Introd	luctio
•0	

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ◆

A Constructive Picture of Noetherianity and Well Quasi-Orders

Gabriele Buriola₁, Peter Schuster₁, Ingo Blechschmidt₂

¹University of Verona, Italy ²University of Augsburg, Germany

28/07/2023

Introduction			
^	0000	000	<u></u>
Summary			

We will see:

- Constructive Noetherian definitions;
- Constructive well quasi-orders and their relations.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

	Noetherianity	Well quasi-orders	
	_	000	
Ascending cha	in condition, classically		

Classical logic := Excluded Middle (LEM) + Axiom of Choice (AC).

Classical Noetherianity for Rings

- FBP (Finite Basis Property): every ideal is finitely generated;
- ACC: every ascending chain of ideals *stabilizes*

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \Rightarrow \exists n : I_n = I_{n+1} = I_{n+2} = \ldots;$$

• Classically: FBP \leftrightarrow ACC.

Problem:

FBP and ACC are not constructively meaningful!

E.g. the 2 element field \mathbb{F}_2 is neither constructively FBP nor ACC.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆○ ◆

Introduction

Noetherianity

Well quasi-orders

Ascending chain condition, constructively

Toward a constructive ACC

• ACC: every ascending chain of ideals stabilizes

 $I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \Rightarrow \exists n : I_n = I_{n+1} = I_{n+2} = \ldots;$

- ACC^{fg}: every ascending chain of finitely generated ideals stabilizes $I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \Rightarrow \exists n : I_n = I_{n+1} = I_{n+2} = \ldots;$
- ACC₀: every ascending chain of ideals *stalls*

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \Rightarrow \exists n : I_n = I_{n+1};$$

• ACC₀^{fg}: every ascending chain of finitely generated ideals stalls $I_0 \subset I_1 \subset I_2 \subset \ldots \Rightarrow \exists n : I_n = I_{n+1};$

ACC: is *not* constructive, e.g. \mathbb{F}_2 ;

ACC^{fg}: is *not* constructive, e.g. by Halting problem for Turing machines; ACC₀: is *not* constructive, e.g. by topological models of intuitionistic logic; ACC₀^{fg}: is constructive! as discovered by Richman and Seidenberg; **Notation:** RS-Noetherian:=ACC₀^{fg} (d'après Richman and Seidenberg). Noetherianity

Well quasi-orders

Conclusion

Related Properties

Let
$$(E, \leq)$$
 be a partial order with $x < y \equiv x \leq y \land x \neq y$:

Hereditary conditions

- $H \subseteq E$ is hereditary if $\forall x (\{y \mid y < x\} \subseteq H \Rightarrow x \in H);$
- *E* is hereditary well-founded, hwf, if $H \subseteq E$ hereditary $\Rightarrow H = E$;
- E is well ordered if it is hereditary well-founded and linear.

Ascending trees (Richman'03)

An ascending tree in *E* is a family $(x_i)_{i \in I} \subseteq E$ where

• I is a tree;

•
$$i < j \Rightarrow x_i \leq x_j$$
.

An ascending tree *stalls* if $\exists i < j : x_i = x_j$.

Inductive definition of "P bars σ "

For a predicate P on ascending finite lists on E, we define $P|\sigma$:

- if $P(\sigma)$ then $P|\sigma$;
- if $P|\sigma x$ for all $x \ge \sigma$, then $P|\sigma$.

Intuitionistic Noetherian properties and their relations

A partial order (E,\leqslant) is

- **RS-Noetherian** if for $e_1 \leq e_2 \leq \ldots$ there is *n* with $e_n = e_{n+1}$;
- ML-Noetherian if the reverse order (E, \ge) is hwf;
- strongly Noetherian if there is a well-order W and a strictly descending map $\varphi \colon E \to W$, i.e. $e < f \Rightarrow \varphi(e) > \varphi(f)$;
- tree Noetherian if every ascending tree in E stalls;
- inductively Noetherian if Stall [], where Stall(σ)="σ is an ascending finite list with repeated terms".

