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Overview

 Polynomials and ideals

 Polynomials in complexity and algorithms

 Constraint Satisfaction Problem

 CSPs and ideals

 Tractability

 Search and Applications
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Polynomials and Ideals
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Rings and Ideals

Let  � be a field and  �[��, … , ��] the ring of polynomials  

over �. Here  � = ℝ or ℂ. 

An ideal ℐ ⊆ �[��, … , ��] is a set of polynomials such that for 

any  �, � ∈ ℐ and ℎ ∈ �[��, … , ��] we have � + �, ℎ ⋅ � ∈ ℐ. 
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Ideal Membership Problem

Ideal Membership Problem (IMP).

Input: An ideal ℐ ⊆ �[��, … , ��] and a polynomial �.

Question:  Does � belong to ℐ?

An ideal is given by its generators, ℐ = 〈��, … , ��〉
Hilbert’s Basis Theorem:

Every ideal of � ��, … , �� has finitely many generators. 
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Solving IMP

Ideal Membership Problem (IMP).

Input: Polynomials  �, ��, … , �� ∈ �[��, … , ��].

Question:  Do there exist ℎ�, … , ℎ� ∈ �[��, … , ��] such that � = ℎ� ⋅ �� + ⋯ + ℎ� ⋅ ��?

Search: Find ℎ�, … , ℎ� ∈ �[��, … , ��] such that � = ℎ� ⋅ �� + ⋯ + ℎ� ⋅ ��
Polynomials  ℎ�, … , ℎ� are called a Nullstellensatz proof that � ∈ 〈��, … , ��〉
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Solving IMP  2

The IMP cannot be solved simply by dividing � by ��, … , ��.

The usual way of solving the IMP is to construct a Gröbner

basis of the ideal.

Dividing by polynomials from a Gröbner basis is much better 

behaved. 
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Polynomials in Complexity and Algorithms
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IMP in Computer Science

Combinatorial problems as polynomial ideals

2-Coloring 

This graph is 2-colourable iff the polynomials � 1 − � , �(1 − �), �(1 − �),� + � − 1, � + � − 1, � + � − 1
have a common zero            

�
� �

domain polynomials

instance
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Nullstellensatz

Nullstellensatz.

Let ℐ ⊆ �[��, … , ��] be a (radical) ideal and � ⊆ �� the set 

of all zeroes of polynomials from ℐ. Then every � ∈ �[��, … , ��]
that vanishes at every point of � belongs to ℐ.

The graph from the previous slide has no 2-coloring iff 1 belongs 

to the ideal generated by those polynomials:

1 = (−4) � � − 1 + 2� − 1 � + � − 1 − � + � − 1 + [� + � − 1]
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IMP as a Proof System

IMP may provide a witness that an instance has no solution:

- encode your problem through polynomials ��, … , ��
- check if 1 belongs to 〈��, … , ��〉
- or find ℎ�, … , ℎ� such that 1 = ℎ� ⋅ �� +  … + ℎ� ⋅ ��

Nullstellensatz proof system

Proof complexity:  What is the `size’ of the smallest proof? 
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IMP and Approximation

We may want to show that a problem not only doesn’t have a 

solution, it doesn’t have anything close to a solution

Formally, construct a `loss function’ that is 0 on a solution, and 

prove some lower bound for it

Or we may want to optimize some function on solutions

In our example � = � + � − 1 " + � + � − 1 " + � + � − 1 "
To show that  � ≥ 1, represent � − 1 as a sum of squares plus a 

polynomial from the ideal

�
� � � 1 − � , �(1 − �), �(1 − �),� + � − 1, � + � − 1, � + � − 1
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IMP and SoS

Let $ = {&�, … , &ℓ} be a set of polynomials. 

Polynomial � has a Sum-of-Squares (SoS) proof of nonnegativity, 

from $ if there are polynomials ��, … , �) and ℎ�, … , ℎℓ such 

that

� = * �+")
+,� + * ℎ+&+ℓ

+,�
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Constraint Satisfaction Problem
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Constraint Satisfaction Problem

Definition:

Instance: (V;A;C)  where

♦ V  is a finite set of variables

♦ A is a set of values

♦ C is a set of constraints -� .� , … , -/ ./
Objective: whether there is ℎ: 1 → 3 such that, 

for any 4,  -+(ℎ .+ ) is true

CSP(Γ)

where each  -+ belongs to  Γ,  a constraint language
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Examples: SAT

)()()( ZTUVUXZYX ∨∨∧∨∨∧∨∨

3-SAT = CSP( 56789:):
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Examples: k-Coloring

k-Coloring:

Instance:   A graph

Objective:   Is it k-colorable?

