On the complexity of learning programs

Vasco Brattka

Universität der Bundeswehr München, Germany University of Cape Town, South Africa

Computability in Europe 2023

Batumi, Georgia 27 July 2023

Given a prefix of a sequence of numbers

3, 9, 15, 21, ...,

one can ask how the sequence continues?

- Provided the input sequence is total computable, the answer could be a Gödel number for it.
- This and similar questions have been intensively studied in algorithmic learning theory.
- Gold proved 1967 that one cannot even learn the Gödel number in the limit, in the situation above.
- We want to classify the Weihrauch complexity of the above problem.
- In this way we get a better understanding of the mixture of topological and computability-theoretic features that are involved in this problem.

Gödelization and Kolmogorov complexity

- -
- Let $\varphi : \mathbb{N} \to \mathcal{P}$ be some standard Gödel numbering of the set \mathcal{P} of partial computable functions.
- ► We call the following problem the Gödelization problem $G :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}, p \mapsto \{i \in \mathbb{N} : \varphi_i = p\},$

where dom(G) contains all total computable functions *p*.

- ► For our purposes the Kolmogorov complexity is the problem $K :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}, p \mapsto \min G(p),$ with dom(K) = dom(G).
- Hoyrup and Rojas (2017) have coined the following slogan: The only useful additional information carried by a program compared to the natural number sequence it represents, is an upper bound on the Kolmogorov complexity of the sequence.

Variants of the Gödelization problem

We also look at the following variant of G:
G≥ :⊆ N^N × N ⇒ N, (p, m) ↦ {i ∈ N : φ_i = p},
where dom(G) = {(p, m) : K(p) ≤ m}.

And we study the following variant of K:
 K_≥ :⊆ N^N ⇒ N, p → {m ∈ N : K(p) ≤ m}, with dom(K_≥) = dom(G).

These problems are related in the Weihrauch lattice as follows:

Let $f :\subseteq X \rightrightarrows Y$ and $g :\subseteq Z \rightrightarrows W$ be two multi-valued functions.

- ▶ *f* is Weihrauch reducible to *g*, $f \leq_W g$, if there are computable $H, K :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ such that $H \langle \operatorname{id}, GK \rangle \vdash f$ whenever $G \vdash g$.
- We write f ≤^{*}_W g for the continuous version of Weihrauch reducibility, where H, K are chosen to be continuous.
- ▶ We write $f \leq_{W}^{p} g$ if H, K can be chosen to be computable relative to $p \in \mathbb{N}^{\mathbb{N}}$.

▶ \equiv_{W} , \equiv_{W}^{*} , and \equiv_{W}^{p} denote the corresponding equivalences.

▶ The distributive lattice induced by \leq_W is usually referred to as Weihrauch lattice.

Typical problems in the Weihrauch lattice

- ► Limited principle of omniscience: LPO : $\mathbb{N}^{\mathbb{N}} \to \{0, 1\}, LPO(p) = 1 : \iff p = \widehat{0}$
- ▶ Lesser limited principle of omniscience: LLPO :⊆ $\mathbb{N}^{\mathbb{N}} \rightrightarrows \{0,1\}$, LLPO $\langle p_0, p_1 \rangle$:= $\{i \in \{0,1\} : p_i = \widehat{0}\}$, with dom(LLPO) = $\{\langle p_0, p_1 \rangle \in \mathbb{N}^{\mathbb{N}} : \neg (p_0 \neq \widehat{0} \land p_1 \neq \widehat{0})\}$.
- ► Closed choice on N is $C_{\mathbb{N}} :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}, p \mapsto \{n \in \mathbb{N} : (\forall k) \ p(k) \neq n\},$ with dom($C_{\mathbb{N}}$) = { $p \in \mathbb{N}^{\mathbb{N}} : \operatorname{range}(p) \subsetneq \mathbb{N}$ },
- ▶ Compact choice \mathbb{N} is $K_{\mathbb{N}} :\subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{N} \rightrightarrows \mathbb{N}, (p, m) \mapsto \{n \leq m : (\forall k) \ p(k) \neq n\},$ with dom $(K_{\mathbb{N}}) = \{(p, m) \in \mathbb{N}^{\mathbb{N}} \times \mathbb{N} : \operatorname{range}(p) \subsetneq \{0, ..., m\}\}.$
- Weak Kőnig's lemma: WKL : \subseteq Tr \Rightarrow 2^{\mathbb{N}}, T \mapsto [T]
- Limit: $\lim :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}, \langle x_n \rangle \mapsto \lim_{n \to \infty} x_n.$

Borel complexity and Weihrauch complexity

- North

The jump f' of a problem is a strengthening of f:

a name of an input x for f' is a sequence (p_n) in N^N that converge to a name p ∈ N^N of an input in the sense of f.

