
A LOGIC WITH MEASURABLE SPACES FOR
NATURAL LANGUAGE SEMANTICS *

Jean-Philippe Bernardy Rasmus Blanck
Aleksandre Maskharashvili

University of Gothenburg, Department of Philosophy, Linguistics and
Theory of Science, Centre for Linguistics and Studies in Probability.

name.surname@gu.se

Abstract

We present a Logic with Measurable Spaces (LMS) and argue that
it is suitable to represent the semantics of a number of natural lan-
guage phenomena. LMS draws inspiration from several sources. It
is decidable (like descriptive logics). It features Sigma spaces (like
Martin-Löf type-theory). It internalises the notion of the cardinality
(in fact, here, measures) of spaces (see [6]) and ratios thereof, allow-
ing to capture the notion of event probability. In addition to being
a powerful system, it is also concise and has a precise semantics in
terms of integrals. Thanks to all these qualities, we hope that LMS
can play a role in the foundations of natural language semantics.

1 Introduction

The ability of humans to reason under uncertainty has reflections within
natural language where we find various lexico-syntactic constructions which
allow us to express uncertain information. Moreover, we are able draw con-
clusions - make inferences under uncertainty. To give an adequate account
to this crucial aspect of natural language, it has been long argued for em-
ploying probabilistic tools in defining semantics of natural language.

The question remains of which tool is best suited for the purpose. [7, 10]
have proposed to use probabilistic programming languages.

In this paper, we propose to use instead a special-purpose language
which aims at providing the most convenient interface for compositional
semantics, while giving a fully precise semantics.

We call this intermediate language Logic with Measurable Spaces (LMS).
We argue that LMS is suitable to represent the semantics of a number of
natural language phenomena. LMS draws inspiration from several sources.
It is decidable (like descriptive logics). It features Sigma spaces (like

*Supported by Swedish Research Council, Grant number 2014-39

AMIM Vol.25 No.2, 2020 Jean-Philippe Bernardy at al.

Abstract
syntax

result in
(0, 1)

Semantics Evaluation

Figure 1: Overview of the parts of a complete probabilistic (bayesian) in-
ference system

Martin-Löf type-theory). It internalises the notion of the cardinality (in
fact, here, measures) of spaces (see [6]) and ratios thereof, allowing to cap-
ture the notion of event probability.

A fully-fledged probabilistic semantics will be comprised of several parts,
shown in 1. In this paper, we focus on the interface between compositional
semantics and evaluation only. Yet, to get a sense of how such a system
is articulated, we present an example inference — remaining at a suitably
abstract level:

Most birds fly

A few birds fly

We wish to compute the probability

P (A few birds fly | Most birds fly)

and test if its value is closer to 1 than 0.

In order to do so, the natural sentences are first parsed, yielding abstract
syntax trees. For example one can use the GF tool [11], but any tool
which produces a syntax compatible with Montague-style categories would
be suitable. The abstract syntax that we obtain for the premiss and the
hypothesis could be written as follows.

P = many bird fly

H = aFew bird fly

The abstract syntax is then translated to LMS. This makes explicit their
spaces, and the measures thereof. Using these features, the probabilities
of all propositions of interest can be expressed precisely. To convert to
this intermediate representation, we first must express our (lack of) prior
knowledge about the common nouns, verbs, etc. present in the problem. To
do so we gather the lexical items and introduce them as as random variables
in the appropriate space. The premiss(es) are added as extra conditions,
using a compositional semantics [2]. These conditions effectively update
the distributions of the representations of lexical items, yielding a global
space of situations Ω and assuming a proportion Θm corresponding to the

32

A Logic with Measurable Spaces ... AMIM Vol.25 No.2, 2020

meaning of “most”.

Ω = [bird : Pred

fly : Pred

p : measure([x : Ind; b : bird(x); f : fly(x)])

> Θmmeasure([x : Ind; b : bird(x)])]

Note that to make the language more concise, we unify the language of
spaces and the language of propositions — effectively we sample p over the
space of proofs of the propositions. We leave here the space of predicates
Pred abstract: possible choices are spelled out by [3] and [4].

The truth value of the conclusion is then expressed as a probability
measure of a proposition over the whole space Ω that we just defined, with
a suitable proportion Θf for “few”.

X = Pω:Ω([x : Ind; b : ω.bird(x); f : ω.fly(x)])

> Θfmeasure([x : Ind; b : ω.bird(x)])

The convenient expression above can be turned into a mathematical
expression using the semantics for spaces and probabilities (1). In our
running example, the expression begins with integration over the spaces of
predicates: ∑

bird:Pred

∑
fly:Pred

1(P ∧Q)

1(P)

where the conditions P and Q are given by

P = measure([x : Ind; b : bird(x); f : fly(x)])

> Θm ·measure([x : Ind; b : bird(x)])

Q = measure([x : Ind; b : bird(x); f : fly(x)])

> Θf ·measure([x : Ind; b : bird(x)])

The integrations and measures get further expanded if Pred is made con-
crete. But, we can already see that P ∧ Q = P if Θm > Θf , and in this
simple case the integral therefore evaluates to 1, meaning that the inference
is (stochastically) certain.

