\mathbb{Q}})/\cong$ .

2. Proof of Main Theorem shows something stronger: **Theorem:** Suppose *A* is any finite subset of *L* with *A*  $\exists$ -definable in *L*. If  $A \cap \mathbb{Q} \subseteq \mathbb{Z}$ , then A lies in  $\bigcup S_{\beta}$ .

3. Have analogous statement for  $\forall$ -definable sets.

4. After seeing a talk by Westrick on this topic: Dittmann-Fehm showed, using model theoretic methods, that  $\{L \in \operatorname{Sub}(\overline{\mathbb{Q}}) : \mathcal{O}_L \text{ is first-order definable in } L\}$  is meager in  $\operatorname{Sub}(\overline{\mathbb{Q}}).$ 

# **OPEN QUESTION**

Can you prove a similar statement in terms of Lebesgue measure?

I.e., can you consider the Lebesgue measure on Cantor space and transfer it to  $Sub(\overline{\mathbb{Q}})/\cong$  via some computable homeomorphism?

Problem: resulting measure is not canonical.

Future Goal: investigate measure theoretic perspective. Want to prove some statement like: set of fields where the ring of integers is existentially definable has measure zero. COMPARISON WITH CHAR p > 0

**Definability questions for subfields of**  $\overline{\mathbb{Q}}$ : motivated by trying to prove undecidability results.

**Theorem (Julia Robinson):** Let *K* be a finite extension of  $\mathbb{Q}$ . Then  $\mathcal{O}_K$  is definable in *K* and the first-order theory of *K* is undecidable.

In infinite extensions of  $\overline{\mathbb{Q}}$ : we know very little

Some people conjecture that there is some "threshold" above which the ring of integer is no longer definable. Our main theorem shows: non-definability of the ring of integers is the expected outcome.

Analogue in positive characteristic: function fields

## FUNCTION FIELDS

k=field of positive characteristic k[t]=polynomial ring in t (t transcendental element) k(t)=fraction field of k[t] = rational function field over kin one variable

**Definition:** Let K be a finite algebraic extension of k(t). We call K an (algebraic) function field in one variable.

**Definition:** The constant field of a function field *K* as above is the algebraic closure of *k* in *K*.

## DEFINABILITY RESULTS

Let K = function field of pos. char p, ord<sub>q</sub> a discrete valuation on K.

#### Lemma:

To prove undecidability of existential theory of *K*: Suffices to show the following two sets are existentially definable in *K*:

1. 
$$INT_q = \{x \in K : ord_q(x) \ge 0\}$$

2.  $p(K) = \{(x, y) \in K^2 : \exists s \in \mathbb{Z}_{\geq 0} : y = x^{p^s}\}.$ 

Can do this when *K* does not contain the algebraic closure of a finite field (Pheidas, Videla, Shlapentokh, E).

## UNDECIDABILITY FOR FUNCTION FIELDS IN POSITIVE CHARACTERISTIC

**Theorem** (E-Shlapentokh): The existential theory of a function field of positive char. is undecidable in the language of rings provided that the constant field does not contain the algebraic closure of a finite field.

## FIRST-ORDER THEORY

For first order theory: to prove undecidability, suffices to show

 $p(K) = \{(x, y) \in K^2 : \exists s \in \mathbb{Z}_{>0} : y = x^{p^s}\} \text{ is definable in } K.$ 

This approach was used to prove the following:

**Theorem** (E-Shlapentokh): The first-order theory of any function field *K* of characteristic p > 2 is undecidable in the language of rings without parameters.

## CONCLUSION

For algebraic extensions of Q, obtaining (un)definability results for individual infinite extensions is very difficult.

Topological approach on  $Sub(\overline{\mathbb{Q}})$  gives a different perspective.

In positive characteristic: situation is much better understood. Only constraint for existential definability is dealing with algebraically closed constant fields.