
Multiple Permitting Notions For The Not Totally
ω-C.A. Computably Enumerable Degrees

Klaus Ambos-Spies

Universität Heidelberg
Department of Mathematics and Computer Science

CiE 2023 - Batumi
Special Session on Classical Theories of Degrees

24 July 2023

Klaus Ambos-Spies (Heidelberg University) Multiple Permitting & Not Totally ω-C.A. CiE 2023 - Batumi 1 / 36



Contents

Introduction: Permitting - its basic form and extensions

Array noncomputability - the first formalization of multiple permitting

(The original definition, properties, and equivalent characterizations)

Not totally ω-c.a. degrees - a stronger multiple permitting notion

(Equivalent characterizations in terms of a.n.c. and multiply
permitting sets)

Concluding remarks

Klaus Ambos-Spies (Heidelberg University) Multiple Permitting & Not Totally ω-C.A. CiE 2023 - Batumi 2 / 36



Introduction

Permitting - its basic form and some extensions
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What is “Permitting”?

Permitting is a basic technique for constructing a computably
enumerable (c.e.) set B which is Turing reducible to a given c.e. set
A.

This is achieved by enumerating a new number x into B at a stage
s + 1 only if (for a given enumeration of A) a number ≤ x (or, more
generally, ≤ f (x) for some computable function f ) enters A at stage
s + 1.

“straight permitting” (“f -bounded permitting”)

Obviously this ensures that B ≤T A (in fact, B ≤wtt A, and, in case
of straight permitting, even B ≤ibT A).
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Typical applications of the Permitting Technique

We want to construct a c.e. set B Turing below a given c.e. set A
such that B has certain properties which (in part) can be ensured by
meeting positive requirements Pe (e ≥ 0) of the following type:

In order to meet Pe it suffices to pick a follower x (becoming a
witness for the fact that Pe will be met). The follower may become
“realized” at some stage. In this case the follower (or a certain
greater number) has to be enumerated into B.

In the presence of permitting, once x is realized we wait that A
permits x to enter B (and, if so, we put x into B). While waiting, we
iterate the attack on Pe with a new follower x ′ > x (and so on).
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Which sets give Permitting?

In the above setting, any noncomputable c.e. set A will eventually
permit.

So sets with properties which can be ensured by requirements of the
above described type can be found T-below (in fact, wtt-below or, in
case of straight permitting, even ibT-below) any noncomputable c.e.
set.

Some classical examples:
I For any noncomputable c.e. set A there is a simple set B ≤T A.
I For any noncomputable c.e. set A there are Turing incomparable c.e.

sets B0,B1 ≤T A (Muchnik).
I Any countable distributive lattice can be embedded into any proper

initial segment of the c.e. degrees (by an embedding that does not
preserve the least element).
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Stronger forms of Permitting I: Almost-Everywhere and
Prompt Permitting

More involved positive requirements or settings require stronger forms of
permitting in order to perform the construction below a given c.e. set A.
These stronger permittings, however, are given not by all sets. In fact, the
sets giving such stronger permittings characterize important degree classes.

I The requirement Pe is infinitary and requires that almost all numbers in
a computable ascending sequence x0 < x1 < x2 < . . . are enumerated
into B (“almost-everywhere permitting” – Martin, Yates, Cooper)

Corresponding permitting degrees: the high c.e. degrees (Martin)

I The follower has to be simultaneously permitted by the set A and some
other noncomputable c.e. set (“prompt permitting” – Maass).

Corresponding permitting degrees: the noncappable c.e. degrees or,
equivalently, the low-cuppable c.e. degrees (AS, Jockusch, Shore and
Soare)
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Stronger Forms of Permitting II: Multiple Permitting

Any follower x of a requirement Pe is associated with an entourage of
≤ f (x) (larger) numbers (f a computable function) all of which need
permitting after becoming “realized” (“multiple permitting”)

Here f may be fixed or it may depend on the requirement (f = fe)

The former case was discussed by Downey, Jockusch and Stob in 1990
(DJS1990) where it is argued that the sets and degrees giving this type of
permitting are the array noncomputable (a.n.c.) sets and their degrees,
respectively.

The latter case is treated in Downey, Greenberg and Weber (2007). In
contrast to DJS1990, however, only the degrees containing sets providing
the desired form of multiple permitting are described but the corresponding
sets are not characterized.

