
SOLUTION OF THE SOME BOUNDARY VALUE
PROBLEM FOR ELASTIC MATERIALS WITH
VOIDS IN THE CASE OF APPROXIMATION

N=1 OF VEKUA’S

B. Gulua1, P. Karchava2

1I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi
State University, 11 University Str., 0186 Tbilisi, Georgia

Sokhumi State University, Politkovskaya str. 61, 0186 Tbilisi, Georgia
bak.gulua@gmail.com

2I. Javakhishvili Tbilisi State University
13 University Str., Tbilisi 0186, Georgia

pqarchava@gmail.com

(Received 15.05.2021; accepted 12.11.2021)

Abstract

In this paper we consider a boundary value problem for a circle.
The plate is the elastic material with voids. The state of plate equilib-
rium is described by the system of differential equations that is derived
from three dimensional equations of equilibrium of an elastic material
with voids (Cowin-Nunziato model) by Vekua’s reduction method.
its general solution is represented by means of analytic functions of a
complex variable and solutions of Helmholtz equations. The problem
is solved analytically by the method of the theory of functions of a
complex variable.
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1 Introduction

Using the concept of volume fraction of pores the theory of elastic materials
with single voids is proposed by Nunziato and Cowin [1, 2]. The basic
equations of this theory involve the displacement vector field and the change
of volume fraction of pores. Such materials include, in particular, rocks and
soils, granulated and some other manufactured porous materials.

As is known, there exist many methods of reducing three-dimensional
problems of equilibrium of elastic shells to two-dimensional problems. Some
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such general methods were proposed by famous mathematician and me-
chanician I. Vekua [3, 4].

Let Ox1x2x3 be the rectangular Cartesian coordinate system. Let Ω =
ω×]− h, h[ be an infinite plate with a circular hole of radius R centred at
the origin O. The plate thickness is assumed to be constant and equal to
2h. The plate is the isotropic material with voids.

The governing equations of the theory of elastic materials with voids
can be expressed in the following form [2]:

• Equations of equilibrium

Tij,j +Φi = 0, j = 1, 2, 3, (1)

hi,i + g +Ψ = 0, (2)

where Tij is the symmetric stress tensor, Φi are the volume force compo-
nents, hi is the equilibrated stress vector, g is the intrinsic equilibrated
body force and Ψ is the extrinsic equilibrated body force.

• Constitutive equations

Tij = λekkδij + 2µeij + βϕδij , i, j = 1, 2, 3,
hi = αϕ,i, i = 1, 2, 3, g = −ξϕ− βekk,

(3)

where λ and µ are the Lamé constants; α, β and ξ are the constants char-
acterizing the body porosity; δij is the Kronecker delta; ϕ := ν − ν0 is the
change of the volume fraction function from the matrix reference volume
fraction ν0 (clearly, the bulk density ρ = νγ, 0 < ν ≤ 1, here γ is the matrix
density and ρ is the mass density); eij is the strain tensor and

eij =
1
2 (ui,j + uj,i) , (4)

where ui, i = 1, 2, 3 are the components of the displacement vector..
The constitutive equations also meet some other conditions, following

from physical considerations

µ > 0, α > 0, ξ > 0, 3λ+ 2µ > 0, (3λ+ 2µ)ξ > 3β2. (5)

2 Basic equations

Using Vekua’s dimension reduction method [3], linear two-dimensional (2D)
governing equations were obtained from the above three-dimensional (3D)
equations with respect to so-called r-th order moments of functions under
consideration, where the zero order moments (which are averaged along the
thickness of the plate) and the first order moments are defined as(

(0)

Tij ,
(0)

hi ,
(0)
g ,

(0)
ui,

(0)

ϕ

)
=

1

2h

h∫
−h

(Tij , hi, g, ui, ϕ) dx3,
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(
(1)

Tij ,
(1)

hi ,
(1)
g ,

(1)
ui,

(1)

ϕ

)
=

3

2h2

h∫
−h

x3 · (Tij , hi, g, ui, ϕ) dx3.

In particular, in the N = 1 approximation of I.Vekua’s theory it is
assumed that

(ui, ϕ)(x1, x2, x3) =

(
(0)
ui,

(0)

ϕ

)
(x1, x2) +

x3
h

(
(1)
ui,

(1)

ϕ

)
(x1, x2).

