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Motivation: Programming molecules

• Compu'ng technologies need not be limited to silicon!
• Nature provides an incredible, nanoscale, molecular toolkit
• DNA molecules are par'cularly nice to work with 

• Poten'al applica'ons: nanocircuits, DNA storage, facile 
disease diagnosis, smart drug delivery, and of course, 
understanding our world 

• Molecular programming also raises new theore'cal ques'ons, 
pertaining to models of computa'on, informa'on encoding, 
error correc'on, distributed compu'ng, randomized 
algorithms, and more
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molecular program, as a Chemical Reaction Network (CRN) 
X + X + Y → X + X + X 
X + Y + Y → Y + Y + Y



Motivation: Programming molecules

run the program from 
some initial configuration

compile to

DNA

analyze 

the results

Soloveichik et al.,  2013; Chen et al., 2013
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Motivation: Programming molecules

880 nm 

Tikhomirov et al., 2017
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Can computations be energy-efficient?

“… capable of dissipating an arbitrarily small amount of energy per 
step if operated sufficiently slowly” (Bennett, 1973).



Landauer (1961): probably not, because 
computations are typically logically irreversible (e.g., 
because they erase or overwrite memory); this 
implies a lower bound on the entropy generated and 
energy dissipated at every irreversible step. 

Bennett (1973): maybe, because logically irreversible 
computations can be simulated by logically reversible 
ones, and it might be possible to simulate logically 
reversible computations by physically reversible ones 
 

Can computations be energy-efficient?

Landauer and Bennett, The Fundamental Physical Limits of 
Computation Scientific American, 1985.
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Can computations be energy-efficient?

Bennett showed how to simulate (irreversible) Turing 
machines using logically reversible Turing machines. 

Since Turing machines can be simulated by families of 
Boolean circuits (one circuit per input length), which in turn 
can be simulated by stochastic CRNs, his ideas can just as 
easily be illustrated using chemical reaction networks (CRNs).
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Example: a CRN for parity

• input species:  one copy each of X1, X2, …, Xn,    Xi ∈ {0i,1i} 
• output:         N, if parity(X1, X2, …, Xn) = 0 

    Y, if parity(X1, X2, …, Xn) = 1 
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This CRN is stochastic, and 
logically irreversible: it’s not 
possible in general to trace back 
to the initial input from a given 
reachable configuration
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N + 02 + t1 →  N + 02 + t2 

N + 12 + t1 →  Y + 12 + t2  
Y + 02 + t1 →  Y + 02 + t2 

Y + 12 + t1 →  N + 12 + t2 
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This CRN is deterministic: at 
most one reaction is applicable at 
any point, and logically 
reversible: there is only one way 
to step backwards from a 
reachable configuration.

Example: a logically reversible CRN for parity
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t-step, deterministic 
CRN with reactions:  
 Xj + X’j  →  Yj + Y’j   
     1 ≤ j≤ d

t-step deterministic, logically reversible 
CRN: 
auxiliary input species: ?i,1 ≤ i ≤ t, t0 
 ti-1 + ?i + Xj + X’j  → ti + ji + Yj + Y’j    

 1 ≤ j ≤ d, 1 ≤ i ≤ t 
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“The existence of logically reversible automata suggests that 
physical computers might be made thermodynamically reversible, 
and hence capable of dissipating an arbitrarily small amount of 
energy per step if operated sufficiently slowly” (Bennett, 1973).
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"The chemical realization of a logically reversible computation is 
a chain of reactions … a major reactant (analogous to DNA) … 
encodes the logical state, and minor reactants react with the 
major one to change the logical state … the minor reactants are 
all present at definite concentrations, which may be manipulated 
to drive the computation forward or backward." (Bennett, 1973).

physically 
reversible 
computations 
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“Here we propose a chemical implementation of [computing 
machines] using DNA strand displacement cascades as the 
underlying chemical primitive. We capture the motivating feature of 
Bennett’s scheme: that physical reversibility corresponds to logically 
reversible computation, and arbitrarily little energy per computation 
step is required.” (Qian et al., DNA 2011).

Can computations be energy-efficient?



toehold long domain

Soloveichik, Seelig, Winfree. “DNA as a universal 
substrate for chemical kinetics”,  PNAS 2010

toehold complement long domain complement

DSDs | DNA strand displacements
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reversible, and thus energy-efficient

DSDs | DNA strand displacements
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From CRNs to DSDs

one bottom strand

three top strands
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⇌A     +    B      C

From CRNs to DSDs

"The chemical realization of a logically reversible computation is a chain 
of reactions … a major reactant (analogous to DNA) … encodes the 
logical state, and minor reactants that react with the major one to 
change the logical state … the minor reactants are all present at definite 
concentrations, which may be manipulated to drive the computation 
forward or backward." (Bennett, 1973).
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From CRNs to DSDs
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Time(t) log-rev-Time(t) ⊆ ⊆ phys-rev-
Time(poly(t))
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Towards space- and energy-efficient computations

this binary counter CRN is 
• deterministic 
• logically reversible 
• space-efficient: n-bit counter uses 

n species to count to 2n

initial species:  03, 02, 01 
reactions: 
    01 →  11     (1) 