Here we will discuss these two types of multiple permitting.
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Array noncomputability - the first formalization of multiple permitting

(The original definition, properties, and equivalent characterizations)
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Array Noncomputablity - Definition

A sequence F = {Fn}n≥0 of finite sets is a very strong array (v.s.a.) if

(i) there is a computable function f such that f (n) is the canonical index
of Fn,

(ii) Fm ∩ Fn = ∅ if m 6= n,
(iii) 0 < |Fn| < |Fn+1| for all n ≥ 0, and
(iv)

⋃
n≥0 Fn = ω.

A c.e. set A is F-array noncomputable (F-a.n.c.) if A is F-similar to any
c.e. set V , i.e.,

∃∞n (A ∩ Fn = V ∩ Fn)

(equivalently, it suffices to require this for a single n).

A c.e. set A is array noncomputable (a.n.c.) if A is F-a.n.c. for some v.s.a.
F . And A is array computable (a.c.) otherwise.

A c.e. r-degree a is a.n.c. if there is an a.n.c. set in a. And a is a.c.
otherwise.
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Why do array noncomputable sets multiply permit?

If (the entourage of) a follower x has to be permitted up to f (x)
times then we choose a v.s.a. F of intervals Fn such that
|Fn| ≥ f (minFn) and choose the numbers x = minFn as followers.

Then, whenever a member xm of the entourage of x needs permitting,
we enumerate the corresponding element ym of Fn into a “trigger set”
V . For any n sucht that A and V agree on Fn, this number ym has to
enter A later thereby giving the required (straight) permitting.

NB: Actually, the a.n.c. sets provide more than the required permittings: if

we want A to change below x + 1 (for a straight permitting or below

f (x) + 1 for an f -bounded permitting) after a stage s then by putting x in

the trigger set V we actually achieve more, namely we make A to change on

x . (I will come back to this.)
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Basic Properties of the a.n.c. sets (DJS1990)

Array invariance up to wtt-equivalence: If F and F ′ are very strong arrays,
and A is F-a.n.c. then there is an F ′-a.n.c. set B which is wtt-equivalent to
A.

Failure of wtt-degree invariance: For any a.n.c. set A there is a c.e. set B
which is wtt-equivalent to A and not a.n.c.

Distribution of the array noncomputable T-degrees:

I ANCT is closed upwards (in the u.s.l. of the c.e. degrees)
I NonLow2 ⊂ ANCT

I ANCT splits the jump classes Low2 \ Low1 (Downey 1993)
and Low1 as well as the classes Cap and NonCap

I There are a.c. T-degrees (a0, a1) s.t. a0 ∨ a1 = 0′

I No contiguous degree is a.n.c. (Downey 1993)
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Simplicity Properties of the a.n.c. sets (DJS1990)

No a.n.c. set is dense simple (hh-simple, quasi-maximal, maximal).

No a.n.c. set is strongly h-simple (r-maximal, maximal)

Since DJS1990 also show that there is an a.n.c. finitely strongly h-simple (hence
h-simple, simple) set, the latter two results show which of the common simplicity
notions are compatible with array noncomputability:

maximal

r-maximal

quasi-maximal hh-simple

sh-simple fsh-simple

dense simple

h-simple simple

Do the above negative results on the a.n.c. sets say that the corresponding
properties cannot be shared by any multiply permitting sets?
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Multiply permitting vs. array noncomputability

In the abstract of DJS1990

it is said that the a.n.c. sets are precisely those sets which give multiple
permitting. As we have seen, however, the a.n.c. property might be a stronger
property. (Namely when we force an a.n.c. set A to permit x , we actually force x
itself into A.)

In order to decide whether the a.n.c. sets actually coincide with the multiply
permitting sets, we give a more faithful formalization of the latter notion and
compare it with array noncomputability.
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The formal multiple permitting notion of AS2018

DEFINITION. Let A be a c.e. set, let {As}s≥0 be a computable enumeration of
A, let F = {Fn}n≥0 be a v.s.a., and let f be a computable function.

A is f -bounded F-permitting via {As} if, for any partial computable function ψ,

∃∞n ∀ x ∈ Fn (ψ(x) ↓ ⇒ A � f (x) + 1 6= Aψ(x) � f (x) + 1).

So, in order to force A to give f -bounded permittings, we define a partial
computable function ψ. Then, whenever we want A to f -permit some number
x ∈ Fn after some stage sx , we let ψ(x) = sx . For the infinitely many numbers n,
such that A respects ψ on Fn, all corresponding requests will be fulfilled (i.e., A
will change on a number ≤ f (x) after stage sx).

