
The complexity of finding supergraphs

Vittorio Cipriani
J.w.w. Arno Pauly (Swansea University)

Computability in Europe 2023 - Batumi - 2023

25 July 2023

Introduction

In this talk, we consider several variations of the following problem.

Fix a countable graph G .

• Is G a(n induced) supergraph of an input graph H? (decision problems).

• If yes, can we find a copy of H in G? (search problems).

The challenge is to classify the Weihrauch degree of such problems, and to do
so we use tools coming from effective descriptive set theory.

The analysis of such problems was put forth by BeMent, Hirst, and Wallace
(“Reverse mathematics and Weihrauch analysis motivated by finite complexity
theory”, Computability, 2021).

We report some initial results here, and in particular, solve one of their open
questions.

In this talk, we always assume G to have a computable copy.

1

Introduction

In this talk, we consider several variations of the following problem.

Fix a countable graph G .

• Is G a(n induced) supergraph of an input graph H? (decision problems).

• If yes, can we find a copy of H in G? (search problems).

The challenge is to classify the Weihrauch degree of such problems, and to do
so we use tools coming from effective descriptive set theory.

The analysis of such problems was put forth by BeMent, Hirst, and Wallace
(“Reverse mathematics and Weihrauch analysis motivated by finite complexity
theory”, Computability, 2021).

We report some initial results here, and in particular, solve one of their open
questions.

In this talk, we always assume G to have a computable copy.

1

Introduction

In this talk, we consider several variations of the following problem.

Fix a countable graph G .

• Is G a(n induced) supergraph of an input graph H? (decision problems).

• If yes, can we find a copy of H in G? (search problems).

The challenge is to classify the Weihrauch degree of such problems, and to do
so we use tools coming from effective descriptive set theory.

The analysis of such problems was put forth by BeMent, Hirst, and Wallace
(“Reverse mathematics and Weihrauch analysis motivated by finite complexity
theory”, Computability, 2021).

We report some initial results here, and in particular, solve one of their open
questions.

In this talk, we always assume G to have a computable copy.

1

Introduction

In this talk, we consider several variations of the following problem.

Fix a countable graph G .

• Is G a(n induced) supergraph of an input graph H? (decision problems).

• If yes, can we find a copy of H in G? (search problems).

The challenge is to classify the Weihrauch degree of such problems, and to do
so we use tools coming from effective descriptive set theory.

The analysis of such problems was put forth by BeMent, Hirst, and Wallace
(“Reverse mathematics and Weihrauch analysis motivated by finite complexity
theory”, Computability, 2021).

We report some initial results here, and in particular, solve one of their open
questions.

In this talk, we always assume G to have a computable copy.

1

Graphs

1

Graphs

The graphs G = (V ,E) we consider are countable, undirected, and without
self-loops: that is, V ⊆ N and E satisfies anti-reflexivity and symmetry.

Definition

Given two graphs G and H we say that:

• G is a supergraph of H if V (G) ⊇ V (H) and E(G) ⊇ E(H);

• G is an induced supergraph of H if G is a supergraph of H and
E(G) = E(H) ∩ (V (G)× V (G)).

• •

•

2

Graphs

The graphs G = (V ,E) we consider are countable, undirected, and without
self-loops: that is, V ⊆ N and E satisfies anti-reflexivity and symmetry.

Definition

Given two graphs G and H we say that:

• G is a supergraph of H if V (G) ⊇ V (H) and E(G) ⊇ E(H);

• G is an induced supergraph of H if G is a supergraph of H and
E(G) = E(H) ∩ (V (G)× V (G)).

G0 is an (induced) supergraph of G .

• •

••

• •

•

2

Graphs

The graphs G = (V ,E) we consider are countable, undirected, and without
self-loops: that is, V ⊆ N and E satisfies anti-reflexivity and symmetry.

Definition

Given two graphs G and H we say that:

• G is a supergraph of H if V (G) ⊇ V (H) and E(G) ⊇ E(H);

• G is an induced supergraph of H if G is a supergraph of H and
E(G) = E(H) ∩ (V (G)× V (G)).

• •

• •

2

Graphs

The graphs G = (V ,E) we consider are countable, undirected, and without
self-loops: that is, V ⊆ N and E satisfies anti-reflexivity and symmetry.

Definition

Given two graphs G and H we say that:

• G is a supergraph of H if V (G) ⊇ V (H) and E(G) ⊇ E(H);

• G is an induced supergraph of H if G is a supergraph of H and
E(G) = E(H) ∩ (V (G)× V (G)).

G1 is a supergraph of G , but not an induced one.

• •

••

• •

• •

2

Weihrauch reducibility and

Effective Wadge reducibility

2

Computable Analysis - Represented spaces

Computable analysis generalizes computability for functions on N to functions
on NN (Baire space) and to represented spaces in general.

Definition

A represented space X is a pair (X , δX) where X is a set and δX :⊆
NN → X is a (possibly partial) surjective function called representation
map. We say that p ∈ NN is a name for x if δX (p) = x .

In this talk:

• Gr is the represented space of graphs, where a name for a graph is given
by its characteristic function;

• EGr is the represented space of graphs, where a name for a graph is given
by an enumeration of its vertices and edges.

3

Computable Analysis - Represented spaces

Computable analysis generalizes computability for functions on N to functions
on NN (Baire space) and to represented spaces in general.