Def: given a ring R, $\mathcal{I}_f(R)$ is the set of finitely generated ideals of R. **Def:** a ring R is * Noetherian if $(\mathcal{I}_f(R), \subseteq)$ is * Noetherian.

	ion Noetherianity Well quasi-orders	
Basi	c definitions for quasi-orders	
	Quasi-order	
	A qo (Q,\leqslant) is a set Q with a transitive and reflexive relation \leqslant .	
	Notation	
	• $p < q \equiv p \leq q \land q \nleq p;$ • $p \perp q \equiv p \nleq q \land q \nleq p;$ • $p \perp q \equiv p \nleq q \land q \nleq p;$ • $p \sim q \equiv p \leq q \land q \leqslant p;$	
	Auxiliary definitions	
	For every qo (Q, \leq) : • the closure of $B \subseteq Q$ is $\uparrow B := \{q \in Q \mid \exists b \in B \ b \leq q\}$; • B is closed if $B = \uparrow B$ and finitely generated if $B = \uparrow \{b_1, \dots, b_n\}$.;
	• a sequence $(a_k)_k$ in Q is a total function from N to Q.	

- an antichain is a sequence $(q_k)_k$ such that $q_i \perp q_j$ if $i \neq j$;
- an extension of (Q, \leq) is a qo \leq on Q extending \leq , i.e., $p \leq q \Rightarrow p \leq q$ and $p \leq q \land q \leq p \Rightarrow p \sim q$.

		Well quasi-orders	
	0000	∩ _ ∩	
Well quasi-orders define	nitions		

A qo (Q,\leqslant) is

- well-founded if for $q_1 \ge q_2 \ge \ldots$ there is *n* such that $q_n = q_{n+1}$;
- wqo if for any sequence $(q_k)_k$ in Q there exist i < j with $q_i \leq q_j$;
- wqo(set) if every sequence $(q_k)_k$ in Q has an infinite ascending subsequence: there are $k_0 < k_1 < \ldots$ such that $q_{k_0} \leq q_{k_1} \leq \ldots$;
- wqo(anti) if it is well-founded and every antichain is finite;
- wqo(ext) if every linear extension of Q is well-founded;
- wqo(fbp) if every closed subset is finitely generated;
- wqo(acc) if the set of closed subsets is Noetherian;
- wqo(*) if the set of finitely generated closed subsets is *Noetherian.

(ロト・日本・モン・モン・モーションのへの)

Remark: all the wqo definitions are classically equivalent.

A closure property

Let \mathcal{P} any of the properties wqo, wqo(anti), ... except wqo(ext). If (Q, \leq) has property \mathcal{P} and $P \subseteq Q$, then (P, \leq) has property \mathcal{P} .

Well quasi-orders

Future work

Well-founded vs. hereditarily well-founded

Classically equivalent, but not constructively.

Reverse implications

Which of the following implications can be reversed?

- strongly Noetherian \Rightarrow ML-Noetherian;
- wqo(RS) \Rightarrow wqo;
- wqo \Rightarrow wqo(anti);
- . . .

For now, RS-Noetherian \Rightarrow ML-Noetherian by A. Blass.

Further closure properties

Is wqo(ext) closed under subset?

- If P and Q have property \mathcal{P} , does
 - $P \stackrel{.}{\cup} Q$ constructively have property \mathcal{P} ?
 - $P \times Q$ constructively have property \mathcal{P} ?

			Conclusion
Thank	/ou!		References:
	Higman, G.: <i>Ordering by divisibility in</i> Soc. 3, 2:326-336, (1952).	abstract algebras. Proc. Londo	on Math.
	Richman, F.: <i>Constructive Aspects of</i> American Mathematical Society 44(2)	Noetherian Rings. Proceedings , 436-441, (1974).	of the
	Seidenberg, A.: What is Noetherian? fisico di Milano 44(1), 55-61 (1974).	Rendiconti del Seminario mater	matico e
	Jacobsson C., Löfwall C.: <i>Standard ba</i> <i>constructive proof of Hilbert's basis th</i> 337-371 (1991)	ses for general coefficient rings eorem. J. Symbolic Comput. 12	and a new 2(3),
	Richman, F.: <i>The ascending tree cond</i> <i>countable choice</i> . Commun. Algebra 3	lition: constructive algebra with 1(4), 1993-2002 (2003)	nout
	Perdry, H.: Strongly Noetherian rings symbolic computation 37(4), 511-535	and constructive ideal theory. J (2004).	lournal of
	Veldman, W.: <i>An Intuitionistic Proof</i> Mathematical Logic 43(2), 215-264 (2	of Kruskal's Theorem. Archive 004).	for
	Cholak P., Marcone A., and Solomon equivalence of definitions for well and symbolic logic, 66(1):683-55, (2004).	R.: <i>Reverse mathematics and t</i> better quasi-orders. The Journa	he al of
			► (=) < (=) < (