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Abstract

The problem of the plane theory of viscoelasticity for a convex
polygon with a circular hole is considered according to the Kelvin-
Voigt model. It is assumed that absolutely rigid smooth stamps are
applied on the sides of the polygon on which normal compressive
forces are applied with given main vectors (or constant normal dis-
placements are given) and the internal boundary is subject to a normal
compressive force (pressure) of a given intensity.

The purpose of this work is to determine the elastic equilibrium of
a viscoelastic plate occupying a given region using the Kelvin-Voigt
model. To solve the problem, methods of conformal mapping and
boundary problems of analytical functions are used. The required
complex potentials are constructed efficiently (in analytical form).
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1 Statement of the Problem

Let a viscoelastic plate on the plane of a complex variable occupy a doubly
connected domain S, bounded by a convex polygon (A) and a circle of unit
radius L0 (i.e., we have a polygonal domain with a circular hole). Let us
denote by L1 the boundary of the polygon (A), i.e.

L1 =

n⋃
k=1

L
(1)
k , L

(1)
k = AkAk+1 (k = 1, n, An+1 = A1),
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The values of the internal angles of the domain S at the vertices Ak, k =
1, n will be denoted by πα0

k. The angle between the axis x and the external
normal to the contour L1 at a point will σ be denoted by α(σ), i.e. α(σ) =

α
(k)
0 = const, σ ∈ L

(k)
1 .

Let us assume that straight absolutely rigid smooth stamps with known

main normal forces Nk (k = 1, n) are applied to the sides L
(1)
k and the

internal boundary is subject to uniformly distributed normal pressure P0

(This type of external load somewhat simplifies some calculations and does
not change the essence of the solution to the problem).

The purpose of this work is to determine complex potentials character-
izing the distribution of stresses and displacements in the plate according
to the Kelvin-Voigt model.

Similar problems of the plane theory of elasticity for finite doubly con-
nected polygonal regions are considered in [1-3].

2 Solution of the problemm

The problem is solved by the methods of conformal mappings and the
theory of boundary value problems of analytic functions. Based on the
Kolosov-Muskhelishvili formulas [6], the problem of finding the required
complex potentials is reduced to the Riemann-Hilbert boundary value prob-
lem for a circular ring.

Due to the fact that the given domain is doubly connected, it is advis-
able to use functions Φ(z, t) and Ψ(z, t), which are also Unique in the case
of a multiply connected domain.

Let us present some results arising from the works [4-6].
The function z = ω(ζ) conformally maps the circular ringD = {1 < |ζ| < R}

onto the domain S. Its derivative is the solution of the Riemann-Hilbert
problem for the circular ring D

Re
[
iω′(ξ)

]
= 0, ξ ∈ l0; Re

[
iξe−iα(ξ)ω′(ξ)

]
= 0, ξ ∈ l1,

where l0 and l1 are the inverse images of contours L0 and L1, respectively,
i.e.

l0 = {|ζ| = 1} ; l1 = {|ζ| = R} ,

and subject to
n
Π
k=1

(ak
R

)α0
k−1

= 1,

4
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have the form

ω′(ζ) = K0
n
Π
k=1

(
1− ak

ζ

)α0
k−1 ∞

Π
j=1

n
Π
k=1

(
1− ζ

R2jak

)α0
k−1

×
(
1− ak

R2jζ

)α0
k−1

,

(1)

where K0 real constant ak = ω−1(Ak), k = 1, n.
The first and second basic boundary value problems of the viscoelastic-

ity plane S for the Kelvin-Voigt linear model have the following forms

φ(σ, t) + σφ′(σ, t) + ψ(σ, t) = i

∫ σ

σ0

(Xn + iYn) ds+ C1 + iC2, (2)

Γφ(σ, t)−M
[
φ(σ, t) + σφ′(σ, t) + ψ(σ, t

]
= 2µ∗(u+ iv), (3)

σ ∈ L0

⋃
L1

here and then the coordinate t is the parameter of the time, Γ and M are
operators of the time t

Γφ(σ, t) =
∫ t
0

[
æ∗ek(τ−t) + 2em(τ−t)

]
φ(σ, τ)dτ,

M
[
φ(σ, t) + σφ′(σ, t) + ψ(σ, t)

]
=

∫ t
0 e

m(τ−t)
[
φ(σ, τ) + σφ′(σ, τ) + ψ(σ, τ)

]
dτ, σ ∈ L.

