
PρLog: Logic Programming, Rules, and
Strategies
Besik Dundua
Kutaisi International University, and
I.Vekua Institute of Applied Mathematics,
I.Javakhishvili Tbilisi State University
besik.dundua@kiu.edu.ge

Introduction
PρLog is a tool that combines, on the one hand, the power of logic programming and, on the other
hand, flexibility of strategy-based conditional transformation systems. Its terms are built over func-
tion symbols without fixed arity, using four different kinds of variables: for individual terms, for
sequences of terms, for function symbols, and for contexts. These variables help to traverse tree
forms of expressions both in horizontal and vertical directions, in one or more steps. A powerful
matching algorithm helps to replace several steps of recursive computations by pattern matching,
which facilitates writing short and intuitively quite clear code. By the backtracking engine, nonde-
terministic computations are modeled naturally. Prolog’s meta-programming capabilities allowed to
easily write a compiler from PρLog programs (that consist of a specific Prolog code, actually) into
pure Prolog programs.

PρLog program clauses either define user-constructed strategies by transformation rules or are or-
dinary Prolog clauses. Prolog code can be used freely within PρLog programs, which is especially
convenient when some built-in primitives, arithmetic calculations, or input-output features are needed.

PρLog inference mechanism is essentially the same as SLDNF-resolution, multiple results are gen-
erated via backtracking, its semantics is compatible with semantics of normal logic programs and,
hence, Prolog was a natural choice to base PρLog on: The inference mechanism comes for free,
as well as the built-in arithmetic and many other useful features of the Prolog language. Following
Prolog, PρLog is also untyped, but values of sequence and context variables can be constrained by
regular hedge or tree languages.

In this poster we explain by simple examples how PρLog system works. The sources can be down-
loaded from its Web page http://www.risc.jku.at/people/tkutsia/software/
prholog/. The current version has been tested for SWI-Prolog version 7.2.3 or later.

Programming in PρLog
PρLog atoms are supposed to transform term sequences. Transformations are labeled by what we call
strategies. Such labels (which themselves can be complex terms, not necessarily constant symbols)
help to construct more complex transformations from simpler ones.

An instance of a transformation is finding duplicated elements in a sequence and removing one of
them. Let us call this process double merging. The following strategy implements

merge doubles :: (s X, i X, s Y, i X, s Z) ==> (s X, i X, s Y, s Z).

The code, as one can see, is pretty short. merge doubles is the strategy name. It says that if the
sequence in (s X, i X, s Y, i X, s Z) contains duplicates (expressed by two copies of the
individual variable i X, which can match individual terms) somewhere, then from these two copies
only the first one should be kept in (s X, i X, s Y, s Z). That “somewhere” is expressed by
three sequence variables, where s X stands for the subsequence before the first occurrence of i X,
s Y takes the subsequence between two occurrences of i X, and s Z matches the remaining part.

Note that one does not need to code the actual search process of doubles explicitly. The matching
algorithm does the job instead, looking for an appropriate instantiation of the variables. There can be
several such instantiations.

Now one can ask, e.g., to merge doubles in a number sequence (1,2,3,2,1):

?- merge doubles :: (1,2,3,2,1) ==> s Result.

First, PρLog returns the result s Result = (1, 2, 3, 2). Like in Prolog, the user may ask
for more solutions, and, via backtracking, PρLog gives the second answer s Result = (1, 2,
3, 1). Both are obtained from (1,2,3,2,1) by merging one pair of duplicates.

A double-free sequence is just a normal form of this single-step merge doubles transformation.
PρLog has a built-in strategy for computing normal forms, denoted by nf, and we can use it to define
a new strategy merge all doubles in the following clause

merge all doubles :: s X ==> s Y :- nf(merge doubles) :: s X ==> s Y, !.

The effect of nf is that it applies merge doubles to s X, repeating this process iteratively as
long as it is possible, i.e., as long as doubles can be merged in the obtained sequences. When
merge doubles is no more applicable, it means that the normal form of the transformation is
reached. It is returned in s Y.

Note the Prolog cut at the end. It cuts the alternative ways of computing the same normal form. In
fact, Prolog primitives and clauses can be used in PρLog programs. Now, for the query

?- merge all doubles :: (1,2,3,2,1) ==> s Result.

we get a single answer s Result = (1,2,3).

