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;
Introduction

I Given a prefix of a sequence of numbers

3, 9, 15, 21, ...,

one can ask how the sequence continues?

I Provided the input sequence is total computable, the answer
could be a Gödel number for it.

I This and similar questions have been intensively studied in
algorithmic learning theory.

I Gold proved 1967 that one cannot even learn the Gödel
number in the limit, in the situation above.

I We want to classify the Weihrauch complexity of the above
problem.

I In this way we get a better understanding of the mixture of
topological and computability-theoretic features that are
involved in this problem.



;
Gödelization and Kolmogorov complexity

I Let ϕ : N→ P be some standard Gödel numbering of the set
P of partial computable functions.

I We call the following problem the Gödelization problem

G :⊆ NN ⇒ N, p 7→ {i ∈ N : ϕi = p},
where dom(G) contains all total computable functions p.

I For our purposes the Kolmogorov complexity is the problem

K :⊆ NN → N, p 7→ min G(p),

with dom(K) = dom(G).

I Hoyrup and Rojas (2017) have coined the following slogan:

The only useful additional information carried by a program
compared to the natural number sequence it represents, is an
upper bound on the Kolmogorov complexity of the sequence.



;
Variants of the Gödelization problem

I We also look at the following variant of G:

G≥ :⊆ NN × N⇒ N, (p,m) 7→ {i ∈ N : ϕi = p},
where dom(G) = {(p,m) : K (p) ≤ m}.

I And we study the following variant of K:

K≥ :⊆ NN ⇒ N, p 7→ {m ∈ N : K(p) ≤ m},
with dom(K≥) = dom(G).

I These problems are related in the Weihrauch lattice as follows:

G≥

K≥

G

K



;
Weihrauch reducibility

Let f :⊆ X ⇒ Y and g :⊆ Z ⇒W be two multi-valued functions.

K HG

F

p F (p)

I f is Weihrauch reducible to g , f ≤W g , if there are computable
H,K :⊆ NN → NN such that H〈id,GK 〉 ` f whenever G ` g .

I We write f ≤∗W g for the continuous version of Weihrauch
reducibility, where H,K are chosen to be continuous.

I We write f ≤p
W g if H,K can be chosen to be computable

relative to p ∈ NN.

I ≡W, ≡∗W, and ≡p
W denote the corresponding equivalences.

I The distributive lattice induced by ≤W is usually referred to
as Weihrauch lattice.



;
Typical problems in the Weihrauch lattice

I Limited principle of omniscience:
LPO : NN → {0, 1}, LPO(p) = 1 :⇐⇒ p = 0̂

I Lesser limited principle of omniscience:
LLPO :⊆ NN ⇒ {0, 1}, LLPO〈p0, p1〉 := {i ∈ {0, 1} : pi = 0̂},
with dom(LLPO) = {〈p0, p1〉 ∈ NN : ¬(p0 6= 0̂ ∧ p1 6= 0̂)}.

I Closed choice on N is

CN :⊆ NN ⇒ N, p 7→ {n ∈ N : (∀k) p(k) 6= n},
with dom(CN) = {p ∈ NN : range(p) $ N},

I Compact choice N is

KN :⊆ NN × N⇒ N, (p,m) 7→ {n ≤ m : (∀k) p(k) 6= n},
with dom(KN) = {(p,m) ∈ NN × N : range(p) $ {0, ...,m}}.

I Weak Kőnig’s lemma: WKL :⊆ Tr⇒ 2N,T 7→ [T ]

I Limit: lim :⊆ NN → NN, 〈xn〉 7→ limn→∞ xn.



;
Borel complexity and Weihrauch complexity

The jump f ′ of a problem is a strengthening of f :

I a name of an input x for f ′ is a sequence (pn) in NN that converge
to a name p ∈ NN of an input in the sense of f .

Theorem (B. 2005, Pauly, de Brecht 2014 and Kihara 2015)

1. f is computably Σ0
n+2–measurable ⇐⇒ f ≤W lim(n).

2. f is computably (Σ0
n+2,Σ0

n+2)–measurable ⇐⇒ f ≤W C
(n)
N .

I Weihrauch complexity refines Borel complexity very much in the
same way as many-one complexity refines arithmetical complexity.