For h = const the reduced system of equilibrium equations gets split
into two independent systems: tension−compression equations with un-

knowns
(0)
u1,

(0)
u2,

(1)
u3,

(0)

ϕ and bending equations with unknowns
(1)
u1,

(1)
u2,

(0)
u3,

(1)

ϕ .
In this paper we consider the system of tension−compression equations.

from [5] the basic relations of the N = 1 approximation of elastic
isotropic plates with voids have the following form:

∂α
(0)

Tαγ = 0, α, γ = 1, 2 ∂α
(1)

Tα3 −
3

h

(1)

T33 = 0, ∂α
(0)

hα +
(0)
g = 0, (6)

where

(0)

Tαγ = λ

(
(0)

θ +
(1)
u3

)
δαγ + µ

(
∂α

(0)
uγ + ∂γ

(0)
uα

)
+ β

(0)

ϕ δαγ ,

(0)

T33 = λ

(
(0)

θ +
(1)
u3

)
+ 2µ

(1)
u3 + β

(0)

ϕ ,
(1)

Tγ3 = µ∂γ
(1)
u3,

(0)

hγ = α∂γ
(0)

ϕ ,

(0)
g = −ξ

(0)

ϕ − β

(
(0)

θ +
(1)
u3

)
,

(0)

θ = ∂1
(0)
u1 + ∂2

(0)
u2.

(7)

On the plane Ox1x2, we introduce the complex variable z = x1 + ix2 =
reiϑ, (i2 = −1) and the operators ∂z = 0.5(∂1 − i∂2), ∂z̄ = 0.5(∂1 + i∂2),
z̄ = x1 − ix2, and ∆ = 4∂z∂z̄.

Substituting (7) into system (6), we obtain the following system of

governing equations of statics with respect to the functions
(0)
u1,

(0)
u2,

(1)
u3,

(0)

ϕ
in the complex form

2µ∂z̄∂z
(0)
u+ + (λ+ µ)∂z̄

(0)

θ + λ∂z̄
(1)
u3 + β∂z̄

(0)

ϕ = 0,

µ∆
(1)
u3 −

3

h

[
λ
(0)

θ + (λ+ 2µ)
(1)
u3 + β

(0)

ϕ

]
= 0,

(α∆− ξ)
(0)

ϕ − β

[
(0)

θ +
(1)
u3

]
= 0,

(8)

where
(0)
u+ =

(0)
u1 + i

(0)
u2,

(0)

θ = ∂z
(0)
u+ + ∂z̄

(0)
ū+.
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As the analogues of the Kolosov-Muskhelishvili formulas [6] for system
(8) we have

2µ
(0)
u+ = κ1φ(z)− κ2zφ′(z)− ψ(z)− p1∂z̄χ1(z, z̄)− p2∂z̄χ2(z, z̄),

(1)
u3 = l11χ1(z, z̄) + l12χ2(z, z̄)− E1(φ

′(z) + φ′(z)),
(0)

ϕ = l21χ1(z, z̄) + l22χ2(z, z̄)− E2(φ
′(z) + φ′(z)),

(9)

where φ(z) and ψ(z) are the arbitrary analytic functions of z, χ1(z, z̄) and
χ2(z, z̄) are the general solutions of the Helmholtz equations

∆χ− κ1χ = 0, ∆χ− κ2χ = 0,

and κ1, κ2 are eigenvalues and l11, l21, l12, l22 are eigenvectors of the matrix
C. E1 = a11 + a12, E2 = a21 + a22 and aij are coefficients of the matrix
−C1D:

C =

(
12(λ+µ)
h(λ+2µ)

6β
h(λ+2µ)

2µβ
α(λ+2µ)

ξ
α−

β2

α(λ+2µ)

)
, D =

(
3λ

2hµ(λ+2µ) 0

0 β
2α(λ+2µ)

)
.

Also κ1 = 1
2 + (λE1+βE2)µ

λ+2µ , κ2 = 1
2 − (λE1+βE2)µ

λ+2µ , p1 = 4(λl11+βl21)µ
κ1(λ+2µ) , p2 =

4(λl12+βl22)µ
κ2(λ+2µ) .
Complex combinations of the stress tensor components are expressed

by means of the formulas

(0)

T11 −
(0)

T22 + 2i
(0)

T12 = −2κ2zφ′′(z)− ψ′(z)− 2p1∂
2
z̄z̄χ1(z, z̄)− 2p2∂

2
z̄z̄χ2(z, z̄),

(0)

T11 +
(0)

T22 = E3(φ
′(z) + φ′(z)) + E4χ1(z, z̄) + E5χ2(z, z̄),

(1)

T+ = l11∂z̄χ1(z, z̄) + l12∂z̄χ2(z, z̄)− E1φ′′(z)),
(0)

h+ = l21∂z̄χ1(z, z̄) + l22∂z̄χ2(z, z̄)− E2φ′′(z)),

(10)

where

E3 =
λ+ µ

µ
(κ1 + κ2)− 2λE1 − 2βE2, E4 = 2λl11 + 2βl21 −

λ+ µ

µ
8p1κ1,

E5 = 2λl12 + 2βl22 −
λ+ µ

µ
8p2κ2.

