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Abstract

In the present paper, we explicitly solve, in the form of absolutely
and uniformly convergent series, a two-dimensional boundary value
problem of statics in linear theory elasticity for an isotropic elastic disk
consisting of empty pores. The uniqueness theorem for the solution
is proved. For a particular problem numerical results are given.
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1 Introduction

In recent years it has become topical to investigate the stressed-deformed
state of elastic and thermoelastic bodies taking into account their mi-
crostructure. One of simple extensions of elasticity theory for processing
materials with microstructure is the linear theory of porous materials with
voids. In this theory, instead of pores saturated with liquid we consider
pores with voids. The volume fraction corresponding to the void volume is
assumed to be an independent variable. It is also assumed that voids have
no mechanical or energetic significance. Materials containing voids include,
for example, rocks and soils, as well as artificially made ceramic and foamy
materials.

The fundamental principles of both linear and nonlinear theories of
materials with voids were elaborated by Cowin and Nunziato [1,2]. The
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linear theory of thermoelasticity of elastic materials with empty pores was
developed by Iesan [3, 9].

Issues related to this topic are considered, for example, in [3–21]. Fun-
damental results on the theory of materials with voids and bibliographic
information can also be found in the books: [22-26].

From the standpoint of applications, the topical problem is the con-
struction of solutions in an explicit form which is convenient for engineering
practice and also enables one to perform numerical analysis of the problems
under investigation.

In the present paper we consider static boundary value problem of the-
ory elasticity for the elastic circular disk with voids. Special representations
of a general solution of a system of differential equations of the theory of
elastic materials with voids are constructed by using harmonic, biharmonic
and metaharmonic functions, which make it possible to reduce the ini-
tial system of equations to equations of simple structure. This approach
facilitates the solution of the original problems. With the help of these
representations, the solution of the formulated boundary value problem is
obtained explicitly in the form series.

The simple form of the obtained expressions makes it easy to create
a program and apply standard programs for the numerical solution of the
problem with the help of any of the systems of computer mathematics. The
algorithm for the approximate solution of the problem under consideration
is based on the calculation of an effective solution at a given point inside
the disk. For a particular boundary value problem numerical results are
given.

2 Formulation of boundary value problem

Consider an isotropic elastic disk D consisting of empty pores and bounded
by a circle S centered at the origin and radius R Assume that the area
fraction of void pores at the macropoint x = (x1, x2) is an independent
variable. The fraction area of pores changes as a result of body deformation.
Denote this change by φ(x).

The system of equations of the linear theory of elastic materials in the
case of an elastic body with a single distribution of voids has the following
form [4]:

µ∆u(x)+ (λ+ µ) grad divu(x)+ β gradφ(x) = 0 (1)

(α∆− ξ)φ(x)− β divu(x) = 0, x ∈ D, x = (x1, x2), (2)

where u(x) = (u1, u2) is the displacement vector; λ and µ are Lame con-
stants; α, β and ξ are the constants characterizing the body porosity. Let

67



AMIM Vol.27 No.1, 2022 I. Tsagareli, B. Gulua

us formulate our boundary value problems.

Find, in the disk D, a regular vector U(x) = (u(x), φ(x)), (U(x) ∈
C1D̄ ∩ C2(D)), which satisfies the system (1), (2) and of the following
conditions on the boundary S:

u(z) = f(z), φ(z) = f3(z), z ∈ S, (3)

where z = (z1, z2) ∈ S, n(z) = (n1(z), n2(z)) is the external normal to S
at the point z, f = (f1, f2), f3 are the given functions on S.

P (∂x,n)U(x) =

(
P1(∂x,n)U(x)
α∂nφ(x)

)
(4)

is the stress vector in the theory of elasticity for porous bodies with voids
[4], where

P1(∂x,n)U(x) = T(∂x,n)u(x)+ β n(x)φ(x), (5)

and

T (∂x,n)u(x) = µ∂nu(x)+ λn(x)divu(x)+ µ

2∑
i=1

ni(x)gradui(x)

is the stress vector in the classical theory of elasticity, ∂n = (n · grad).

3 General representations of solutions of a system
of equations

Let us write representations for u(x) and φ(x). We represent a solution of
the system of equations (1) and (2) as

u(x) = c1
0
u(x)+ c2

1
u(x)

φ(x) = φ1(x) + φ2(x).
(6)

where φ1 is a harmonic function: ∆φ1 = 0, and φ2 is a metaharmonic
function with the parameter σ2

1:

∆ + σ2
1)φ2 = 0; σ2

1 = −µ0 ξ − β2

µ0 α
, µ0 = λ+ 2µ.