Definition

A represented space X is a pair (X , δX) where X is a set and δX :⊆
NN → X is a (possibly partial) surjective function called representation
map. We say that p ∈ NN is a name for x if δX (p) = x .

In this talk:

• Gr is the represented space of graphs, where a name for a graph is given
by its characteristic function;

• EGr is the represented space of graphs, where a name for a graph is given
by an enumeration of its vertices and edges.

3

Problems & Weihrauch reducibility

f

Input: a name for an f -instance x .
Output: a name for (an element of) f (x).

for a single input there may be multiple outputs!

Definition

A problem f is Weihrauch reducible to g (f ≤W g), if there are com-
putable maps Φ,Ψ :⊆ NN → NN s.t.

• for every name px for some input x of f , Φ(px) = pz , where pz is
a name for some input z for g and,

• for every name pw for a solution w of g(z), Ψ(px ⊕ pw) = py
where py is a name for a solution y of f (x).

px Φ g
pz

Ψ
pw

py

4

Problems & Weihrauch reducibility

f

Input: a name for an f -instance x .
Output: a name for (an element of) f (x).

for a single input there may be multiple outputs!

Definition

A problem f is Weihrauch reducible to g (f ≤W g), if there are com-
putable maps Φ,Ψ :⊆ NN → NN s.t.

• for every name px for some input x of f , Φ(px) = pz , where pz is
a name for some input z for g and,

• for every name pw for a solution w of g(z), Ψ(px ⊕ pw) = py
where py is a name for a solution y of f (x).

px Φ g
pz

Ψ
pw

py

4

Problems & Weihrauch reducibility

f

Input: a name for an f -instance x .
Output: a name for (an element of) f (x).

for a single input there may be multiple outputs!

Definition

A problem f is Weihrauch reducible to g (f ≤W g), if there are com-
putable maps Φ,Ψ :⊆ NN → NN s.t.

• for every name px for some input x of f , Φ(px) = pz , where pz is
a name for some input z for g and,

• for every name pw for a solution w of g(z), Ψ(px ⊕ pw) = py
where py is a name for a solution y of f (x).

px Φ g
pz

Ψ
pw

py

In case Ψ has no access to the original input of f (i.e. Ψ(pw) = py), we
say that the reduction is strong (f ≤sW g).

4

Effective Wadge reducibility

Wadge reducibility gives a notion of complexity between sets of topological
spaces. Here we study its effective counterpart.

Definition

Let A,B ⊆ NN. We say that B effectively Wadge reduces to A if there
exists a computable function f such that x ∈ B ⇐⇒ f (x) ∈ A.
For a (non-ambiguous) class Γ, we say that A is Γ-complete if A ∈ Γ
and, for every B ∈ Γ, B effectively Wadge reduces to A.

Notation:

• G ⊇is H : ⇐⇒ (∃G ′ ∼= G)(G ′ is an induced supergraph of H);

• G ⊇s H : ⇐⇒ (∃G ′ ∼= G)(G ′ is a supergraph of H).

For a fixed countable graph G , we consider sets of (names of) graphs of the
form

{H ∈ (E)Gr : G ⊇(i)s H} := {p ∈ dom(δ(E)Gr) : G ⊇(i)s δ(E)Gr (p)},

i.e. the set of graphs H such that G is a(n induced) supergraph H.
N.B. all sets above are Σ1

1.

5

Effective Wadge reducibility

Wadge reducibility gives a notion of complexity between sets of topological
spaces. Here we study its effective counterpart.

Definition

Let A,B ⊆ NN. We say that B effectively Wadge reduces to A if there
exists a computable function f such that x ∈ B ⇐⇒ f (x) ∈ A.
For a (non-ambiguous) class Γ, we say that A is Γ-complete if A ∈ Γ
and, for every B ∈ Γ, B effectively Wadge reduces to A.

Notation:

• G ⊇is H : ⇐⇒ (∃G ′ ∼= G)(G ′ is an induced supergraph of H);

• G ⊇s H : ⇐⇒ (∃G ′ ∼= G)(G ′ is a supergraph of H).

For a fixed countable graph G , we consider sets of (names of) graphs of the
form

{H ∈ (E)Gr : G ⊇(i)s H} := {p ∈ dom(δ(E)Gr) : G ⊇(i)s δ(E)Gr (p)},

i.e. the set of graphs H such that G is a(n induced) supergraph H.
N.B. all sets above are Σ1

1.

5

Effective Wadge reducibility

Wadge reducibility gives a notion of complexity between sets of topological
spaces. Here we study its effective counterpart.

Definition

Let A,B ⊆ NN. We say that B effectively Wadge reduces to A if there
exists a computable function f such that x ∈ B ⇐⇒ f (x) ∈ A.
For a (non-ambiguous) class Γ, we say that A is Γ-complete if A ∈ Γ
and, for every B ∈ Γ, B effectively Wadge reduces to A.

Notation:

• G ⊇is H : ⇐⇒ (∃G ′ ∼= G)(G ′ is an induced supergraph of H);

• G ⊇s H : ⇐⇒ (∃G ′ ∼= G)(G ′ is a supergraph of H).

For a fixed countable graph G , we consider sets of (names of) graphs of the
form

{H ∈ (E)Gr : G ⊇(i)s H} := {p ∈ dom(δ(E)Gr) : G ⊇(i)s δ(E)Gr (p)},

i.e. the set of graphs H such that G is a(n induced) supergraph H.