    02 + 11  →  12 + 01      (2) 
 03 + 12 + 11  →  13 + 02 + 01  (3)
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??? Space(s) log-rev-Space(s) Lange et al. phys-rev-
Space(poly(s)) 

"[We] describe the simulation of an s(n) space-bounded deterministic 
Turing machine by a reversible Turing machine operating in space 
s(n). It thus answers a question posed by Bennett in 1989 and refutes 
the conjecture made by Li and Vityani in 1996” (Lange et al., 1998).
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??? Space(s) log-rev-Space(s) Lange et al. phys-rev-
Space(poly(s)) 

Unfortunately, the compilation of deterministic, logically reversible 
CRNs with s species into DSDs may result in an exponential 
blow-up of the number of species, and thus the space (volume). 

This is because of the transformer molecules needed by the 
compilation.



Tf Tb
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⇌     A   +    B      CTf  + + Tb

Recall: transformer molecules
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initial species:  03, 02, 01 (one copy each) 
       

reactions: 
       01 →  11             (1) 
        02 + 11 →  12 + 01            (2) 
        03 + 12 + 11 →  13 + 02 + 01       (3)

Accounting for transformers in the counter:
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??? Space(s) log-rev-Space(s) Lange et al. phys-rev-
Space(poly(s)) 

Is there a different way to construct a space-efficient, physically 
reversible counter?

The Lange et al. construction suffers from the transformer 
exponential blow-up problem of the traditional binary counter.
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accounting for transformer molecules: 
transformer molecules are recycled!
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Towards space- and energy-efficient computations

??? Space(s) log-rev-Space(s) Lange et al. phys-rev-
Space(poly(s)) 

The Lange et al. construction suffers from the transformer 
exponential blow-up of the traditional binary counter.

Lange, McKenzie, and Tapp, JCSS 2000



Towards space- and energy-efficient computations

??? Space(s) log-rev-Space(s) Lange et al. phys-rev-
Space(poly(s)) 

The Lange et al. construction suffers from the transformer 
exponential blow-up of the traditional binary counter.

Fortunately, building on the grey code counter, a space-efficient 
compilation of a space-bounded CRN to a physically-reversible 
DSD is possible.

Thachuk, Condon, DNA18, 2012

Thachuk,
Condon 

Space(s) log-rev-
Space(poly(s)) 

Thachuk, 
Condon 

phys-rev-
Space(poly(s)) 



Towards space- and energy-efficient computations

Key ideas:  

• A CRN with O(n) species can check the truth of a Quantified 
SAT instance with n variables 

• Concentrations of “minor reactants” (transformers) are the 
same, so forward and reverse reactions are equally likely 

• It’s easy to adapt the construction (by doubling the computation 
length) so that once the output bit is produced, it’s present half 
of the time 

Thachuk, Condon, DNA18, 2012
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Summary

Logically and physically reversible simulations of irreversible 
computations are necessary for energy-efficient computations. 

Using reactions in both directions to advance a computation in a 
logically reversible way seems useful in facilitating physically 
reversible, space-efficient computations. 
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Open questions

Lange et al. 

Is there a compiler from CRNs to DSDs, or to an alternative 
physically reversible DNA computing model, that does not suffer 
from the exponential blow-up problem? 

Space(s) log-rev-
Space(s) 

phys-rev-
Space(s) 

  ??? 



Open questions

Space(s) log-rev-
Space(s2 log s) 

phys-rev-
Space(s2 log s) 

Thachuk,
Condon 

Thachuk, 
Condon 

Is it possible to avoid the polynomial increase in space here? Or 
at least remove the log s factor?
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Space(s) log-rev-
Space(s2 log s) 

phys-rev-
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Open questions

Space(s) log-rev-
Space(s2 log s) 

phys-rev-
Space(poly(s)) 

Thachuk,
Condon 

Thachuk, 
Condon 

A logically reversible computation is k-balanced  if, within every 
computation prefix, the number of times that the transition is 
executed in the forwards direction differs from the number of 
times that the transition is executed in the reverse direction by 
at most k.

If BalancedSPACE(s(n)) is the class of languages recognizable 
by O(1)-balanced, logically reversible Turing machines, can we 
show that DSPACE(s(n)) = BalancedSPACE(s(n))?



Open questions

Can forward and backwards transformers be interconverted?

initial species:  03, 02, 01 (one copy each) 
      Tf

1  (min. four copies) 

      Tf
2  (min. two copies) 

      Tf
3  (min. one copy) 

reactions: 
 Tf

1 +      01 →  11     + Tr
1    (1) 

 Tf
2 +      02 + 11 →  12 + 01      + Tr

2     (2) 
 Tf

3 +   03 + 12 + 11 →  13 + 02 + 01 + Tr
3     (3)



Thank you!

“Energy permits things to exist and to act, but 
programming permits things to be purposeful” 
- Ware 