H-Coloring :  Edge relation of a graph ; rather than ≠

CSP(≠)

= = (1, >) ≠ ≠
≠

≠≠≠
≠ ≠

≠ ≠
≠ ≠
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Examples: Linear Equations

Linear Equations:

Instance:   A system of linear equations 

Objective:   Is it consistent?

2�� + �? + 1.5�B = 3�" − 2�D − 3�? = 0⋮5�� − 2�G + 2�B = 1
(affine 

relations)

CSP(5HII)
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Invariants and Polymorphisms

Definition  Relation  R is invariant w.r.t. an n-ary operation  f

(or f is a polymorphism of R) if, for any JK�, … , JK� ∈ - the          

tuple obtained by applying f coordinate-wise belongs to  R

Pol(Γ) denotes the set of all polymorphisms of relations from  Γ

Theorem  (Jeavons et al., 1998)       

If  Pol(Γ) ⊆ Pol(∆), then  

CSP(∆) is  polytime reducible to  CSP(Γ)
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Polymorphisms: Examples

Consider  - ∈ ΓMNN,  it is the set of solutions of a system          3 ⋅ �⃗ = P
Then operation  � �, �, � = � − � + � is a polymorphism of -
Indeed, take  �⃗, �⃗, �⃗ ∈ -,  that is,  3 ⋅ �⃗ = 3 ⋅ �⃗ = 3 ⋅ �⃗ = P 
Then3 ⋅ �⃗ − �⃗ + �⃗ = 3 ⋅ �⃗ − 3 ⋅ �⃗ + 3 ⋅ �⃗ = P − P + P = P
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A semilattice operation is a binary operation  ⋅ satisfying the 

equations:    x ⋅ x = x,   x ⋅ y = y ⋅ x,    x ⋅ (y ⋅ z) = (x ⋅ y) ⋅ z

(Horn SAT)

A majority operation is a ternary operation  ℎ that satisfies the 

equations        g(x,x,y) = g(x,y,x) = g(y,x,x) = x

(2-SAT)

A Maltsev operation is a ternary operation  ℎ that satisfies the 

equations        h(x,x,y) = h(y,x,x) = y

(systems of linear equations)

Good Polymorphisms
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Schaefer’s Theorem

Schaefer’s Dichotomy Theorem (Schaefer 1978)       

For a Boolean constraint language Γ,  CSP(Γ) is poly time iff

one of the following operations is a polymorphism of Γ
 constant 0 (constant 1) operation

 disjunction  ∨ (conjunction  ∧)

 majority operation � ∧ � ∨ � ∧ � ∨ (� ∧ �)
 affine (Mal’tsev) operation � − � + �

Otherwise it is NP-complete.
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General Dichotomy Theorem

CSP Dichotomy Theorem (Bulatov, Zhuk, 2017)       

For a constraint language Γ on a finite set,  CSP(Γ) is poly 

time iff a weak near-unanimity operation is a polymorphism of Γ.

Otherwise it is NP-complete.

V(��, … , �)) is WNU if V �, … , �, � = V �, … , �, � = ⋯ = V(�, … , �, �)
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IMP and CSP

24/44



IMP from CSP

Let W be an instance of XY$(Γ) where Γ is a constraint 

language over Z = {0, … , [ − 1}. 

Let {��, … , ��} be the set of variables of W
For every constraint X = 〈 �+\ , … , �+] , -〉 introduce a 

polynomial �̂ ∈ ℝ[�+\ , … , �+]] whose zeroes are exactly the 

tuples of -ℐ W is the ideal of ℝ ��, … , �� generated by �̂ , for all 

constraints X and domain polynomials �_ �+ , 4 ≤ a.
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IMP from CSP  2

bc$(Γ):

Input: an instance W of XY$(Γ) with variables {��, … , ��} and a 

polynomial � ∈ ℝ[��, … , ��]
Question: � ∈ ℐ(W)?

Also, find a proof that � ∈ ℐ(W)
bc$d(Γ) is the subproblem of bc$(Γ) in which the degree of �
is bounded by e
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IMP from CSP  3

ℐ(W) is always radical, so Nullstellensatz appliesbc$(Γ):

Input: an instance W of XY$(Γ) with variables {��, … , ��} and a 

polynomial � ∈ ℝ[��, … , ��]
Question: is every solution of W a zero of �?