Assume

λ > 0, µ > 0, α > 0, µ0 ξ − β2 > 0. (7)
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Taking into account (7), we write:

ξ > 0, σ2
1 < 0, σ1 = i

√
µ0 ξ − β2

µ0α
= iσ0, i =

√
−1.

c0 and c1 are unknown for the time being.

A general solution
0
u =

(
0
u1,

0
u2

)
of the homogeneous equation, corre-

sponding to the nonhomogeneous equation (1) with respect u(x), is repre-
sented as follows

0
u(x) = grad [Φ1(x) + Φ2(x)] rotΦ3(x) + ex̃, (8)

where the functions Φ2 and Φ3 are interrelated by

µ0 grad∆Φ2(x) + µ rotΦ3(x) = 0; (9)

∆Φ1(x) = 0, ∆∆Φ2(x) = 0, ∆∆Φ3(x) = 0, Φ1, Φ2, Φ3 are scalar functions,

x̃ = (x2,−x1), divx̃ = 0, e is the sought coefficient, rot =

(
− ∂

∂x2
,

∂

∂x1

)
.

1
u =

(
1
u1,

1
u2

)
is one of the particular solutions of the equation (1):

1
u(x) = − β

µ0
grad

(
− 1

σ2
1

φ2 + φ0

)
, (10)

where φ0 is chosen such that ∆φ0 = φ1. It is obvious that φ0 is a bihar-
monic function: ∆∆φ0 = ∆φ1 = 0.

For simplicity, the function φ1 is chosen such that φ1 = div
0
u ≡ ∆Φ2.

Then we can take φ0 = Φ2.
Let us calculate the values of the coefficients c0 and c1 in representation

(10). We apply the operator div to the first equality in (10) and compare
the obtained expression with divu defined by equation (2). Using (7), we
obtain

c0 = −µ0 ξ − β2

µ0β
, c1 = 1. (11)

By an immediate verification we make sure that representations (6)
satisfy equations (1) and (2).

4 Uniqueness theorem

For a regular solution U(x) of equation (1) there holds the Green formula∫
D

[E(u,u) + β φ divu] dx =

∫
S

u [T(∂y,n) + β φn] dyS, (12)
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where

E(u,u) = (λ+ µ)

(
∂u1
∂x1

+
∂u2
∂x2

)2

+ µ

(
∂u1
∂x1

− ∂u2
∂x2

)2

+ µ

(
∂u1
∂x2

+
∂u2
∂x1

)2

,

under conditions (7), which is a non negative quadratic form. Multiplying
equality (2) by φ(x) and integrating over D. After simple transformations,
we get ∫

D

[
α|gradφ|2 + ξ φ2 + β φdivu

]
dx =

∫
S

αφ
∂φ

∂n
dyK. (13)

Let U ′ = (u′, φ′) and U ′′ = (u′′,φ′′) be two arbitrary solutions of the
problem. For their difference U = (u, φ) = U ′ − U ′′ from (15) and (16),
taking into account (7), we get:

φ(x) = 0, E(u,u) = 0.

A solution of this equation has the form

u1(x) = −px2 + q1, u2(x) = px1 + q2, (14)

where p, q1, q2 are arbitrary constants

Since for a homogeneous boundary condition we have u1(z) = u2(z) =
0, φ(z) = 0, then in formulas (14) we must take: p = q1 = q2 = Therefore,
for the difference of solutions to the problem, we obtain: u(x) = 0, x ∈ D.
Thus, the following assertion are true.

Theorem. Problem has a unique solution.

5 Solution of the problem in an explicit form

We write vector u(x), represented by equalities (6), in terms of the normal
and tangent components:

un(x) =
∂

∂r
(c0Φ1 + c3Φ2 + c4φ2)−

c0
r

∂

∂ϑ
Φ3,

uS(x) =
1

r

∂

∂ϑ
(c0Φ1 + c3Φ2 + c4φ2) + c0

∂

∂r
Φ3 − er,

(15)

φ(x) = φ1 + φ2,

where c3 = −ξ

b
, c4 =

β

µ0σ2
1

, x = (r, ϑ), r2 = x21 + x22, x ∈ D.