Instead of the cut, we could define merge all doubles purely in PρLog terms:

merge all doubles :: s X ==> s Y :-

first one(nf(merge doubles)) :: s X ==> s Y.

first one is another PρLog built-in strategy. It applies to a sequence of strategies, finds the first
one among them, which successfully transforms the input sequence, and gives back just one result of

the transformation. Here it has a single argument strategy nf(merge doubles) and returns (by
instantiating s Y) only one result of its application to s X.

In the last clause, the transformation is exactly the same in the clause head and in the (singleton)
body: Both transform s X into s Y. In such cases we can use more succinct notation:

merge all doubles := first one(nf(merge doubles)).

This form is called the strategy definition form: the strategy in its left hand side
(here merge all doubles) is defined as the strategy in its right hand side (here
first one(nf(merge doubles))).

PρLog is good not only in selecting arbitrarily many subexpressions in “horizontal direction” (by
sequence variables), but also in working in “vertical direction”, selecting subterms at arbitrary depth.
Context variables provide this flexibility, by matching the context above the subterm to be selected.
A context is a term with a single “hole” in it. When it applies to a term, the latter is “plugged in”
the hole, replacing it. Syntactically, the hole is denoted by a special constant. In the PρLog system
it is hole, but here in the paper we use a more conventional notation hole. There is yet another
kind of variable, called function variable, which stands for a function symbol. With the help of these
constructs and the merge doubles strategy, it is pretty easy to define a transformation that merges
double branches in a tree, represented as a term:

merge double branches ::

c Context(f Fun(s X)) ==>c Context(f Fun(s X)) :-

merge doubles :: s X ==> s Y.

Here c Context is a context variable and f Fun is a function variable. This is a naming notation
in PρLog, to start a variable name with the first letter of the kind of variable (individual, sequence,
function, context), followed by the underscore. After the underscore, there comes the actual name.
For anonymous variables, we write just i ,s ,f ,c .

Now, we can ask to merge double branches in a given tree:

?- merge double branches ::

f(g(a,b,a,h(c,c)), h(c), g(a,a,b,h(c))) ==> i Result.

PρLog returns three results, one after the other, by backtracking:

{i Result = f(g(a, b, h(c, c)), h(c), g(a, a, b, h(c)))},
{i Result = f(g(a, b, a, h(c)), h(c), g(a, a, b, h(c)))},
{i Result = f(g(a, b, a, h(c, c)), h(c), g(a, b, h(c)))}.

To obtain the first one, PρLog matched the context variable c Context to the context f(hole,
h(c),g(a, a, b, h(c))), the function variable f Fun to the function symbol g, and the
sequence variable s X to the sequence (a,b,a,h(c,c)). merge doubles transformed
(a,b,a,h(c,c)) to (a,b,h(c,c)). The other results have been obtained by taking differ-
ent contexts and respective subbranches.

The right hand side of transformations in the queries need not be variables. One can have an arbitrary
sequence there. For instance, we may be interested in trees that contain h(c,c):

?- merge double branches ::

f(g(a,b,a,h(c,c)), h(c), g(a,a,b,h(c))) ==> c C(h(c,c)).

We get here two answers, which show instantiations of c C by the relevant contexts:

{c C = f(g(a, b, hole), h(c), g(a, a, b, h(c)))},
{c C = f(g(a, b, a, hole), h(c), g(a, b, h(c)))}.

Similar to merging all doubles in a sequence above, we can also define a strategy that merges all
identical branches in a tree repeatedly. It is not surprising that the built-in strategy for normal forms
plays a role also here:

merge all double branches := first one(nf(merge double branches)).

For the query

?- merge all double branches ::

f(g(a,b,a,h(c,c)), h(c), g(a,a,b,h(c)))==> s Result.

we get a single answer {s Result = f(g(a, b, h(c)), h(c))}.

Finally, note that a strategy can be defined by several clauses, which are treated as alternatives.

Acknowledgements
This work was supported by Shota Rustaveli National Science Foundation of Georgia under the
project FR-21-7973.