In particular, for f = id , we can force A to give straight permissions. (Recall that
in case of an F-a.n.c. set we obtained the corresponding permitting by
enumerating the number x in a trigger set V at stage sx thereby forcing x into A
later – provided that Fn is one of the intervals on which A and V agree.)
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The formal multiple permitting notion of AS2018 (ctd.)

DEFINITION. Let A be a c.e. set, let {As}s≥0 be a computable enumeration of
A, let F = {Fn}n≥0 be a v.s.a., and let f be a computable function.

A is f -bounded F-permitting via {As} if, for any partial computable
function ψ,

∃∞n ∀ x ∈ Fn (ψ(x) ↓ ⇒ A � f (x) + 1 6= Aψ(x) � f (x) + 1).

A is f -bounded F-permitting if A is f -bounded F-permitting via some {As};
A is F-permitting if A is f -bounded F-permitting for some f ; and A is
multiply permitting if A is F-permitting for some F .

If A is f -bounded F-permitting for the identity function (f = id) then A is
straight F-permitting, and if A is straight F-permitting for some F then A
is straight multiply permitting. (Remark. These straight permitting notions

were not explicitly introduced in AS2018.)
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Multiple permitting: basic properties

In AS2018 we have shown the following on our formal multiple permitting notion.

The notion is independent of the underlying enumerations: if A is f -bounded
F-permitting and {As}s≥0 is any computable enumeration of A, then A is
f -bounded F-permitting via {As}s≥0.

The notion is independent of the underlying arrays: if A is multiply
permitting then, for any v.s.a. F , there is a computable function f = fF
such that A is f -bounded F-permitting. (In contrast, the a.n.c. sets are not
array invariant – though they are array invariant up to wtt-equivalence.)

The notion is wtt-invariant (in fact closed upward under ≤wtt): If A is
multiply permitting, B is c.e., and A ≤wtt B then B is multiply permitting
too. (In contrast, the a.n.c. sets are not closed under wtt-equivalence.)

Relation to a.n.c.: The wtt-degrees of the a.n.c. and multiply permitting
degrees coincide. Moreover, any F-a.n.c. set is straight F-permitting, but
there are multiply permitting sets which are not a.n.c.

The question whether the a.n.c. sets coincide with the straight multiply permitting sets,
however, is not discussed in AS2018.
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Straight multiple permitting vs. array noncomputable

THEOREM (AS). Any multiply permitting set is straight multiply permitting
(but, in general, not via the same v.s.a. F).

COROLLARY. There are straight multiply permitting sets which are array
computable. In fact, for any a.n.c. set A there is a wtt-equivalent straight
multiply permitting set which is not a.n.c.

So, up to wtt-equivalence, the array noncomputable sets and the (straight)
multiply permitting sets coincide, but the a.n.c. sets form a proper subclass of the
class of the straight multiply permitting sets which in turn coincides with the
class of the multiply permitting sets.

So if we prove results on degrees, it does not matter with which notion we work.
If we consider properties of sets, however, there might be a difference. By looking
at the simplicity properties of the (straight) multiply permitting sets we show that
such differences actually occur.
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Simplicity properties of the multiply permitting sets

As mentioned before, Downey, Jockusch and Stob have completely analysed the
simplicity properties of the a.n.c. sets. In particular, they have shown that

a.n.c. sets are not dense simple (hence not hh-simple and not maximal)

a.n.c. sets are not strongly h-simple (hence not r-maximal and not maximal)

The former extends to the multiply permitting sets (thereby giving a considerable
stronger result).

THEOREM (AS2018). No multiply permitting set is dense simple.

COROLLARY. No multiply permitting set (hence no a.n.c. set) is wtt-reducible to any
dense simple (hh-simple, maximal) set.

COROLLARY. Any high c.e. degree contains both, multiple permitting sets and not
multiply permitting sets.

The latter, however, does not extend to the multiply permitting sets.

THEOREM (Monath 2018) There is a multiply permitting r-maximal set.

Note that these results completely characterize the (common) simplicity properties that
a multiply permitting set may have.
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Simplicity properties: a.n.c. vs. m.p. (summary)

maximal

r-maximal

quasi-maximal hh-simple

sh-simple fsh-simple

dense simple

h-simple simple

Simplicity properties compatible (incompatible) with array noncomputability

maximal

r-maximal

quasi-maximal hh-simple

sh-simple fsh-simple

dense simple

h-simple simple

Simplicity properties compatible (incompatible) with multiply permitting
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Alternative characterizations of the a.n.c. T-degrees

DJS1990 and DJS1996 have given the following two alternative characterizations
of the a.n.c. degrees. Both are based on an analysis of the complexity of the
functions computable by sets of a.n.c. degree (with respect to growth rate and
the complexity of computable approximations of these functions in terms of their
mindchanges, respectively).

