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Fagin’s theorem (1974)
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The set of problems expressible with existential second-order logic
is exactly the class NP.
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Ladner’s theorem (1975)
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If P ̸=NP, then there are problems in NP that are neither in P nor
NP-complete.

NO dichotomy
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Monotone Monadic SNP without Inequality

Definition ([Feder, Vardi, 1998])

The MMSNP logic consists of ESO sentences of the form

∃X1, . . . ,Xs ∀x1, . . . , xn
m∧
i=1

¬
(
αi ∧ βi ∧ εi

)
, where

every αi is a conjunction of input atomic formulas,

every βi is a conjunction of existential atomic formulas,

every εi is a conjunction of inequalities (xj ̸= xk),

all atomic formulas of αi must be non-negated (monotone),

all existential relations X1, . . . ,Xs have arity 1 (monadic),

every εi is empty (without inequality).
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Example

No Monochromatic Triangle

Given a graph G, color its
vertices with 2 colors so that the
result omits the two following
subgraphs.

G
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“No Monochromatic Triangle” as a sentence in MMSNP

∃R,B ∀x, y, z
¬(¬Rx ∧ ¬Bx) ∧ ¬(Rx ∧ Bx) (R and B partition the elements)

∧¬(Exy ∧ Eyz ∧ Ezx ∧ Rx ∧ Ry ∧ Rz) (no all-red triangle)

∧¬(Exy ∧ Eyz ∧ Ezx ∧ Bx ∧ By ∧ Bz) (no all-blue triangle)
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Feder and Vardi’s results (1998)
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Zhuk’s theorem (2017)
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Guarded Monotone SNP without Inequality

Definition ([Bienvenu et al., 2014])

The GMSNP logic consists of ESO sentences of the form

∃X1, . . . ,Xs ∀x1, . . . , xn
m∧
i=1

¬
(
αi ∧ βi

)
, where

every αi is a conjunction of input atomic formulas,

every βi is a conjunction of existential atomic formulas,

all atomic formulas of αi must be non-negated (monotone),

for every Xj(t) in βi there exists R(u) in αi such that t ⊆ u
(i.e., t is guarded by u).
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Example

No Monochromatic Edge Triangle

Given a graph G, color its edges
with 2 colors so that the result omits
the two following subgraphs.

G
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Example

No Monochromatic Edge Triangle

Given a graph G, color its edges
with 2 colors so that the result omits
the two following subgraphs.
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“No Monochromatic Edge Triangle” as a GMSNP sentence

∃R,B ∀x, y, z
¬(Exy ∧ ¬Rxy ∧ ¬Bxy) ∧ ¬(Exy ∧ Rxy ∧ Bxy) (partition of edges)

∧¬(Exy ∧ Eyz ∧ Ezx ∧ Rxy ∧ Ryz ∧ Rzx) (no all-red triangle)

∧¬(Exy ∧ Eyz ∧ Ezx ∧ Bxy ∧ Byz ∧ Bzx) (no all-blue triangle)
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Guarded Monotone SNP without Inequality (2014)
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Monotone Monadic SNP with Guarded Inequality

Definition (B., Madelaine)

The GMMSNP ̸= logic consists of ESO sentences of the form

∃X1, . . . ,Xs ∀x1, . . . , xn
m∧
i=1

¬
(
αi ∧ βi ∧ εi

)
, where

every αi is a conjunction of input atomic formulas,

every βi is a conjunction of existential atomic formulas,

every εi is a conjunction of inequalities (xj ̸= xk),

all atomic formulas of αi must be non-negated (monotone),

all existential relations X1, . . . ,Xs have arity 1 (monadic),

for every xj ̸= xk in εi there exists R(u) in αi such that
xj, xk ∈ u (guarded inequality).
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Monotone Monadic SNP with Guarded Inequality
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Matrix Partition

0

1

∗
∗

M =

Definition (Feder, Hell)

Let M be a square matrix of size m with elements from {0, 1, ∗}.
Given an input digraph, split its vertices into disjoint classes
P1, . . . ,Pm such that, for i, j ∈ [m] and any distinct x ∈ Pi, y ∈ Pj:

if M(i, j) = 0, then there is no edge between x and y;

if M(i, j) = 1, then there is an edge between x and y;

if M(i, j) = ∗, then there is no restriction.

On Guarded Extensions of MMSNP 17/24



Matrix Partition

0

1

∗
∗

M =

Definition (Feder, Hell)

Let M be a square matrix of size m with elements from {0, 1, ∗}.
Given an input digraph, split its vertices into disjoint classes
P1, . . . ,Pm such that, for i, j ∈ [m] and any distinct x ∈ Pi, y ∈ Pj:

if M(i, j) = 0, then there is no edge between x and y;

if M(i, j) = 1, then there is an edge between x and y;

if M(i, j) = ∗, then there is no restriction.

On Guarded Extensions of MMSNP 18/24



Towards a Logic for Matrix Partition

Definition (B., Madelaine)

The MPART logic consists of ESO sentences of the form

∃X1, . . . ,Xs ∀x1, . . . , xn
m∧
i=1

¬
(
αi ∧ βi

)
, where

every αi is a conjunction of input atomic formulas,

every βi is a conjunction of existential atomic formulas,

all existential relations X1, . . . ,Xs have arity 1 (monadic),

atomic formulas in αi are either all non-negated or all negated
(same polarity).
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MPART with Guarded Inequality

Definition (B., Madelaine)

The GMPART̸= logic consists of ESO sentences of the form

∃X1, . . . ,Xs ∀x1, . . . , xn
m∧
i=1

¬
(
αi ∧ βi ∧ εi

)
, where

αi, βi, εi are the same as before,

all existential relations X1, . . . ,Xs have arity 1 (monadic),

atomic formulas in αi are either all non-negated or all negated
(same polarity),

for every xj ̸= xk in εi there exists R(u) in αi such that
xj, xk ∈ u (guarded inequality).
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Split graph recognition as a GMPART ̸= sentence

0
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∗
∗

M =

∃C, I ∀x, y
¬(Cx ∧ ¬Ix) ∧ ¬(Cx ∧ Ix) (partition of vertices in 2 classes)

∧¬(¬Exy ∧ Cx ∧ Cy ∧ x ̸= y) (C induces a clique)

∧¬(Exy ∧ Ix ∧ Iy ∧ x ̸= y) (I induces an independent set)
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Matrix Partition and MPART and GMPART ̸=
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GMPART ̸= has NO dichotomy
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