Corollary  bc$ Γ ∈ fgh$
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Research Questions

Question 1:    For which Γ a Groebner basis of ℐ(W) can be 

efficiently constructed for every W?

Question 2:    For which Γ there is a `small’ Nullstellensatz proof 

of � ∈ ℐ(W) for every �, W?

Question 3:     For which Γ the problem bc$d(Γ) is polynomial 

time?
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Boolean IMP

Theorem (Mastrolilli’19, Mastrolilli,Bharati’20)  

Let Γ be a constraint language over {0,1}. Then

If Γ has a majority, semilattice or affine (� − � + �)
polymorphism then bc$d Γ is polytime for any e
Otherwise bc$"(Γ) is coNP-complete

Tractable cases are through GB
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Tractability
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Polytime IMP

Theorem.  

(1)  bc$d(semilattice) is polytime for every e.

(2)  bc$d dual discriminator is polytime for every e
(3)  bc$d(ℤw), & prime, is polytime for every e
(4)  bc$d(x) is polytime for every e, x is an Abelian group
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Abelian Groups Case

Consider  bcZ(ℤw)
The CSP instance is a system of linear equations

y J���� + ⋯ + J���� = P�⋮J���� + ⋯ + J���� = P�
The polynomial encoding is exponentially long

Change the domain
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Abelian Groups Case 2

Step 1.  Solve the system

y �� = f��z���z� + ⋯ + f���� + P�⋮�� = f��z���z� + ⋯ + f���� + P�
Step 2.  Replace Z = 0,1, … , [ − 1 with [th roots of unity {|} is a primitive root�| − 1 domain polynomials�+ − }~���z�����\ … ����� instance

It is a GB
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Abelian Groups Case 3

Step 3.  Convert the input polynomial

Let �: {| → Z, �(}+) → 4 
It is represented by a polynomial

Convert  �(��, … , ��) to  �� = �(� �� , … , � �� )
Lemma.  �� belongs to the ideal generated by the polynomials from   

Step 2 if and only if  � belongs to the ideal corresponding to the 

original instance.
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Search and Applications
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The Search Problem

The reductions shown above allow for a solution of the decision 

problem. However, substitutions completely mess up proofs and 

GB

We show a reduction of the search problem to the decision 

problem. It involves constructing a GB using the decision problem
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Extended IMP

�bc$(Γ):

Input: an instance W of XY$(Γ) with variables {��, … , ��} and a 

sequence of polynomials ��, … , �� ∈ ℝ[��, … , ��]
Question: Do there exist ��, … , �� ∈ ℝ such that              ���� + ⋯ + ���� ∈ ℐ(W)?
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Extended IMP 2

All the algebraic properties of the bc$ remain true for the  �bc$.  

Also, all the tractable cases of the bc$ remain tractable for the �bc$.  
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Extended IMP and the Search Problem

Proof idea.

Enumerate all the monomials of degree at most e.

For each of them use the �bc$ to decide if a GB should contain 

a polynomial with such a leading monomial and find it.  

Theorem.  

If �bc$(Γ) can be solved in polynomial time then for any 

instance W of XY$(Γ), a degree e truncated Gröbner basis can 

also be constructed in polynomial time.
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�bc$ and Bit Complexity

Recall SOS proofs:

� = * �+")
+,� + * ℎ+&+ℓ

+,�

use �bc$ to decide if  � − ∑ �+")+,�
belongs to the ideal generated by the &+
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IMP and SoS 2

- If it is known that an instance has an SoS proof of low degree, 

it can be found through an SDP program of polynomial size. 

Then the SDP program can be solved by the ellipsoid method

- Low degree SoS proofs can be found. Such proof systems are 

called automatizable. Used in an attempt to refute the UGC

- Accident: It turns out low degree is not enough, also need 

small coefficients (O’Donnell’17)

- Can almost be avoided in the majority of interesting cases, 

provided the IMP part is polytime (Raghavendra’17)
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�bc$ and Bit Complexity 2

Raghavendra and Weitz suggested 3 conditions that guarantee 

that an SOS proof has low bit complexity.

The approach above eliminates 2 of them for problems XY$(Γ)
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Open Questions

- More polytime problems

- Connection to the standard CSP techniques (consistency?)

- Low degree restrictions. What do they correspond to in CSP?
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Thank You!
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