However, in the vast majority of cases, integrals are not computable
symbolically. This would happen for example if we do not choose a fixed
value Θm or Θf , but rather used random variables. In this kind of situation,
one typically resorts to simulated sampling — using Monte Carlo methods
(see 2.3).

33

AMIM Vol.25 No.2, 2020 Jean-Philippe Bernardy at al.

A,B, . . . ::= IsTrue(φ) types of proofs

|Σ(x : A)B sigma type, generalised pair

|Distr(d) Real-valued base distribution

with finite support

| {e |x : A} image of A under λx.e

φ, ψ, e ::= x variable

|φ ∧ ψ
|e1 ≤ e2

|π1(e)|π2(e) projections

|op(ei) arithmetic operators

|♦ uninformative object

|measure(A) internalisation of measure

τ, σ ::= Unit|Bool|R|τ → σ|τ × σ

Figure 2: Syntax of LMS

2 Logic with Measurable Spaces

In this section we describe a Logic with Measurable Spaces (LMS). LMS is
the representation language connecting parse structures to mathematical
expressions of probabilities. We use it to describe the meaning of infer-
ences. As a first approximation, one can see LMS as a precise formalisation
of informal notations used when manipulating logical expressions involving
random variables. Readers familiar with these concepts can skip this sec-
tion on first reading. But it will be helpful for understanding subsequent
definitions.

The syntax of LMS is comprised of two categories: spaces (A,B,C,
etc.), and expressions (e or φ, ψ for boolean-valued expressions.)

The main objects of interest are spaces. Every space has two aspects:
an underlying type and a probability distribution over it. The types are
formed by the unit type, booleans, reals, functions, and products.

In LMS, types are used as in a programming language, to verify that
nonsensical expressions are disallowed. We do not follow the tradition of in-
tuitionistic logic in that we ignore the inhabitants of types. Specifically, we
do not consider types as propositions, via the Curry-Howard isomorphism.
LMS does not include quantification over all types, nor over all spaces. In-
stead, the densities of spaces are their logical content. Before turning to

34

A Logic with Measurable Spaces ... AMIM Vol.25 No.2, 2020

Γ ` φ : Bool

Γ ` IsTrue(φ) : SpaceUnit

Γ ` A : Space τ Γ, x : τ ` B : Spaceσ

Γ ` Σ(x : A)B : Space (Σ(x : τ)σ)

Γ ` ei : R
Γ ` Distr(d1[ei]) : SpaceR

Γ, x : τ ` e : σ Γ ` A : Space τ

Γ ` {e |x : A} : Spaceσ

Γ ` e1 : τ Γ ` e2 : σ[e1/x]

Γ ` (e1, e2) : τ × σ
Γ ` e : τ × σ
Γ ` π1(e) : τ

Γ ` e : τ × σ
Γ ` π2(e) : σ

Γ ` ♦ : Unit
Γ ` φ : Bool Γ ` ψ : Bool

Γ ` φ ∧ ψ : Bool

Γ, x : τ ` e : σ

Γ ` λx.e : τ → σ

Γ ` e0 : τ → σ Γ ` e1 : τ

Γ ` e0(e1) : σ
Γ ` true : Bool Γ ` false : Bool

Γ ` e : Bool

Γ ` 1(e) : R
Γ ` k : R

Γ ` ei : R
Γ ` op(ei) : R

Figure 3: Typing rules for LMS. In the above op stands for an arbitrary
arithmetic operator or arbitrary arity, with ei being its operands. Similarly,
we list only only one logical connective (∧); others follow the same pattern.

density we give a brief overview of LMS typing and its consequences. We
use two judgments. First, the judgment Γ ` e : τ , which is the standard
typing judgment for terms in the simply typed lambda calculus. We call
Boolean-valued expressions propositions, so if Γ ` φ : Bool holds, it means
that φ is a proposition in context Γ. Second, the judgment Γ ` A : Spaceσ
expresses that A is a space over the ground type σ, in a context Γ.

Because expressions are simply typed, they inherit the usual normali-
sation properties of typed lamdba terms [1]. Any closed term of type R is
a real number.

We now focus on spaces and distributions over them. We have four
basic space constructions:

1. Given a distribution with n parameters d(x1, . . . , xn), we have the
space Distr(d1(e1, . . . , en)) (each of the parameters can be assigned
any real-valued expression).

2. We can construct a space whose density is 1 when a proposition φ is

35

AMIM Vol.25 No.2, 2020 Jean-Philippe Bernardy at al.

true and 0 otherwise. It is written IsTrue(φ).