Theorem (B. 2005, Pauly, de Brecht 2014 and Kihara 2015)

- 1. *f* is computably \sum_{n+2}^{0} -measurable $\iff f \leq_{\mathrm{W}} \lim^{(n)}$.
- 2. f is computably $(\Sigma_{n+2}^0, \Sigma_{n+2}^0)$ -measurable $\iff f \leq_{\mathrm{W}} C_{\mathbb{N}}^{(n)}$.
- Weihrauch complexity refines Borel complexity very much in the same way as many-one complexity refines arithmetical complexity.
- B. and Rakotoniaina (2017) have shown that

 $\mathsf{K}_{\mathbb{N}}\mathop{\leq_{\mathrm{W}}}\mathsf{C}_{\mathbb{N}}\mathop{\leq_{\mathrm{W}}}\mathsf{K}'_{\mathbb{N}}\mathop{\leq_{\mathrm{W}}}\mathsf{C}'_{\mathbb{N}}\mathop{\leq_{\mathrm{W}}}\ldots$

and concluded that this is the proper Weihrauch analogue of the Paris-Harrington hierarchy of induction and boundedness problems

 $\mathsf{B}\Sigma_1^0 \leftarrow \mathsf{I}\Sigma_1^0 \leftarrow \mathsf{B}\Sigma_2^0 \leftarrow \mathsf{I}\Sigma_2^0 \leftarrow ...$

Basic skeleton of Weihrauch complexity

Motivation for closed and compact choice as benchmarks

Recall that the first-order part of a problem f can be defined by ${}^1f := \max_{\leq_W} \{g : \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N} : g \leq_W f \}.$

It was introduced by Dzhafarov, Solomon, and Yokoyama (2019).

Theorem (Valenti 2021, Soldà and Valenti 2023)

1. ${}^{1}(\lim^{(n)}) \equiv_{sW} C_{\mathbb{N}}^{(n)}$, in particular ${}^{1}\lim \equiv_{sW} C_{\mathbb{N}}$, 2. ${}^{1}(WKL^{(n)}) \equiv_{sW} K_{\mathbb{N}}^{(n)}$, in particular ${}^{1}WKL \equiv_{sW} K_{\mathbb{N}}$.

By a result of Westrick (2021) the diamond can be characterized by $f^\diamond := \max_{\leq_W} \{g :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}} : f \leq_W g \star g \leq_W g \}.$

It was introduced by Neumann and Pauly (2018).

Proposition

► LPO^{\diamond} ≡_W C_N

► LLPO^{\diamond} \equiv_{W} K_N

(Neumann and Pauly 2018) (Soldà and Valenti 2023)

Basic skeleton of Weihrauch complexity

Reverse mathematics and computability classes

Weihrauch degree	Reverse mathematics axioms
C _ℕ ℕ	ATR ₀
lim [◊]	ACA ₀
WKL	WKL ₀ *
$C^{(n)}_{\mathbb{N}}$	$I\Sigma_{n+1}^{0}$
$K^{(n)}_{\mathbb{N}}$	$B\Sigma^0_{n+1}$
id	RCA [*]

Theorem (B., de Brecht and Pauly 2012)

- 1. *f* is limit computable $\iff f \leq_{\mathrm{W}} \lim$.
- 2. f is finite mind change computable $\iff f \leq_W C_N$.
- 3. *f* is non-deterministically computable $\iff f \leq_{W} WKL$.
- Gold's result can be translated into $G \not\leq_W C_N$.
- \blacktriangleright We will use the problems $K_{\mathbb{N}}$ and $C_{\mathbb{N}}$ as a benchmark to classify the Gödel problem.

The topological situation

- The equivalence K_≥ ≡^{*}_W G validates Hoyrup and Rojas slogan topologically.
- Which is the minimal oracle among Ø, Ø', Ø'', ... that validates the picture above in place of ∗?