N.B. all sets above are Σ1
1.

5

Effective Wadge reducibility

Wadge reducibility gives a notion of complexity between sets of topological
spaces. Here we study its effective counterpart.

Definition

Let A,B ⊆ NN. We say that B effectively Wadge reduces to A if there
exists a computable function f such that x ∈ B ⇐⇒ f (x) ∈ A.
For a (non-ambiguous) class Γ, we say that A is Γ-complete if A ∈ Γ
and, for every B ∈ Γ, B effectively Wadge reduces to A.

Notation:

• G ⊇is H : ⇐⇒ (∃G ′ ∼= G)(G ′ is an induced supergraph of H);

• G ⊇s H : ⇐⇒ (∃G ′ ∼= G)(G ′ is a supergraph of H).

For a fixed countable graph G , we consider sets of (names of) graphs of the
form

{H ∈ (E)Gr : G ⊇(i)s H} := {p ∈ dom(δ(E)Gr) : G ⊇(i)s δ(E)Gr (p)},

i.e. the set of graphs H such that G is a(n induced) supergraph H.
N.B. all sets above are Σ1

1.

5

Decision problems

5

Decision problems

The following problems were introduced in [BHW21]. For a fixed graph G :

ISG - (induced subgraph)

Input: H ∈ Gr.
Output: 1 if G ⊇is H, 0 otherwise.

If G ∈ EGr, the corresponding problem is denoted by eISG .

SG - (subgraph)

Input: H ∈ Gr.
Output: 1 if G ⊇s H, 0 otherwise.

If G ∈ EGr, the corresponding problem is denoted by eSG .

G ∈ Gr → characteristic function, G ∈ EGr → enumeration.

6

(Jumps of) LPO and WF

LPO

Input: p ∈ 2N.
Output: 1 if ∃i(p(i) = 1), 0 otherwise.

LPO can be also rephrased as the problem deciding a Σ0
1 (or equivalently, Π0

1)
question relative to the input.
Similarly, LPO(n) is the problem deciding a Σ0

n+1 (Π0
n+1) question relative to the

input.

WF

Input: a tree T ⊆ N<N.
Output: 1 if T is well-founded i.e., it has no infinite path, 0 otherwise.

WF can be also rephrased as the problem deciding a Σ1
1 (Π1

1) question relative
to the input.
N.B. {H ∈ Gr : G ⊇is H} is Σ1

1 =⇒ ISG ≤sW WF (similarly for the other
sets/problems).

7

(Jumps of) LPO and WF

LPO

Input: p ∈ 2N.
Output: 1 if ∃i(p(i) = 1), 0 otherwise.

LPO can be also rephrased as the problem deciding a Σ0
1 (or equivalently, Π0

1)
question relative to the input.

Similarly, LPO(n) is the problem deciding a Σ0
n+1 (Π0

n+1) question relative to the
input.

WF

Input: a tree T ⊆ N<N.
Output: 1 if T is well-founded i.e., it has no infinite path, 0 otherwise.

WF can be also rephrased as the problem deciding a Σ1
1 (Π1

1) question relative
to the input.
N.B. {H ∈ Gr : G ⊇is H} is Σ1

1 =⇒ ISG ≤sW WF (similarly for the other
sets/problems).

7

(Jumps of) LPO and WF

LPO

Input: p ∈ 2N.
Output: 1 if ∃i(p(i) = 1), 0 otherwise.

LPO can be also rephrased as the problem deciding a Σ0
1 (or equivalently, Π0

1)
question relative to the input.
Similarly, LPO(n) is the problem deciding a Σ0

n+1 (Π0
n+1) question relative to the

input.

WF

Input: a tree T ⊆ N<N.
Output: 1 if T is well-founded i.e., it has no infinite path, 0 otherwise.

WF can be also rephrased as the problem deciding a Σ1
1 (Π1

1) question relative
to the input.
N.B. {H ∈ Gr : G ⊇is H} is Σ1

1 =⇒ ISG ≤sW WF (similarly for the other
sets/problems).

7

(Jumps of) LPO and WF

LPO

Input: p ∈ 2N.
Output: 1 if ∃i(p(i) = 1), 0 otherwise.

LPO can be also rephrased as the problem deciding a Σ0
1 (or equivalently, Π0

1)
question relative to the input.
Similarly, LPO(n) is the problem deciding a Σ0

n+1 (Π0
n+1) question relative to the

input.

WF

Input: a tree T ⊆ N<N.
Output: 1 if T is well-founded i.e., it has no infinite path, 0 otherwise.

WF can be also rephrased as the problem deciding a Σ1
1 (Π1

1) question relative
to the input.
N.B. {H ∈ Gr : G ⊇is H} is Σ1

1 =⇒ ISG ≤sW WF (similarly for the other
sets/problems).

7

(Jumps of) LPO and WF

LPO

Input: p ∈ 2N.
Output: 1 if ∃i(p(i) = 1), 0 otherwise.

LPO can be also rephrased as the problem deciding a Σ0
1 (or equivalently, Π0

1)
question relative to the input.
Similarly, LPO(n) is the problem deciding a Σ0

n+1 (Π0
n+1) question relative to the

input.

WF

Input: a tree T ⊆ N<N.
Output: 1 if T is well-founded i.e., it has no infinite path, 0 otherwise.

WF can be also rephrased as the problem deciding a Σ1
1 (Π1

1) question relative
to the input.