3 The boundary value problem for a circle

Let us consider the elastic circle with voids bounded by the circumference
of radius R (Fig. 1). The origin of coordinates is at the center of the circle.

13
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Figure 1: The elastic circle.

On the circumference, we consider the following boundary value prob-
lem

(0)

Trr + i
(0)

Trϑ = N − iT,
(1)

Tr3 =M,
(0)

hr3 = F. (11)

The boundary conditions take the form

(0)

Trr + i
(0)

Trϑ = E3(φ
′(z) + φ′(z)) + E4χ1(z, z̄) + E5χ2(z, z̄)

−
(
2κ2zφ′′(z) + ψ′(z) + 2p1∂

2
z̄z̄χ1(z, z̄) + 2p2∂

2
z̄z̄χ2(z, z̄)

)
e−2iϑ

(1)

Tr3 =
(
l11∂z̄χ1(z, z̄) + l12∂z̄χ2(z, z̄)− E1φ′′(z)

)
e−iϑ

+
(
l11∂zχ1(z, z̄) + l12∂zχ2(z, z̄)− E1φ

′′(z)
)
eiϑ,

(1)

hr3 =
(
l21∂z̄χ1(z, z̄) + l22∂z̄χ2(z, z̄)− E2φ′′(z)

)
e−iϑ

+
(
l21∂zχ1(z, z̄) + l22∂zχ2(z, z̄)− E2φ

′′(z)
)
e−iϑ.

(12)

The analytic functions φ′(z), ψ′(z) and the metaharmonic functions
χ1(z, z̄) and χ2(z, z̄) are represented as the series

φ′(z) =
∞∑
n=0

anz
n, ψ′(z) =

∞∑
n=0

bnz
n,

χ1(z, z̄) =
+∞∑
−∞

αnIn(
√
κ1r)e

inϑ, χ2(z, z̄) =
+∞∑
−∞

βnIn(
√
κ2r)e

inϑ

(13)

where In(·) are the modified Bessel function of the first kind of n-th order.
From (5) κ1 and κ2 are positive numbers.

Expand the function N − iT , M and F , given on r = R, in a complex
Fourier series

N − iT =
+∞∑
−∞

Ane
inα, M =

+∞∑
−∞

Bne
inα, F =

+∞∑
−∞

Cne
inα. (14)

Substituting (12), (13), (14) into (11) and comparing the coefficients of
same exponents we obtain

2E3a0 +
(
E4I0(

√
κ1R)−

p1κ1
2

I2(
√
κ1R)

)
α0

+
(
E5I0(

√
κ2R)− p2κ2

2 I2(
√
κ2R)

)
β0 = A0,

14
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l11
√
κ1I1(

√
κ1R)α0 + l12

√
κ2I1(

√
κ2R)β0 = B0,

l21
√
κ1I1(

√
κ1R)α0 + l22

√
κ2I1(

√
κ2R)β0 = C0,

(15)

E3R
nan +

(
E4In(

√
κ1R)−

p1κ1
2

In+2(
√
κ1R)

)
αn

+
(
E5In(

√
κ2R)− p2κ2

2 In+2(
√
κ2R)

)
βn = An, n > 0

(E3 − 2κ2n)R
nan +

(
E4In(

√
κ1R)−

p1κ1
2

In−2(
√
κ1R)

)
αn

+
(
E5In(

√
κ2R)− p2κ2

2 In−2(
√
κ2R)

)
βn −Rn−2bn−2 = A−n, n > 0

−E1nR
n−1an +

l11
√
κ1

2
(In−1(

√
κ1R) + In+1(

√
κ1R))αn

+
l12

√
κ2

2 (In−1(
√
κ2R) + In+1(

√
κ2R))βn = Bn, n > 0

−E2nR
n−1an +

l21
√
κ1

2
(In−1(

√
κ1R) + In+1(

√
κ1R))αn

+
l22

√
κ2

2 (In−1(
√
κ2R) + In+1(

√
κ2R))βn = Cn, n > 0.

(16)

All coefficients in series (13) are found by solving (15)-(16). It is easy
to prove the absolute and uniform convergence of the series obtained in
the circular ring (including the contours) when the functions set on the
boundaries have sufficient smoothness.
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