- The oracle Ø" makes totality decidable and this yields easy proofs of the equivalences.
- ► Surprisingly, this can also be done with Ø', but the proofs are slightly more difficult in this case.

- The oracle Ø" makes totality decidable and this yields easy proofs of the equivalences.
- ► Surprisingly, this can also be done with Ø', but the proofs are slightly more difficult in this case.

Proposition

 $\mathsf{K} \leq^{\emptyset'}_{\mathrm{W}} \mathsf{C}_{\mathbb{N}}.$

Proof.

- We go through all Gödel numbers i = 0, 1, 2, ... one by one.
- For each *i* we check for each *n* = 0, 1, 2, ... whether *n* ∈ dom(φ_i) (with the help of the halting problem) and whether φ_i(*n*) = *p*(*n*).
- If so, then we write i to the output q and we move on to the next n.
- If one of these tests fails, then we move on to the next i.
- This procedure stops going to the next *i* when the smallest *i* with φ_i = p is reached.
- Altogether, this gives a finite mind change computation for K.

Proposition

 $\mathsf{C}_{\mathbb{N}} \leq^{\emptyset'}_{\mathrm{W}} \mathsf{K}_{\geq}.$

Proof.

We use a variant of the set of random natural numbers:

 $R := \{ \langle k, n \rangle \in \mathbb{N} : \min\{i \in \mathbb{N} : \varphi_i(k) = n\} \ge n \}.$

For each k there are infinitely many n with $\langle k, n \rangle \in R$.

• *R* is co-c.e. and hence $R \leq_{\mathrm{T}} \emptyset'$.

- We use the boundedness problem B ≡_W C_N, which is the problem: given a monotone increasing bounded sequence p ∈ N^N, find an upper bound b ∈ N.
- We prove B ≤^R_W K≥: inspecting the numbers p(0), p(1), p(2), ... we construct q(0), q(1), q(2), ... such that b = K(q) is an upper bound for p.
- This can be done such that q is eventually constant and hence actually computable.

- We have established the upper equivalences.
- ► We still need to prove G_≥ is computable relative to the halting problem.

Proposition

 G_{\geq} is computable with respect to the halting problem $\emptyset'.$

Proof. We use a variant of the amalgamation technique.

• We consider the compatibility relation on \mathcal{P} :

 $f \approx g : \iff (\forall n \in \operatorname{dom}(f) \cap \operatorname{dom}(g)) f(n) = g(n).$

- ► $C := \{ \langle i, j \rangle \in \mathbb{N} : \varphi_i \approx \varphi_j \}$ is co-c.e. and hence $C \leq_T \emptyset'$.
- Let (p, m) be an input for G_{\geq} , i.e., $K(p) \leq m$.
- ▶ For *i* ≤ *m* that we consider the pockets:

 $P_i := \{j \le m : \varphi_i \approx \varphi_j\}$

- ▶ P_i is called compatible, if $\varphi_{j_0} \approx \varphi_{j_1}$ holds for all $j_0, j_1 \in P_i$.
- Among P₀,..., P_m we remove all incompatible pockets and all double occurrences of the same pocket.
- ► This yields a list of P_{i0},..., P_{ik} of pairwise different pockets, which are all compatible by themselves.

Computability with respect to the halting problem

-

- No pocket in our list is a subset of another pocket.
- Among the pockets $P_{i_0}, ..., P_{i_k}$ in our list
 - 1. exactly one contains at least one code j with $\varphi_j = p$ and all codes j in this pocket satisfy $\varphi_j \approx p$,
 - 2. all other pockets contain at least one j with $\varphi_j \not\approx p$.
- ▶ P_i is called compatible with p, if $p \approx \varphi_j$ for all $j \in P_i$.
- 1. and 2. guarantee that there is exactly one pocket P_i among the P_{i0}, ..., P_{ik} that is compatible with p and contains a Gödel number of p.
- A prefix of p is sufficient to identify P_i as we just need to find an incompatible member in all the other pockets.
- From the index i we can compute a Gödel number r(i) of p: for each input n ∈ N we search for some j ∈ P_i such that n ∈ dom(φ_j) and we produce φ_j(n) as result.
- ▶ Hence, $r(i) \in G_{\geq} \langle p, m \rangle$. (We note that $r(i) \leq m$ is not required and might not hold.)