N.B. {H ∈ Gr : G ⊇is H} is Σ1
1 =⇒ ISG ≤sW WF (similarly for the other

sets/problems).

7

(Jumps of) LPO and WF

LPO

Input: p ∈ 2N.
Output: 1 if ∃i(p(i) = 1), 0 otherwise.

LPO can be also rephrased as the problem deciding a Σ0
1 (or equivalently, Π0

1)
question relative to the input.
Similarly, LPO(n) is the problem deciding a Σ0

n+1 (Π0
n+1) question relative to the

input.

WF

Input: a tree T ⊆ N<N.
Output: 1 if T is well-founded i.e., it has no infinite path, 0 otherwise.

WF can be also rephrased as the problem deciding a Σ1
1 (Π1

1) question relative
to the input.
N.B. {H ∈ Gr : G ⊇is H} is Σ1

1 =⇒ ISG ≤sW WF (similarly for the other
sets/problems).

7

A remark

Given a countable graph G , does (e)ISG ≡sW WF or (e)ISG <sW WF (similarly
for (e)SG)?

In [BHW21], the authors also studied the “opposite” problem, namely (always
fixing a countable graph G)

Given in input a graph H, answer whether H contains an (induced) subgraph
isomorphic to G .

In [CP22], we solved one of their open questions showing that,

• for the induced subgraph case, if the input graph is in Gr, these problems
are either equivalent to LPO (if G is finite) or to WF (if G is infinite);

• for the subgraph case, we can find different graphs whose corresponding
decision problem is equivalent to LPO(n) for every n and to WF.

Observation: it is easy to find graphs for which the corresponding problem
reaches WF (i.e., the infinite ray R).

We will show that for the supergraph problem “it’s difficult being difficult”.

8

A remark

Given a countable graph G , does (e)ISG ≡sW WF or (e)ISG <sW WF (similarly
for (e)SG)?
In [BHW21], the authors also studied the “opposite” problem, namely (always
fixing a countable graph G)

Given in input a graph H, answer whether H contains an (induced) subgraph
isomorphic to G .

In [CP22], we solved one of their open questions showing that,

• for the induced subgraph case, if the input graph is in Gr, these problems
are either equivalent to LPO (if G is finite) or to WF (if G is infinite);

• for the subgraph case, we can find different graphs whose corresponding
decision problem is equivalent to LPO(n) for every n and to WF.

Observation: it is easy to find graphs for which the corresponding problem
reaches WF (i.e., the infinite ray R).

We will show that for the supergraph problem “it’s difficult being difficult”.

8

A remark

Given a countable graph G , does (e)ISG ≡sW WF or (e)ISG <sW WF (similarly
for (e)SG)?
In [BHW21], the authors also studied the “opposite” problem, namely (always
fixing a countable graph G)

Given in input a graph H, answer whether H contains an (induced) subgraph
isomorphic to G .

In [CP22], we solved one of their open questions showing that,

• for the induced subgraph case, if the input graph is in Gr, these problems
are either equivalent to LPO (if G is finite) or to WF (if G is infinite);

• for the subgraph case, we can find different graphs whose corresponding
decision problem is equivalent to LPO(n) for every n and to WF.

Observation: it is easy to find graphs for which the corresponding problem
reaches WF (i.e., the infinite ray R).

We will show that for the supergraph problem “it’s difficult being difficult”.

8

A remark

Given a countable graph G , does (e)ISG ≡sW WF or (e)ISG <sW WF (similarly
for (e)SG)?
In [BHW21], the authors also studied the “opposite” problem, namely (always
fixing a countable graph G)

Given in input a graph H, answer whether H contains an (induced) subgraph
isomorphic to G .

In [CP22], we solved one of their open questions showing that,

• for the induced subgraph case, if the input graph is in Gr, these problems
are either equivalent to LPO (if G is finite) or to WF (if G is infinite);

• for the subgraph case, we can find different graphs whose corresponding
decision problem is equivalent to LPO(n) for every n and to WF.

Observation: it is easy to find graphs for which the corresponding problem
reaches WF (i.e., the infinite ray R).

We will show that for the supergraph problem “it’s difficult being difficult”.

8

Summary

Wadge Weihrauch

G finite {H ∈ (E)Gr : G ⊇is H} is Π0
1-complete (e)ISG ≡sW LPO

G finite {H ∈ (E)Gr : G ⊇s H} is Π0
1-complete (e)SG ≡sW LPO

Kω {H ∈ (E)Gr : Kω ⊇s H} is computable (e)SKω ≡sW id

Kω {H ∈ Gr : Kω ⊇is H} is Π0
1-complete ISKω ≡sW LPO

Kω {H ∈ EGr : Kω ⊇is H} is Π0
2-complete eISKω ≡sW LPO′

G =
⊗

i≥1 Ri {H ∈ (E)Gr : G ⊇(i)s H} is Π0
3-complete (e)ISG ≡sW (e)SG ≡sW LPO′′

G =
⊗

i≥1 Ki {H ∈ (E)Gr : G ⊇(i)s H}is Π0
3-complete (e)ISG ≡sW (e)SG ≡sW LPO′′

S {H ∈ (E)Gr : S ⊇(i)s H} is Π0
5-complete (e)ISG ≡sW (e)SG ≡sW LPO(4).