Using formula (9) and the equality φ1 = ∆Φ2, the harmonic functions
Φ1 and φ1, biharmonic functions Φ2 and Φ3, and also the metaharmonic
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function φ2 contained in (12) are represented in the disc D in the form of
series

φ1(x)=
∞∑

m=0

( r

R

)m
(Xm1 · νm(ϑ)), φ2(x)=

∞∑
m=0

Im(σ0r)(Xm2 · νm(ϑ)),

Φ2(x) =
R2

4

∞∑
m=0

1

m+ 1

( r

R

)m+2
(Xm1 · νm(ϑ)),

Φ3 =
µ0R

2

4µ

∞∑
m=0

1

m+ 1

( r

R

)m+2
(Xm1 · sm(ϑ)),

Φ1(x) =

∞∑
m=0

( r

R

)m
(Xm3 · νm(ϑ)),

(16)

where Xmk is the sought two-component vector, k = 1, 2, 3; νm(ϑ) =
(cosmϑ, sinmϑ), sm(ϑ) = (− sinmϑ, cosmϑ); Im(σ0r); is the Bessel func-

tion of an imaginary argument, I′m(σ0r) =
∂

∂(σ0r)
Im(σ0r).

We write the boundary conditions (3) in the form of normal and tan-
gential components

un(z) = fn(z), us(z) = fs(z), φ(z) = f3(z), (17)

Let the functions fn, fs and f3, f4, be expanded into Fourier series

fn(z) =
α0

2
+

∞∑
m=1

(αm · νm(ψ)) fs(z) =
β0

2
+

∞∑
m=1

(βm · sm(ψ))

f3(z) =
γ0

2
+

∞∑
m=1

(γm · νm(ψ))

(18)

where αm = (αm1, αm2), βm = (βm1, βm2), γm = (γm1, γm2) are the
Fourier coefficients of the functions fn, fS , f3, respectively. We substi-
tute expressions (16) into (15) and pass to the limit as r → R. Using (18),
we substitute the results obtained into (17). For m = 0 we get a linear
algebraic system

c3
2
X01 + c4s0I

′
0(σ0R)X02 +

c4
2
X04 =

α0

2
,

c0µ0R
2

2µ
X01 −RX03 =

β0
2
,

X01 + I0(σ0R)X02 =
γ0
2
, X03 ≡ e;

(19)
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and for each m = 1, 2, · · · we obtain

R

4(m+ 1)

[
c3(m+ 2) +

c0µ0m

µ

]
Xm1 + c4σ0I

′
m(σ0R)Xm2

+
c0m

R
Xm3 = αm,

R[c3µm+ c0µ0Rm(m+ 2)]

4µ(m+ 1)
Xm1 +

c4m

R
Im(σ0R)Xm2

+
c0m

R
Xm3 = βm,

Xm1 + Im(σ0R)Xm2 = γm.

(20)

Since the problem has a unique solution, the determinants of systems
(19) and (20) are nonzero.

We solve systems (19) and (20) and substitute the obtained values of
the vectors Xmk in (16). Using formulas (8), (10) and (6), we obtain the
solution of the considered problem.

The conditions f ∈ C3(K), f3 ∈ C3(S) provide the absolute and uniform
convergence of the resulting.

6 Numerical solutions

For the numerical solution of the problem, a program was compiled, with
the help of which, using formulas (6), (8), (10) and (16), we calculate
the values of the components of the vector U(x). These formulas include
infinite series. In practical calculations in series, we leave am0 finite number
of terms, and remove the infinite part. It is known that if f(x) ∈ C2(S),
then the cut-off part (sum) of the Fourier series of the function f(x) is
estimated as follows:

∞∑
m=m0+1

fm <
c′

m
3
2
0

, c′ = const,

where m0 is a sufficiently large natural number. In particular, this estimate
shows that it is enough to require m0 = 100 and the sum of the cut-off part
will be accurate to 10−3.

Standard programs are used to calculate definite integrals (Fourier co-
efficients) and special functions (Bessel functions).

A cylindrical body was considered, the cross section of which is a disk of
radius R, centered at the origin. For the purposes of numerical evaluations,
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magnesium was chosen as the material, for which the elastic constants and
void parameters are as follows (see, for example, Ref. [14]):

λ = 2.17× 1010Nm−2, µ = 3.278× 1010Nm−2, α = 3.688× 10−5N,

β = 1.13849× 1010Nm−2, ξ = 1.475× 1010Nm−2.

R = 2, r = 1, ϑ = ϑ0
π

180
, ϑ0 = 60.

Parameter units are given in SI units. Assuming that the displacements
are very small compared to the linear dimensions of the body and, in addi-
tion, the change in the empty area fraction is not too large, the functions
f1, f2, f3, given on the boundary S of the disk under consideration, were
taken in the following form:

f1(ϑ) =
1

2

(
cos(ϑ)− 1

3

)
× 10−4, f2(ϑ) = R× (sinϑ+ 3)× 10−4,

f3(ϑ) = R× (cosϑ+ 10−1)× 10−2.

The program is implemented with the help of the MathCAD mathematical
calculation system. Calculation results:

u1(x) = 0.053, u2(x) = −0.03, φ(x) = 7.373× 10−3.
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