- We now want to study the situation in the computable case.
- ▶ We know $G \not\leq_W C_N$ by Gold (1967) and $G_{\geq} \leq_W C_N$ by Freivald and Wiehagen (1979).

The computability-theoretic situation

The computability-theoretic situation

- Ville
- K ≤_W C'_N can be proved observing that C'_N ≡_W lim inf_N. We just write all Gödel numbers *i* onto the output that match the input for longer and longer prefixes of the input *p*. The least cluster point is the smallest Gödel number of *p*.
- ► $K_{\geq} \not\leq_{W} K'_{\mathbb{N}}$ can be proved by a finite extension construction using that $K'_{\mathbb{N}} \equiv_{W} BWT_{\mathbb{N}}$ (the Bolzano-Weierstraß theorem on \mathbb{N}).
- ▶ Hence the classification of $K_{\geq} \leq_W G \leq_W K$ is optimal with respect to our benchmark problems.
- ▶ $G_{\geq} \leq_W LPO^*$ can be proved with the amalgamation technique.
- $G_{\geq} \not\leq_{W} K_{\mathbb{N}}$ can be proved with a finite extension construction.
- G_{\geq} is hence continuous, but not computable.
- ▶ The problems G_{\geq}, K_{\geq}, G and K can all be separated from each other with respect to \leq_W .

- By \widehat{G} we denote the parallelization of G
- ▶ By $G \star G$ we denote the compositional product of G by itself
- By G* we denote the finite parallelization of G
- By $f|_c$ we denote the restriction to computable inputs of f
- $\blacktriangleright \ \widehat{\mathsf{G}}|_{\mathrm{c}} \mathop{\equiv_{\mathrm{W}}} \mathsf{G} \mathop{<_{\mathrm{W}}} \widehat{\mathsf{G}}$
- $\blacktriangleright (\mathsf{G}\star\mathsf{G})|_{\mathrm{c}}\mathop{\equiv_{\mathrm{W}}}\nolimits\mathsf{G}$
- $\blacktriangleright \ \mathsf{G}^* \equiv_{\mathrm{W}} \mathsf{G}$

(parallelization) (compositional products) (finite parallelization)

Question

Does $G \star G \equiv_W G$ hold?

- Alexandre

Proposition

$\mathsf{DIS} \not\leq_{\mathrm{W}} \mathsf{G}, \textit{ but } \mathsf{LPO} \leq_{\mathrm{W}} \mathsf{K}.$

Proof. DIS \leq_W G would imply NON $\leq_W \widehat{G}$, since $\widehat{DIS} \equiv_W$ NON. But since $\widehat{G}|_c \leq_W$ G, this is impossible! LPO \leq_W K is easy to see, as there is a specific smallest Gödel number *i* of the zero sequence $p \in \mathbb{N}^{\mathbb{N}}$.

DIS is the weakest natural discontinuous problem with respect to topological Weihrauch reducibility (in ZF+DC+AD). Hence, Gödelization G has no useful natural lower bounds (besides id)!

Corollary

G is effectively discontinuous, but not computably so.

This means $DIS \leq^*_W G$, but $DIS \not\leq_W G$.

The computability-theoretic situation

References

- V. Brattka, The Discontinuity Problem, Journal of Symbolic Logic (2022) (electronically published).
- V. Brattka and T. Rakotoniaina, On the Uniform Computational Content of Ramsey's Theorem, Journal of Symbolic Logic 82:4 (2017) 1278–1316.
- D. Dzhafarov, R. Solomon, and K. Yokoyama, On the first-order parts of Weihrauch degrees, in preparation, 2019.
- E.M. Gold, Language identification in the limit, Information and Control 10 (1967) 447–474
- M. Hoyrup and C. Rojas, On the information carried by programs about the objects they compute, *Theory of Computing Systems* 61:4 (2017) 1214–1236.
- E. Neumann and A. Pauly, A topological view on algebraic computation models, *Journal of Complexity* 44 (2018) 1–22
- G. Soldà and M. Valenti, Algebraic properties of the first-order part of a problem, Annals of Pure and Applied Logic 174 (2023) 103270.
- M. Valenti, A journey through computability, topology and analysis, University of Udine, PhD thesis, 2021.