9

Summary

Wadge Weihrauch

G finite {H ∈ (E)Gr : G ⊇is H} is Π0
1-complete (e)ISG ≡sW LPO

G finite {H ∈ (E)Gr : G ⊇s H} is Π0
1-complete (e)SG ≡sW LPO

Kω {H ∈ (E)Gr : Kω ⊇s H} is computable (e)SKω ≡sW id

Kω {H ∈ Gr : Kω ⊇is H} is Π0
1-complete ISKω ≡sW LPO

Kω {H ∈ EGr : Kω ⊇is H} is Π0
2-complete eISKω ≡sW LPO′

G =
⊗

i≥1 Ri {H ∈ (E)Gr : G ⊇(i)s H} is Π0
3-complete (e)ISG ≡sW (e)SG ≡sW LPO′′

G =
⊗

i≥1 Ki {H ∈ (E)Gr : G ⊇(i)s H}is Π0
3-complete (e)ISG ≡sW (e)SG ≡sW LPO′′

S {H ∈ (E)Gr : S ⊇(i)s H} is Π0
5-complete (e)ISG ≡sW (e)SG ≡sW LPO(4).

Kω denotes the complete graph on N.

9

Summary

Wadge Weihrauch

G finite {H ∈ (E)Gr : G ⊇is H} is Π0
1-complete (e)ISG ≡sW LPO

G finite {H ∈ (E)Gr : G ⊇s H} is Π0
1-complete (e)SG ≡sW LPO

Kω {H ∈ (E)Gr : Kω ⊇s H} is computable (e)SKω ≡sW id

Kω {H ∈ Gr : Kω ⊇is H} is Π0
1-complete ISKω ≡sW LPO

Kω {H ∈ EGr : Kω ⊇is H} is Π0
2-complete eISKω ≡sW LPO′

G =
⊗

i≥1 Ri {H ∈ (E)Gr : G ⊇(i)s H} is Π0
3-complete (e)ISG ≡sW (e)SG ≡sW LPO′′

G =
⊗

i≥1 Ki {H ∈ (E)Gr : G ⊇(i)s H}is Π0
3-complete (e)ISG ≡sW (e)SG ≡sW LPO′′

S {H ∈ (E)Gr : S ⊇(i)s H} is Π0
5-complete (e)ISG ≡sW (e)SG ≡sW LPO(4).

⊗
i≥1 Ri

⊗
i≥1 Ki

.

The results in red answer positively a question left open in [BHW21], namely:

Is there a computable graph G such that LPO <sW ISG? Yes.

9

Summary

Wadge Weihrauch

G finite {H ∈ (E)Gr : G ⊇is H} is Π0
1-complete (e)ISG ≡sW LPO

G finite {H ∈ (E)Gr : G ⊇s H} is Π0
1-complete (e)SG ≡sW LPO

Kω {H ∈ (E)Gr : Kω ⊇s H} is computable (e)SKω ≡sW id

Kω {H ∈ Gr : Kω ⊇is H} is Π0
1-complete ISKω ≡sW LPO

Kω {H ∈ EGr : Kω ⊇is H} is Π0
2-complete eISKω ≡sW LPO′

G =
⊗

i≥1 Ri {H ∈ (E)Gr : G ⊇(i)s H} is Π0
3-complete (e)ISG ≡sW (e)SG ≡sW LPO′′

G =
⊗

i≥1 Ki {H ∈ (E)Gr : G ⊇(i)s H}is Π0
3-complete (e)ISG ≡sW (e)SG ≡sW LPO′′

S {H ∈ (E)Gr : S ⊇(i)s H} is Π0
5-complete (e)ISG ≡sW (e)SG ≡sW LPO(4).

S is the disconnected union of (Tn)n∈N, where every Tn is a tree having finite
paths of any length (in black) and n + 1-many paths of infinite length (in red).

⟨⟩

. . .

⟨⟩

. . .
. . .

⟨⟩

. . .
. . .

. . .

. . .

The proof of the fact that this set is complete was suggested by an anonymous referee of [CP23].

9

Summary

Wadge Weihrauch

G finite {H ∈ (E)Gr : G ⊇is H} is Π0
1-complete (e)ISG ≡sW LPO

G finite {H ∈ (E)Gr : G ⊇s H} is Π0
1-complete (e)SG ≡sW LPO

Kω {H ∈ (E)Gr : Kω ⊇s H} is computable (e)SKω ≡sW id

Kω {H ∈ Gr : Kω ⊇is H} is Π0
1-complete ISKω ≡sW LPO

Kω {H ∈ EGr : Kω ⊇is H} is Π0
2-complete eISKω ≡sW LPO′

G =
⊗

i≥1 Ri {H ∈ (E)Gr : G ⊇(i)s H} is Π0
3-complete (e)ISG ≡sW (e)SG ≡sW LPO′′

G =
⊗

i≥1 Ki {H ∈ (E)Gr : G ⊇(i)s H}is Π0
3-complete (e)ISG ≡sW (e)SG ≡sW LPO′′

S {H ∈ (E)Gr : S ⊇(i)s H} is Π0
5-complete (e)ISG ≡sW (e)SG ≡sW LPO(4).

Maybe with other “strange” graphs, we could go beyond Π0
5: but is there some

G such that (e)ISG ≡sW WF?

9

Search problems
(preliminary results!)

9

Search problems

The problems below lead to 8 versions, depending on whether the input/output
is given via characteristic function or enumeration (4 for the induced
supergraph case and 4 for the supergraph one).

