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Introduction

» Given a prefix of a sequence of numbers

3,9,15,21, ...,

one can ask how the sequence continues?

» Provided the input sequence is total computable, the answer
could be a Godel number for it.

» This and similar questions have been intensively studied in
algorithmic learning theory.

» Gold proved 1967 that one cannot even learn the Godel
number in the limit, in the situation above.

> We want to classify the Weihrauch complexity of the above
problem.

» In this way we get a better understanding of the mixture of
topological and computability-theoretic features that are
involved in this problem.



'
Godelization and Kolmogorov complexity

> Let o : N — P be some standard Godel numbering of the set
‘P of partial computable functions.

» We call the following problem the
GCNY=N,p— {ieN:g; =p},

where dom(G) contains all total computable functions p.

» For our purposes the is the problem
K:C NN = N, p+ minG(p),
with dom(K) = dom(G).

» Hoyrup and Rojas (2017) have coined the following slogan:

The only useful additional information carried by a program
compared to the natural number sequence it represents, is an
upper bound on the Kolmogorov complexity of the sequence.



Variants of the Godelization problem

» We also look at the following variant of G:
G> :CNVXN=N,(p,m)— {i e N:¢; = p},
where dom(G) = {(p, m) : K(p) < m}.

» And we study the following variant of K:
Ks :CNYN =N, p—= {meN:K(p) < m},
with dom(K>) = dom(G).

» These problems are related in the Weihrauch lattice as follows:

K



Weihrauch reducibility ;"

Let f:C X =Y and g :C Z = W be two multi-valued functions.

F

»— — F(p

> fis to g, f <y g, if there are computable
H, K :C N¥ — NY such that H(id, GK) I~ f whenever G |- g.

> We write f <5, g for the version of Weihrauch
reducibility, where H, K are chosen to be continuous.

> We write f S@V g if H, K can be chosen to be
p € NN,

_ % _p . .
» =, =, and =y; denote the corresponding equivalences.

» The distributive lattice induced by <yy is usually referred to
as



Typical problems in the Weihrauch lattice ;"‘

> :
LPO : NN — {0,1},LPO(p) =1: <= p=0

LLPO :C NN = {0,1},LLPO(po, p1) := {i € {0,1} : p; = 0},
with dom(LLPO) = {(po, p1) € NV : =(py # 0 A p1 # 0)}.
> N is
Cn:C NN =N, p+ {neN: (Vk) p(k) # n},

with dom(Cy) = {p € NV : range(p) & N},
> N is

Ky C NN x N=N,(p,m)— {n<m:(Vk)p(k) # n},
with dom(Ky) = {(p, m) € NV x N : range(p) S {0, ..., m}}.

c WKL :C Tr= 2N T — [T]

> . lim :C NN — NN, (Xn) = limp_s00 Xn.



Borel complexity and Weihrauch complexity ,"‘

The f" of a problem is a strengthening of f:

» a name of an input x for f’ is a sequence (p,) in N'' that converge
to a name p € NV of an input in the sense of f.

Theorem (B. 2005, Pauly, de Brecht 2014 and Kihara 2015)

1. f is computably Y0, ,—measurable <= f <y lim(").

2. f is computably (£9,,, %0, ,)-measurable < f <y C.

» Weihrauch complexity refines very much in the
same way as many-one complexity refines arithmetical complexity.

> B. and Rakotoniaina (2017) have shown that
Ky <w Cn <w Ky <w Ciy <w ...

and concluded that this is the proper Weihrauch analogue of the
of

BYX? « 120 «+ BX9 < IX9 « ...



Basic skeleton of Weihrauch complexity ’
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Motivation for closed and compact choice as benchmark

Recall that the of a problem f can be defined by
Lf = max<y, {g . C NN = N: g <w f}.

It was introduced by Dzhafarov, Solomon, and Yokoyama (2019).

Theorem (Valenti 2021, Solda and Valenti 2023)

1. 1(Iim(")) =W C(n), in particular 1 lim =g Cy,
2. {WKLM) = K, in particular 'WKL =gy K.

By a result of Westrick (2021) the can be characterized by
o= max<, {g CNY = NV f<wgrxg<wg}
It was introduced by Neumann and Pauly (2018).

» LPO° =w Cy (Neumann and Pauly 2018)
» LLPO®=w Ky (Solda and Valenti 2023)




Basic skeleton of Weihrauch complexity ’

first-order part
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Reverse mathematics and computability classes ,"‘

Weihrauch degree | Reverse mathematics axioms
Cy ATRo
lim® ACA,
WKL WKLg
iy 12041
K{y BX) ..
id RCA;

Theorem (B., de Brecht and Pauly 2012)

1. f is limit computable <= f <y lim.
2. f is finite mind change computable <— f <y Cy.

3. f is non-deterministically computable <— f <y WKL.

» Gold's result can be translated into G £y Cy.

» We will use the problems Ky and Cy as a benchmark to classify the
Godel problem.



» The equivalence K> =55, G validates Hoyrup and Rojas slogan
topologically.

» Which is the minimal oracle among 0, (', ()", ... that validates
the picture above in place of *?
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K> E%V G E%V K :%\, Cy
l

Kn

2 J/

G> E%V id

» The oracle ()" makes totality decidable and this yields easy
proofs of the equivalences.