THEOREM (DJS1996). For a c.e. set A, the following are equivalent.

(i) degT (A) is a.n.c.

(ii) For any function h ≤wtt ∅′ there is a function g ≤T A which is not
dominated by h.

(Note that, by a classical result of Martin, there is a corresponding
characterization of the nonlow2 degrees where h ≤wtt ∅′ is replaced by h ≤T ∅′.)

DJS1996 use this equivalence to extend the notion of an a.n.c. degree to
arbitrary degrees and show that it is a very useful tool in this extended
setting too.
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Alternative characterizations of the a.n.c. T-degrees (ctd.)

THEOREM (DJS1990). Let f be a strictly increasing computable function and
let A be a c.e. set. The following are equivalent.

(i) degT (A) is a.n.c.

(ii) There is a set B ≤T A such that B is not f -computably approximable.

(And similarly, for functions g in place of sets B.)

Here a function g is f -computably approximable (f -c.a.) if there is a computable
approximation g(−,−) of g such that

|{s : g(x , s + 1) 6= g(x , s)}| ≤ f (x).
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A.n.c. T-degrees vs. a.n.c. and m.p. sets
The preceding characterizations of the a.n.c. degrees proved to be very useful and led to
new related notions which turned out to be as important (maybe even more important)
tools for the study of the c.e. degrees and sets, and there are many applications of array
noncomputability in the literature working with these characterizations.

Still, sometimes, working with these characterizations is rather tedious, and working
with the multiply permitting (or a.n.c.) sets may not only simplify the arguments but at
the same time may also give some stronger results.

Assume that we want to show that we can find a c.e. set A with a certain property P in
any given a.n.c. degree a where P can be forced by a priority argument. Then a typical
proof in the literature using the degree characterization of the a.n.c. degrees repeats the
priority argument for constructing a P-set A and combines it with the necessary
permitting (which is somewhat implicitly given by the degree characterization) to make
A ≤T a together with some coding to make a ≤T A. In particular, the proof is synthetic
(constructive).
In many cases, using the same basic ideas, we can show that any m.p. set A has this
property P. This is done by an analytic (modular) proof for which it suffices to consider
a single requirement of the construction of a P-set in isolation (so the tedious parts of
the combinatorics of the priority proof and the coding become completely superfluous
and the permitting part becomes simplified). Moreover, since the class of the m.p. sets
is closed upwards under wtt-reducibility in the c.e. sets we get a stronger result.
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Not totally ω-c.a. degrees - a stronger multiple permitting notion

(Equivalent characterizations in terms of a.n.c. and multiply permitting
sets)
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A stronger variant of multiple permitting

The array noncomputable sets and the multiply permitting sets have been designed to
give the required permitting in a priority construction where, in order to meet a
requirement Re , a sequence of up to f (x) numbers has to be permitted where the
computable function f does not depend on the requirement. In many constructions,
however, there is such a dependence. So the function f has to be replaced by a
sequence of computable functions fe , hence a stronger multiple permitting is needed.

Following a suggestion of Joe Miller, Downey, Greenberg and Weber (2007) introduced
the class of the not totally ω-c.a. degrees which contain the sets with this stronger
permitting property. Their definition of this class is obtained by adjusting the
characterization of the a.n.c. degrees in terms of the mind-change complexity of the
computed functions.

DEFINITION (DGW2007). A c.e. degree a is not totally ω-c.a. if there is a function
g ≤T a that is not ω-c.a., i.e., that is not f -c.a. for any computable function f .
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Some basic facts on the not totally ω-c.a. degrees

(DGW2007) The class of the n.t.ω-c.a. degrees is properly contained in the class
of the a.n.c. degrees.

(DGW2007) The class of the n.t.ω-c.a. degrees is closed upwards in the c.e.
degrees, it properly contains the class of the c.e. nonlow2 degrees is properly
contained in the class of the n.t.ω-c.a. degrees, ...

(DGW2007) The class of the n.t.ω-c.a. degrees is definable: a c.e. degree a
bounds a critical triple iff a is n.t.ω-c.a.