I B. and Rakotoniaina (2017) have shown that

KN≤W CN≤W K′N≤W C′N≤W ...

and concluded that this is the proper Weihrauch analogue of the
Paris-Harrington hierarchy of induction and boundedness problems

BΣ0
1 ← IΣ0

1 ← BΣ0
2 ← IΣ0

2 ← ...
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Basic skeleton of Weihrauch complexity
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;
Motivation for closed and compact choice as benchmarks

Recall that the first-order part of a problem f can be defined by

1f := max≤W{g :⊆ NN ⇒ N : g ≤W f }.
It was introduced by Dzhafarov, Solomon, and Yokoyama (2019).

Theorem (Valenti 2021, Soldà and Valenti 2023)

1. 1(lim(n))≡sW C
(n)
N , in particular 1 lim≡sW CN,

2. 1(WKL(n))≡sW K
(n)
N , in particular 1WKL≡sW KN.

By a result of Westrick (2021) the diamond can be characterized by

f � := max≤W{g :⊆ NN ⇒ NN : f ≤W g ? g ≤W g}.
It was introduced by Neumann and Pauly (2018).

Proposition

I LPO�≡W CN (Neumann and Pauly 2018)

I LLPO�≡W KN (Soldà and Valenti 2023)



;
Basic skeleton of Weihrauch complexity
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;
Reverse mathematics and computability classes

Weihrauch degree Reverse mathematics axioms

CNN ATR0

lim� ACA0

WKL WKL∗0
C

(n)
N IΣ0

n+1

K
(n)
N BΣ0

n+1

id RCA∗0

Theorem (B., de Brecht and Pauly 2012)

1. f is limit computable ⇐⇒ f ≤W lim.

2. f is finite mind change computable ⇐⇒ f ≤W CN.

3. f is non-deterministically computable ⇐⇒ f ≤W WKL.

I Gold’s result can be translated into G 6≤W CN.

I We will use the problems KN and CN as a benchmark to classify the
Gödel problem.



;
The topological situation

C′N

K′N

CN

KN

idG≥

K≥ ≡∗W G ≡∗W K ≡∗W

≡∗W

I The equivalence K≥ ≡∗W G validates Hoyrup and Rojas slogan
topologically.

I Which is the minimal oracle among ∅, ∅′, ∅′′, ... that validates
the picture above in place of ∗?



;
Optimal oracles

C′N

K′N

CN

KN

idG≥

K≥ ≡∅
′′

W G ≡∅′′W K ≡∅′′W

≡∅′′W

I The oracle ∅′′ makes totality decidable and this yields easy
proofs of the equivalences.

I Surprisingly, this can also be done with ∅′, but the proofs are
slightly more difficult in this case.



;
Optimal oracles

C′N

K′N

CN

KN

idG≥

K≥ ≡∅
′
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≡∅′W

I The oracle ∅′′ makes totality decidable and this yields easy
proofs of the equivalences.

I Surprisingly, this can also be done with ∅′, but the proofs are
slightly more difficult in this case.



;
Upper bound with respect to the halting problem

Proposition

K ≤∅′W CN.

Proof.

I We go through all Gödel numbers i = 0, 1, 2, ... one by one.

I For each i we check for each n = 0, 1, 2, ... whether
n ∈ dom(ϕi ) (with the help of the halting problem) and
whether ϕi (n) = p(n).

I If so, then we write i to the output q and we move on to the
next n.

I If one of these tests fails, then we move on to the next i .

I This procedure stops going to the next i when the smallest i
with ϕi = p is reached.

I Altogether, this gives a finite mind change computation for K.

�



;
Lower bound with respect to the halting problem

Proposition

CN ≤∅
′

W K≥.

Proof.
I We use a variant of the set of random natural numbers:

R := {〈k , n〉 ∈ N : min{i ∈ N : ϕi (k) = n} ≥ n}.
I For each k there are infinitely many n with 〈k , n〉 ∈ R.
I R is co-c.e. and hence R ≤T ∅′.
I We use the boundedness problem B≡W CN, which is the

problem: given a monotone increasing bounded sequence
p ∈ NN, find an upper bound b ∈ N.

I We prove B ≤R
W K≥: inspecting the numbers

p(0), p(1), p(2), ... we construct q(0), q(1), q(2), ... such that
b = K(q) is an upper bound for p.

I This can be done such that q is eventually constant and hence
actually computable.