ISupCopyG

Input: a graph H s.t. G ⊇is H.
Output: H ′, where H ′ ∼= H and G ⊇is H

′.

SupCopyG

Input: a graph H s.t. G ⊇s H.
Output: H ′, where H ′ ∼= H and G ⊇s H

′.

The first result we obtain is that there exists a graph whose lower bound is CN.

CN

Input: an enumeration of the complement of a nonempty closed subset
A of N.
Output: some p ∈ A.

10

Search problems

The problems below lead to 8 versions, depending on whether the input/output
is given via characteristic function or enumeration (4 for the induced
supergraph case and 4 for the supergraph one).

ISupCopyG

Input: a graph H s.t. G ⊇is H.
Output: H ′, where H ′ ∼= H and G ⊇is H

′.

SupCopyG

Input: a graph H s.t. G ⊇s H.
Output: H ′, where H ′ ∼= H and G ⊇s H

′.

The first result we obtain is that there exists a graph whose lower bound is CN.

CN

Input: an enumeration of the complement of a nonempty closed subset
A of N.
Output: some p ∈ A.

10

Search problems

The problems below lead to 8 versions, depending on whether the input/output
is given via characteristic function or enumeration (4 for the induced
supergraph case and 4 for the supergraph one).

ISupCopyG

Input: a graph H s.t. G ⊇is H.
Output: H ′, where H ′ ∼= H and G ⊇is H

′.

SupCopyG

Input: a graph H s.t. G ⊇s H.
Output: H ′, where H ′ ∼= H and G ⊇s H

′.

The first result we obtain is that there exists a graph whose lower bound is CN.

CN

Input: an enumeration of the complement of a nonempty closed subset
A of N.
Output: some p ∈ A.

10

The graph HCN

The graph HCN has:

• as vertex set, for every n ∈ N a dedicated vertex vn and

• for every k ̸= n, a cycle of length k containg vn. All the cycles are
otherwise disjoint.

For example, HCN on v3, v4 and v5 looks like this (red vertices/edges are
missing):

. . .

v3
•

v4
•

v5
•

. . .

Theorem (C., Pauly)

CN ≤W SupCopyHCN
.

11

The graph HCN

The graph HCN has:

• as vertex set, for every n ∈ N a dedicated vertex vn and

• for every k ̸= n, a cycle of length k containg vn. All the cycles are
otherwise disjoint.

For example, HCN on v3, v4 and v5 looks like this (red vertices/edges are
missing):

. . .

v3
•

v4
•

v5
•

. . .

Theorem (C., Pauly)

CN ≤W SupCopyHCN
.

11

The graph R (the infinite ray)
We study the same problem for the more “natural” graph R.
SupCopyR can be rephrased as

• given in input either only finite line segments or finitely many line
segments (possibly zero) plus a copy of R,

• output an “arrangement” of such line segments in R.

It is easy to notice that SupCopyR ≡sW ISupCopyR.
We explored only the version where the output is enumerated.

lim

Input: a converging sequence (pn)n∈N ∈ (NN)N.
Output: limn→∞ pn.

Theorem (C., Pauly)

LPO ≤W SupCopyR ≤W CN ∗ lim ∗ lim.

f ∗ g means “apply g , do something computable and then apply f ”.

The style of reasoning employed to in the study of SupCopyR is reminiscent of
the study of the degrees of bi-embeddable categoricity of equivalence relations
(as only the number and size of connected components matter).

12

The graph R (the infinite ray)
We study the same problem for the more “natural” graph R.
SupCopyR can be rephrased as

• given in input either only finite line segments or finitely many line
segments (possibly zero) plus a copy of R,

• output an “arrangement” of such line segments in R.

It is easy to notice that SupCopyR ≡sW ISupCopyR.

We explored only the version where the output is enumerated.

lim

Input: a converging sequence (pn)n∈N ∈ (NN)N.
Output: limn→∞ pn.

Theorem (C., Pauly)

LPO ≤W SupCopyR ≤W CN ∗ lim ∗ lim.

f ∗ g means “apply g , do something computable and then apply f ”.

The style of reasoning employed to in the study of SupCopyR is reminiscent of
the study of the degrees of bi-embeddable categoricity of equivalence relations
(as only the number and size of connected components matter).

12

The graph R (the infinite ray)
We study the same problem for the more “natural” graph R.
SupCopyR can be rephrased as

• given in input either only finite line segments or finitely many line
segments (possibly zero) plus a copy of R,

• output an “arrangement” of such line segments in R.

It is easy to notice that SupCopyR ≡sW ISupCopyR.
We explored only the version where the output is enumerated.

lim

Input: a converging sequence (pn)n∈N ∈ (NN)N.
Output: limn→∞ pn.

Theorem (C., Pauly)

LPO ≤W SupCopyR ≤W CN ∗ lim ∗ lim.

f ∗ g means “apply g , do something computable and then apply f ”.

The style of reasoning employed to in the study of SupCopyR is reminiscent of
the study of the degrees of bi-embeddable categoricity of equivalence relations
(as only the number and size of connected components matter).

12

The graph R (the infinite ray)
We study the same problem for the more “natural” graph R.
SupCopyR can be rephrased as

• given in input either only finite line segments or finitely many line
segments (possibly zero) plus a copy of R,

• output an “arrangement” of such line segments in R.

It is easy to notice that SupCopyR ≡sW ISupCopyR.
We explored only the version where the output is enumerated.

lim

Input: a converging sequence (pn)n∈N ∈ (NN)N.
Output: limn→∞ pn.