» Surprisingly, this can also be done with ()’, but the proofs are
slightly more difficult in this case.



K> E%{/ G E%{, K E%{, Cn

G> =% id

» The oracle ()" makes totality decidable and this yields easy
proofs of the equivalences.

» Surprisingly, this can also be done with ()’, but the proofs are
slightly more difficult in this case.



Upper bound with respect to the halting problem ,&.‘

K <% Cu.

Proof.

> We go through all Godel numbers i = 0,1,2,... one by one.

» For each i we check for each n =0, 1,2, ... whether
n € dom(p;) (with the help of the halting problem) and
whether o;(n) = p(n).

» If so, then we write / to the output g and we move on to the
next n.

» |f one of these tests fails, then we move on to the next /.

» This procedure stops going to the next /i when the smallest /
with ; = p is reached.

» Altogether, this gives a finite mind change computation for K.

O
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Lower bound with respect to the halting problem ,&.‘

Cn <% Ks.

Proof.
» \We use a variant of the set of :
R :={(k,n) € N: min{i € N: p;(k) = n} > n}.
» For each k there are infinitely many n with (k,n) € R.
» R is co-c.e. and hence R <t (0.
> We use the B =w Cu, which is the
problem: given a monotone increasing bounded sequence
p € NN find an upper bound b € N.
> We prove B S\’fv K>: inspecting the numbers
p(0), p(1), p(2), ... we construct q(0), (1), g(2), ... such that
b = K(q) is an upper bound for p.
» This can be done such that g is eventually constant and hence
actually computable.
O



KEE%{]GE%K E%{/ Cy

G> E%{/ id

> We have established the upper equivalences.

» We still need to prove G> is computable relative to the

halting problem.



Computability with respect to the halting problem ,&.‘

G> is computable with respect to the halting problem ().

Proof. We use a variant of the
> We consider the on P:
f~g:<= (Vnedom(f)ndom(g)) f(n)=g(n).
> C:={(i.j) e N:p; = pj} is co-c.e. and hence C < (.

v

Let (p, m) be an input for G, i.e., K(p) < m.
» For /i < m that we consider the
Pii={j<m:p;~ g}
> P;is called . if pj, =~ @), holds for all jo,j1 € P;.

» Among Py, ..., P, we remove all incompatible pockets and all
double occurrences of the same pocket.

» This yields a list of P, ..., P;, of pairwise different pockets,
which are all compatible by themselves.



Computability with respect to the halting problem J

> No pocket in our list is a subset of another pocket.

» Among the pockets P;, ..., P,

1. exactly one contains at least one code j with ¢; = p and all
codes j in this pocket satisfy ¢; ~ p,

2. all other pockets contain at least one j with ¢; % p.

in our list

> P;is called p, if p~jforall j € P;.

> 1. and 2. guarantee that there is exactly one pocket P; among
the Pj, ..., P; that is compatible with p and contains a Godel
number of p.

> A prefix of p is sufficient to identify P; as we just need to find
an incompatible member in all the other pockets.

» From the index i we can compute a Goédel number r(i) of p:
for each input n € N we search for some j € P; such that
n € dom(y;) and we produce p;(n) as result.

» Hence, r(i) € G=(p, m). (We note that r(/) < mis not
required and might not hold.) O
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Ks =% 6=l K =0, Cy
|

Ky

-

G> E%V id

> We now want to study the situation in the computable case.
» We know G £y Cy by Gold (1967) and G~ <y Cy by

Freivald and Wiehagen (1979).
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The computability-theoretic situation
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The computability-theoretic situation J

>

v

K <w C}y can be proved observing that C{; = liminfy. We
just write all Godel numbers i onto the output that match the
input for longer and longer prefixes of the input p. The least
cluster point is the smallest Godel number of p.

K- Zw Kiy can be proved by a finite extension construction
using that Ki; =w BWTy (the Bolzano-WeierstraB theorem
on N).

Hence the classification of K> <y G <y K is optimal with
respect to our benchmark problems.

G> <w LPO" can be proved with the amalgamation
technique.

G> £w Ky can be proved with a finite extension construction.
G> is hence continuous, but not computable.

The problems G>, K>, G and K can all be separated from
each other with respect to <yy.




Closure properties of Godelization A.‘

By G we denote the of G

By G x G we denote the of G by itself
By G* we denote the of G

By f|. we denote the of f

vvyyypwy

v

a‘c =w G <w a
(G * G)|c =W G
G'=wG

Does G x G=w G hold?

vy




Lower bounds

Proposition

DIS #£w G, but LPO <w K.

Proof. DIS <y G would imply NON <y G, since DIS =y NON.
But since G|. <w G, this is impossible!

LPO <w K is easy to see, as there is a specific smallest Godel
number i of the zero sequence p € NV, O

DIS is the weakest natural discontinuous problem with respect to
topological Weihrauch reducibility (in ZF+DC+AD). Hence,
Godelization G has no useful natural lower bounds (besides id)!

Corollary

G is effectively discontinuous, but not computably so.

This means DIS <j;; G, but DIS £w G.
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The computability-theoretic situation
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