Related to this AS and Losert (ta) have shown that the lattice S7 can be
embedded in the c.e. degrees below a c.e. degree a iff a is n.t.ω-c.a. For
comparison, the nonmodular 5-element lattice N5 can be embedded below any c.e.
degree a > 0, whereas - as shown by Downey and Greenberg (2020) - bounding
the embedding of the nondistributive modular 5-element lattice M5 requires a still
stronger permitting notion, namely a set of not totally < ωω-c.a. degree.

(Barmpalias, Downey, Greenberg 2010) A c.e. degree a contains a c.e. set which is
not wtt-reducible to any h-simple set iff a is n.t.ω-c.a.

Klaus Ambos-Spies (Heidelberg University) Multiple Permitting & Not Totally ω-C.A. CiE 2023 - Batumi 26 / 36



Are there universally a.n.c. sets?

In case of the a.n.c. degrees we can single out the sets which give the desired form of
permitting, namely the a.n.c. sets (up to wtt-equivalence) and the multiply permitting
sets. Can we do the same for the stronger multiple permitting pertaining to the
n.t.ω-c.a. degrees?

Since the lengths of the members in a v.s.a. F correspond to the number f (x) of
permissions needed, a set A which is F-a.n.c. for all very strong arrays F will have the
desired permitting power. Unfortunately, however, as observed by DJS1990 already, such
sets do not exist.

For guaranteeing the desired uniform multiple permitting, however, sets which are
universally a.n.c. in a weaker sense suffice. Such sets were introduced by AS and Losert.
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Some notions of universally a.n.c. sets

DEFINITION (AS and Losert (ta)).

(i) Let {F e}e≥0 be a standard numbering of the very strong arrays (together with the
finite initial segments of such arrays). A c.e. set A is uniformly universally a.n.c. if, for
any e such that F e is a v.s.a., A〈e〉 = {x : 〈e, x〉 ∈ A} is F e-a.n.c.

(ii) A c.e. set A is universally a.n.c. if, for any v.s.a. F , there is a number e such that
A〈e〉 is F-a.n.c.

(iii) A c.e. set A has the uniform bounding property if there is a s.i. computable function
f such that, for any v.s.a. F there is an F-a.n.c. set B such that B ≤f−T A.

THEOREM (AS and Losert (ta)). The above notions coincide up to wtt-equivalence.
Moreover the c.e. degrees which contain sets with these properties are just the n.t.ω-c.a.
degrees.

Moreover, obviously, the class of the sets with the uniform bounding property is closed
upward under wtt-reducibility in the c.e. sets (whereas the other two notions are not
wtt-invariant).
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How about uniformly multiply permitting sets?

As mentioned before, if A is multiply permitting then, for any v.s.a. F , there is a
computable function f such that A is f -bounded F-permitting. In general,
however, this function f depends on the chosen array. For obtaining the desired
(n.t.ω-c.a.)-permitting, we need that this bound is array-independent.

DEFINITION (AS and Losert (ta)). A c.e. set A is uniformly multiply permitting
if there is a computable function f such that A is F-permitting via f for all v.s.a.s
F .

THEOREM (AS and Losert (ta)). A c.e. set is uniformly multiply permitting iff it
is wtt-equivalent to some set with the uniform bounding property. Hence a c.e.
degree a is uniformly multiply permitting iff a is not totally ω-c.a. Moreover, the
class of the uniformly multiply permitting sets is closed upwards under
wtt-reducibility in the c.e. sets.
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Working with uniformly multiply permitting sets

Just as in case of the a.n.c. degrees, working with uniformly multiply permitting
sets in place of the degree characterization of the not totally ω-c.a. degrees can
greatly simplify some of the proofs and – at the same time – strengthen the
results. Again constructive proofs can be replaced by analytic ones thereby
avoiding the machinery of priority arguments and coding and simplifying the
permitting part.

In the following we give an example (more examples can be found in AS and
Losert (ta) and AS, Losert and Monath (ta)).
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Uniformly multiply permitting sets: a sample application

We give a greatly simplified proof of Barmpalias, Downey and Greenberg’s result of 2010
that any totally ω-c.a. degree a contains a c.e. set which is not wtt-reducible to any
h-simple set.

THEOREM (AS-Losert (ta)). No uniformly multiply permitting set is hypersimple.

By wtt-upward closure of the uniformly multiply permitting sets we get the desired result.