Theorem (C., Pauly)

LPO ≤W SupCopyR ≤W CN ∗ lim ∗ lim.

f ∗ g means “apply g , do something computable and then apply f ”.

The style of reasoning employed to in the study of SupCopyR is reminiscent of
the study of the degrees of bi-embeddable categoricity of equivalence relations
(as only the number and size of connected components matter).

12

The graph R (the infinite ray)
We study the same problem for the more “natural” graph R.
SupCopyR can be rephrased as

• given in input either only finite line segments or finitely many line
segments (possibly zero) plus a copy of R,

• output an “arrangement” of such line segments in R.

It is easy to notice that SupCopyR ≡sW ISupCopyR.
We explored only the version where the output is enumerated.

lim

Input: a converging sequence (pn)n∈N ∈ (NN)N.
Output: limn→∞ pn.

Theorem (C., Pauly)

LPO ≤W SupCopyR ≤W CN ∗ lim ∗ lim.

f ∗ g means “apply g , do something computable and then apply f ”.

The style of reasoning employed to in the study of SupCopyR is reminiscent of
the study of the degrees of bi-embeddable categoricity of equivalence relations
(as only the number and size of connected components matter).

12

The graph R (the infinite ray)
We study the same problem for the more “natural” graph R.
SupCopyR can be rephrased as

• given in input either only finite line segments or finitely many line
segments (possibly zero) plus a copy of R,

• output an “arrangement” of such line segments in R.

It is easy to notice that SupCopyR ≡sW ISupCopyR.
We explored only the version where the output is enumerated.

lim

Input: a converging sequence (pn)n∈N ∈ (NN)N.
Output: limn→∞ pn.

Theorem (C., Pauly)

LPO ≤W SupCopyR ≤W CN ∗ lim ∗ lim.

f ∗ g means “apply g , do something computable and then apply f ”.

The style of reasoning employed to in the study of SupCopyR is reminiscent of
the study of the degrees of bi-embeddable categoricity of equivalence relations
(as only the number and size of connected components matter).

12

Work in Progress
(Pt. 1)

12

Lower bounds for SupCopyR
So far we know that LPO ≤W SupCopyR ≤W CN ∗ lim ∗ lim.

Consider the
following problem.

Π0
1-Bound

Input: a finite closed subset of N.
Output: an upper bound for it.

Such a problem characterizes the power of SupCopyR for solving sufficiently
uniform problems (fractals) with a computable point in their domain (pointed).

Theorem (C., Pauly)

Let f be a pointed fractal. T.f.a.e.:

• ACCN × f ≤W SupCopyR;

• f ≤W Π0
1-Bound.

ACCN is the restriction of CN to sets of the form {N} or {N \ {n} : n ∈ N}.
f × g means “perform f and g in parallel”.

As a corollary, we obtain that lim ̸≤W SupCopyR and Π0
2-CN ̸≤W SupCopyR.

It is still open whether such a problem is non-uniformly computable.

13

Lower bounds for SupCopyR
So far we know that LPO ≤W SupCopyR ≤W CN ∗ lim ∗ lim. Consider the
following problem.

Π0
1-Bound

Input: a finite closed subset of N.
Output: an upper bound for it.

Such a problem characterizes the power of SupCopyR for solving sufficiently
uniform problems (fractals) with a computable point in their domain (pointed).

Theorem (C., Pauly)

Let f be a pointed fractal. T.f.a.e.:

• ACCN × f ≤W SupCopyR;

• f ≤W Π0
1-Bound.

ACCN is the restriction of CN to sets of the form {N} or {N \ {n} : n ∈ N}.
f × g means “perform f and g in parallel”.

As a corollary, we obtain that lim ̸≤W SupCopyR and Π0
2-CN ̸≤W SupCopyR.

It is still open whether such a problem is non-uniformly computable.

13

Lower bounds for SupCopyR
So far we know that LPO ≤W SupCopyR ≤W CN ∗ lim ∗ lim. Consider the
following problem.

Π0
1-Bound

Input: a finite closed subset of N.
Output: an upper bound for it.

Such a problem characterizes the power of SupCopyR for solving sufficiently
uniform problems (fractals) with a computable point in their domain (pointed).

Theorem (C., Pauly)

Let f be a pointed fractal. T.f.a.e.:

• ACCN × f ≤W SupCopyR;

• f ≤W Π0
1-Bound.

ACCN is the restriction of CN to sets of the form {N} or {N \ {n} : n ∈ N}.
f × g means “perform f and g in parallel”.

As a corollary, we obtain that lim ̸≤W SupCopyR and Π0
2-CN ̸≤W SupCopyR.

It is still open whether such a problem is non-uniformly computable.

13

Lower bounds for SupCopyR
So far we know that LPO ≤W SupCopyR ≤W CN ∗ lim ∗ lim. Consider the
following problem.

Π0
1-Bound

Input: a finite closed subset of N.
Output: an upper bound for it.

Such a problem characterizes the power of SupCopyR for solving sufficiently
uniform problems (fractals) with a computable point in their domain (pointed).

Theorem (C., Pauly)

Let f be a pointed fractal. T.f.a.e.:

• ACCN × f ≤W SupCopyR;

• f ≤W Π0
1-Bound.

ACCN is the restriction of CN to sets of the form {N} or {N \ {n} : n ∈ N}.
f × g means “perform f and g in parallel”.