�



;
Optimal oracles

C′N

K′N

CN

KN

idG≥

K≥ ≡∅
′

W G ≡∅′W K ≡∅′W

≡∅′W

I We have established the upper equivalences.

I We still need to prove G≥ is computable relative to the
halting problem.



;
Computability with respect to the halting problem

Proposition

G≥ is computable with respect to the halting problem ∅′.

Proof. We use a variant of the amalgamation technique.

I We consider the compatibility relation on P:

f ≈ g :⇐⇒ (∀n ∈ dom(f ) ∩ dom(g)) f (n) = g(n).

I C := {〈i , j〉 ∈ N : ϕi ≈ ϕj} is co-c.e. and hence C ≤T ∅′.
I Let (p,m) be an input for G≥, i.e., K(p) ≤ m.

I For i ≤ m that we consider the pockets:

Pi := {j ≤ m : ϕi ≈ ϕj}
I Pi is called compatible, if ϕj0 ≈ ϕj1 holds for all j0, j1 ∈ Pi .

I Among P0, ...,Pm we remove all incompatible pockets and all
double occurrences of the same pocket.

I This yields a list of Pi0 , ...,Pik of pairwise different pockets,
which are all compatible by themselves.



;
Computability with respect to the halting problem

I No pocket in our list is a subset of another pocket.
I Among the pockets Pi0 , ...,Pik in our list

1. exactly one contains at least one code j with ϕj = p and all
codes j in this pocket satisfy ϕj ≈ p,

2. all other pockets contain at least one j with ϕj 6≈ p.

I Pi is called compatible with p, if p ≈ ϕj for all j ∈ Pi .

I 1. and 2. guarantee that there is exactly one pocket Pi among
the Pi0 , ...,Pik that is compatible with p and contains a Gödel
number of p.

I A prefix of p is sufficient to identify Pi as we just need to find
an incompatible member in all the other pockets.

I From the index i we can compute a Gödel number r(i) of p:
for each input n ∈ N we search for some j ∈ Pi such that
n ∈ dom(ϕj) and we produce ϕj(n) as result.

I Hence, r(i) ∈ G≥〈p,m〉. (We note that r(i) ≤ m is not
required and might not hold.) �



;
Optimal oracles

C′N

K′N

CN

KN

idG≥

K≥ ≡∅
′

W G ≡∅′W K ≡∅′W

≡∅′W

I We now want to study the situation in the computable case.

I We know G 6≤W CN by Gold (1967) and G≥≤W CN by
Freivald and Wiehagen (1979).
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The computability-theoretic situation
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;
The computability-theoretic situation

I K≤W C′N can be proved observing that C′N≡W lim infN. We
just write all Gödel numbers i onto the output that match the
input for longer and longer prefixes of the input p. The least
cluster point is the smallest Gödel number of p.

I K≥ 6≤W K′N can be proved by a finite extension construction
using that K′N≡W BWTN (the Bolzano-Weierstraß theorem
on N).

I Hence the classification of K≥≤W G≤W K is optimal with
respect to our benchmark problems.

I G≥≤W LPO∗ can be proved with the amalgamation
technique.

I G≥ 6≤W KN can be proved with a finite extension construction.

I G≥ is hence continuous, but not computable.

I The problems G≥,K≥,G and K can all be separated from
each other with respect to ≤W.



;
Closure properties of Gödelization

I By Ĝ we denote the parallelization of G

I By G ? G we denote the compositional product of G by itself

I By G∗ we denote the finite parallelization of G

I By f |c we denote the restriction to computable inputs of f

I Ĝ|c≡W G<W Ĝ (parallelization)

I (G ? G)|c≡W G (compositional products)

I G∗≡W G (finite parallelization)

Question

Does G ? G≡W G hold?



;
Lower bounds

Proposition

DIS 6≤W G, but LPO≤W K.

Proof. DIS≤W G would imply NON≤W Ĝ, since D̂IS≡W NON.
But since Ĝ|c≤W G, this is impossible!
LPO≤W K is easy to see, as there is a specific smallest Gödel
number i of the zero sequence p ∈ NN. �

DIS is the weakest natural discontinuous problem with respect to
topological Weihrauch reducibility (in ZF+DC+AD). Hence,
Gödelization G has no useful natural lower bounds (besides id)!

Corollary

G is effectively discontinuous, but not computably so.

This means DIS ≤∗W G, but DIS 6≤W G.



;
The computability-theoretic situation
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