(4)

Considering the equality

Xn + iYn = (N + iT ) eiα(σ) = −i(N + iT )
dt

ds
,

from (2) by differentiation with respect σ to we obtain

d
dσ

[
φ(σ, t) + σφ′(σ, t) + ψ(σ, t)

]
= Φ(σ, t) + Φ(σ, t)+

+σs
′2
[
σΦ′(σ, t) + ψ(σ, t)

]
= N + iT,

(5)

where Φ(σ, t) = φ′(σ, t), Ψ(σ, t) = ψ′(σ, t).
Considering (5) and taking into account the equalities

u+ iv = (vn + ivτ )e
iα(σ), vn = v

(j)
n = const, σ ∈ L

(j)
1 , (j = 1, n),

vn = V
(0)
n = const, σ ∈ L0; eiα(σ) = σ, σ ∈ L0;

vτ = 0, T (σ) = 0, σ ∈ L0
⋃
L1,

5
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from (3) by differentiation with respect σ to we obtain

ΓΦ(σ, t)−M[N + iT ] =

{
2µ∗v

(0)
n , σ ∈ L0,

0, σ ∈ L1.
(6)

If we take into account that N = P0, σ ∈ L0 and T = 0, σ ∈ L1, from
(6) we have

ReΓΦ(σ, t) = P (t), σ ∈ L0; ImΓΦ(σ, t) = 0, σ ∈ L1, (7)

where

P (t) = P0F (t) + 2µ∗v(0)n ; F (t) =
1

m

[
1− e−mt

]
. (8)

Mapping domain S onto a circular ring D = {1 < |ζ| < R} (see point
1), with respect to the function

Ω(ζ, t) = ΓΦ0(ζ, t), Φ0(ζ, t) = Φ [ω(ζ), t] (9)

from (7) we obtain the Riemann-Hilbert boundary value problem for a
circular ring D

Re [Ω(η, t)− P (t)] = 0, η ∈ l0; Im [Ω(η, t)− P (t)] = 0, η ∈ l1, (10)

where l0 and l1 are inverse images of boundaries L0 and L1.
Since problem (10) has only a trivial solution, we will have Ω(ζ, t) =

P (t), ζ ∈ D and, therefore, to determine function Φ0(ζ, t) based on (4) and
(9) we obtain the integral equation∫ t

0

[
æ∗ek(τ−t) + 2em(τ−t)

]
Φ0(ζ, τ)dτ = P (t). (11)

By differentiating (11) with respect to t and then adding the resulting
equality with (11) multiplied by m, we will have

(m− k)æ∗
∫ t

0
ekτΦ0(ζ, τ)dτ + (æ∗ + 2)ektΦ0(ζ, t) = (P0 +mv(0)n )ekt. (12)

From (12) by differentiation with respect to t we obtain a differential
equation of the first kind

Φ̇0(ζ, t) + aΦ0(ζ, t) = b, (13)

where

a =
mæ∗ + 2k

æ∗ + 2
, b =

k(P0 +mv
(0)
n )

æ∗ + 2
(14)

6
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(the dot over Φ0(ζ, t) means the derivative with respect to t).
From (12) we have

Φ0(σ, 0) =
b

k
. (15)

The solution to equation (13), under the initial condition (15) has the
form

Φ0(ζ, t) = b

[
1

a
+

(
1

k
− 1

a

)
e−at

]
, (16)

where a and b are defined by formula (14).
After function Φ0(ζ, t) is found, to define the function

Ψ0(ζ, t) = Ψ [ω(ζ), t]

Let us use the boundary condition (6), which after the conformal mapping,
taking into account (5), will be written in the form

ΓΦ0(η, t)−M
{
Φ0(η, t) + Φ0(η, t)− η2

ω′(η)

[
ω(η)Φ′

0(η, t) + ω′(η)Ψ0(η, t)
]}

=

{
2µ∗v

(0)
n , σ ∈ l0,

0, σ ∈ l1,
η ∈ l = l0

⋃
l1.

(17)
Based on (16), from (17) we obtain

ImΩ0(η, t) = 0, η ∈ l0
⋃
l1, (18)

where
Ω0(ζ, t) = M

[
ζ2ω′2(ζ)Ψ0(ζ, t)

]
. (19)

The solution to problem (18) has the form Ω0(ζ, t) = K1 where K1 is a
real constant.

Thus, for Definition Ψ0(ζ, t) we obtain the equation

M
[
ζ2ω′2(ζ)Ψ0(ζ, t)

]
= K1. (20)

Taking into account the form of operatorM , from (20) we easily obtain

Ψ0(ζ, t) =
mK1

ζ2ω′2(ζ)
.

From (14) and (16) we conclude that expression Φ0(ζ, t) involves both

P0 and v
(0)
n , and the condition of the problem implies that L0 is set to one

of them. Therefore, it is in our interests to find the relationship between
these quantities. Let us assume that at the initial moment the value L0 is
set to P0. Then we will have

Xx = Yy = P0, Xx + Yy = 4ReΦ(σ, t), ReΦ(σ, t) =
P0

2
, σ ∈ L0

7
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and condition (6), taking into account (4), will be written in the form

P0æ
∗

2

∫ t

0
ek(τ−t)dτ = 2µ∗v(0)n ,

from which we easily obtain

v(0)n =
æ∗P0

4µ∗k
.
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