As a corollary, we obtain that lim ̸≤W SupCopyR and Π0
2-CN ̸≤W SupCopyR.

It is still open whether such a problem is non-uniformly computable.

13

Lower bounds for SupCopyR
So far we know that LPO ≤W SupCopyR ≤W CN ∗ lim ∗ lim. Consider the
following problem.

Π0
1-Bound

Input: a finite closed subset of N.
Output: an upper bound for it.

Such a problem characterizes the power of SupCopyR for solving sufficiently
uniform problems (fractals) with a computable point in their domain (pointed).

Theorem (C., Pauly)

Let f be a pointed fractal. T.f.a.e.:

• ACCN × f ≤W SupCopyR;

• f ≤W Π0
1-Bound.

ACCN is the restriction of CN to sets of the form {N} or {N \ {n} : n ∈ N}.
f × g means “perform f and g in parallel”.

As a corollary, we obtain that lim ̸≤W SupCopyR and Π0
2-CN ̸≤W SupCopyR.

It is still open whether such a problem is non-uniformly computable.

13

Lower bounds for SupCopyR
So far we know that LPO ≤W SupCopyR ≤W CN ∗ lim ∗ lim. Consider the
following problem.

Π0
1-Bound

Input: a finite closed subset of N.
Output: an upper bound for it.

Such a problem characterizes the power of SupCopyR for solving sufficiently
uniform problems (fractals) with a computable point in their domain (pointed).

Theorem (C., Pauly)

Let f be a pointed fractal. T.f.a.e.:

• ACCN × f ≤W SupCopyR;

• f ≤W Π0
1-Bound.

ACCN is the restriction of CN to sets of the form {N} or {N \ {n} : n ∈ N}.
f × g means “perform f and g in parallel”.

As a corollary, we obtain that lim ̸≤W SupCopyR and Π0
2-CN ̸≤W SupCopyR.

It is still open whether such a problem is non-uniformly computable.

13

Lower bounds for SupCopyR
So far we know that LPO ≤W SupCopyR ≤W CN ∗ lim ∗ lim. Consider the
following problem.

Π0
1-Bound

Input: a finite closed subset of N.
Output: an upper bound for it.

Such a problem characterizes the power of SupCopyR for solving sufficiently
uniform problems (fractals) with a computable point in their domain (pointed).

Theorem (C., Pauly)

Let f be a pointed fractal. T.f.a.e.:

• ACCN × f ≤W SupCopyR;

• f ≤W Π0
1-Bound.

ACCN is the restriction of CN to sets of the form {N} or {N \ {n} : n ∈ N}.
f × g means “perform f and g in parallel”.

As a corollary, we obtain that lim ̸≤W SupCopyR and Π0
2-CN ̸≤W SupCopyR.

It is still open whether such a problem is non-uniformly computable.

13

Work in Progress
(Pt. 2)

13

Other sets of graphs

So far, we have obtained sets of (names of) graphs being Γ-complete for some
Γ being a Σ or Π class.

We obtained two natural examples of graphs falling outside this schema.
Here L denotes the bi-infinite line.

Theorem (C., Marcone, Pauly)

{H ∈ (E)Gr : R ⊇(i)s H} and {H ∈ (E)Gr : L ⊇(i)s H} are Σ0
3 ∪ Π0

3-
complete.

14

Other sets of graphs

So far, we have obtained sets of (names of) graphs being Γ-complete for some
Γ being a Σ or Π class.
We obtained two natural examples of graphs falling outside this schema.

Here L denotes the bi-infinite line.

Theorem (C., Marcone, Pauly)

{H ∈ (E)Gr : R ⊇(i)s H} and {H ∈ (E)Gr : L ⊇(i)s H} are Σ0
3 ∪ Π0

3-
complete.

14

Other sets of graphs

So far, we have obtained sets of (names of) graphs being Γ-complete for some
Γ being a Σ or Π class.
We obtained two natural examples of graphs falling outside this schema.
Here L denotes the bi-infinite line.

Theorem (C., Marcone, Pauly)

{H ∈ (E)Gr : R ⊇(i)s H} and {H ∈ (E)Gr : L ⊇(i)s H} are Σ0
3 ∪ Π0

3-
complete.

14

Other sets of graphs

So far, we have obtained sets of (names of) graphs being Γ-complete for some
Γ being a Σ or Π class.
We obtained two natural examples of graphs falling outside this schema.
Here L denotes the bi-infinite line.

Theorem (C., Marcone, Pauly)

{H ∈ (E)Gr : R ⊇(i)s H} and {H ∈ (E)Gr : L ⊇(i)s H} are Σ0
3 ∪ Π0

3-
complete.

14

Bibliography I

Zach BeMent, Jeffry Hirst, and Asuka Wallace.
Reverse mathematics and Weihrauch analysis motivated by finite
complexity theory.
Computability, 10(4):343–354, 2021.

Vittorio Cipriani and Arno Pauly.
Embeddability of graphs and Weihrauch degrees.
Available at https://arxiv.org/abs/2305.00935, 2022.

Vittorio Cipriani and Arno Pauly.
The complexity of finding supergraphs.
In Gianluca Della Vedova, Besik Dundua, Steffen Lempp, and Florin
Manea, editors, Unity of Logic and Computation, pages 178–189, Cham,
2023. Springer Nature Switzerland.

14

Thanks for Your attention!