COROLLARY (AS-Losert (ta)). No uniformly multiply permitting set is wtt-reducible to
any hypersimple set. (Hence any not totally ω-c.a. degree a contains a c.e. set which is
not wtt-reducible to any h-simple set.)

Since (by Dekker) any c.e. degree contains an h-simple set, we further get a general
inhomogeneity result in this setting (contrasting a homogeneity theorem of Monath for
the multiply permitting sets).

COROLLARY (AS-Losert (ta)). Any not totally ω-c.a. degree a contains a c.e.
wtt-degree which is not uniformly multiply permitting.
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U.m.p. sets: a sample application (Proof of the theorem)

Let A be h-simple and let f be a strictly increasing computable function f . It suffices to
define a v.s.a. F = {Fn}n≥0 such that A is not f -bounded F-permitting.

Let F̂ = {F̂m}m≥0 be the unique v.s.a.i. such that F̂0 = {0} and, for any m ≥ 0,

F̂m+1 = F̂ `m+1 ∪ F̂ r
m+1 where |F̂ `m+1| = |

⋃
m′≤m F̂m′ |+ 1 and

max F̂ r
m+1 = f (max F̂ `m+1) + 1.

Now, since A is h-simple, there are infinitely many m such that F̂m ⊆ A. So, since A is
c.e., we get an infinite computable sequence 0 =< m0 < m1 < m2 < . . . such that
F̂mn ⊆ A (for all n ≥ 0).

Let F0 =
⋃

m≤m0
F̂m and Fn+1 =

⋃
mn<m≤mn+1

F̂m.

Note, that for any n, Fn = Ln ∪Mn ∪ Rn such that |Mn| > |{x : x < minMn}|,
f (maxMn) < maxRn, and Mn ∪ Rn ⊆ A.

It remains to show that A is not f -bounded F-permitting. For this sake it suffices to
define a partial computable function ψ such that for all n ≥ 0,

(∗) ∃x ∈ Fn (ψ(x) ↓ & Aψ(x) � f (x) + 1 = A � f (x) + 1).

Given n, define ψ on Fn as follows: Wait for s0 such that Mn ∪ Rn ⊆ As0 then we use the
numbers x ∈ Mn in order of magnitude to attack (∗) by letting ψ(x) be the current stage
where we start a new attack when A repels the previous attack. Since the only numbers
≤ f (maxMn) which are not in As0 are less than minMn and since there are more numbers
in Mn than to the left of it, eventually we succeed.
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Concluding Remarks
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Summary

We looked at the a.n.c. degrees and the not totally ω-degrees, i.e., the classes of
degrees which contain c.e. sets which provide multiple permittings of computably
bounded finite sequences of numbers where in the first case the computable bound
must not depend on requirements whereas in the second case such a dependance
may exist.

For either of these degree classes we isolated the c.e. sets which give the desired
permittings, namely the multiply permitting sets and the uniformly multiply
permitting sets, respectively. In the former case, a sufficient condition for providing
the desired permittings were known before, namely the a.n.c. sets. In the latter
case no related notions had been introduced previously.

In either case we have shown that our formal multiple permitting notion is upward
closed under wtt-reducibility in the c.e. sets.

We have explained the usefulness and advantages of our formal multiple
permitting notions, in particular for proving (and extending) results dealing with
strong reducibilities or structural properties of sets involving multiple permittings.
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An outlook

The work we have presented might be extended in two directions:

The a.n.c. and the not totally ω-c.a. degrees are only the lowest two levels of the
Downey-Greenberg Hierarchy (2020) of the not totally α-c.a. degrees (α < ε0)
where the complexity of a c.e. degree a is measured in terms of the mind-change
complexity of the computable approximations of the functions ≤T a.

It seems that the question of the existence of corresponding multiply-permitting-
set notions for such higher levels has not yet been explored.

Plain permittings are provided not only by c.e. sets but also by almost-c.e. sets
(i.e., left-c.e. reals). These sets (reals) play an important role in computable
analysis and algorithmic randomness. So it is natural to ask whether (or how) the
notion of an a.n.c. or (uniformly) permitting set can be adjusted to these larger
class of sets.

A definition of array noncomputability for the almost-c.e. sets has been proposed
(and applied) by AS, Fang, Losert, Merkle and Monath, and the notion of a
universally a.n.c. almost-c.e. set pertaining to the not totally-ω-c.a. degrees has
been introduced (and applied) by AS, Losert and Monath (see AS, Losert, Monath
[ta]).
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THANK YOU!
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