3. We can construct sigma spaces. Given a space A and a space B[x],
we can write Σ(x : A)B[x] for the the sigma space.

4. We can take the image of a space A under a function f . This space
is written {f(x) |x : A}. (In fact we generalise to and allow any ex-
pression dependent on x instead of just f(x).)

These constructions are listed in 3.
Formally, we do not manipulate densities directly, thus avoiding the-

oretical difficulties, in particular for {f(x) |x : A}. Instead, we generalise
the notion of integration so that it does not just apply to distributions,
but to arbitrary spaces. For this purpose we use the symbol

∑
, as it is a

natural extension of the summation operator.

Definition 1. If Γ ` A : Spaceα and Γ, x : α ` e : R, we define
∑

x:A e
(which can be read as the integral of e for x ranging over A), by induction
on A: ∑

x:Distr(d)

e =

∫
R

PDF(d, x) · JeKdx

∑
x:IsTrue(φ)

e = 1(JφK) · Je[♦/x]K

∑
z:Σ(x:A)B

e =
∑
x:A

∑
y:B

e[(x, y)/z]

∑
y:{e |x:A}

e2 =
∑
x:A

e2[e/y]

Definition 2. (Evaluation of expressions) The value of an expression e is
written JeK and defined by induction on the structure of expressions, as
is standard in the lambda calculus. We know that evaluation terminates
because of our type-system. The only case that merits attention is the
evaluation of measure(A), which is specified by the following equation:

Jmeasure(A)K =
∑
x:A

1

The expression
∑

x:A 1 integrates over the whole space of the constant
value 1, thus “counting” the elements of that space. Therefore it is the
measure of the space A. Overloading the notation, we also write measure(A)
for the measure of the space A as a meta-theoretical expression (not an LMS
expression), with the same definition.

36

A Logic with Measurable Spaces ... AMIM Vol.25 No.2, 2020

Definition 3. (Expected value) We define the expected value of e for a
random variable x distributed in A as follows:

Ex:A(e) =

∑
x:A e

measure(A)

Remark:
Ez:(Σ(x:A)B)(e) = Ex:A(Ey:B(e[(x, y)/z]))

Notation:

Ex0:A0,...,xn:An(e) = Ex0:A0(. . . Exn:An(e))

Finally, we can define the probability of a proposition φ over a random
variable x ranging in A as the proportion of (the measure of) the space A
where φ holds.

Definition 4.
Px:A(φ) = Ex:A(1(φ))

An equivalent definition is the following:

Px:A(φ) =
measure(Σ(x : A)IsTrue(φ))

measure(A)

In general, for probabilistic inference, we define a space of possible situ-
ations Ω, and evaluate the expected truth value of some proposition φ over
this space. The space Ω typically has a complex structure.

We now verify that Px:A(φ) satisfies the expected properties of proba-
bilities, starting with the following lemma:

Lemma 1.
∑

x:A is a linear operator

(i)
∑

x:A(k · t) = k ·
∑

x:A t if k does not depend on x

(ii)
∑

x:A(t+ u) =
∑

x:A t+
∑

x:A u

Proof. By induction on the structure of A.

When a space A has zero measure, the probabilities over it are unde-
fined. Otherwise, the Kolmogorov laws of probability are respected. It is
easy to verify that any probability is positive, and that the probability of
true is 1. The last law (in its finite variant) needs a bit more work, and its
proof follows.

Theorem 1. If φ ∧ ψ = false, then

Px:A(φ ∨ ψ) = Px:A(φ) + Px:A(ψ)

37

AMIM Vol.25 No.2, 2020 Jean-Philippe Bernardy at al.

Proof.

Ex:A(φ ∨ ψ) =
∑
x:A

1(φ ∨ ψ) by def.

=
∑
x:A

(1(φ) + 1(ψ)) because φ ∧ ψ = false

=
∑
x:A

1(φ) +
∑
x:A

1(ψ) by linearity of
∑
x:A

= Ex:A(φ) + Ex:A(ψ) by def.

The result is obtained by dividing by measure(A).

The property that probabilities are positive can be checked in a sim-
ilar way. The assumption of unit measure (Px:A(true) = 1) is a simple
consequence of the definition.

2.1 Dealing with equality

In some situations it is useful to use equality of real-valued expressions
(for example “john is as tall as mary”). Perhaps the most obvious way to
encode equality between x and y is by using IsTrue(x = y). Assume that
x and y are both taken in a space A of strictly positive measure, we can
naively write the space B of equal x and y as follows.

B = Σ(x : A)Σ(y : A)IsTrue(x = y)

Unfortunately, the above definition is problematic, because x = y is stochas-
tically impossible for real-valued x and y. 1 Consequently measure(B) = 0.
In turn, when evaluating probabilities involving B, one gets division by
zero and the probabilities are undefined using the definitions given above.

2.1.1 A theoretical approach

What we would like is to replace IsTrue(x = y) by another space x ≡ y,
such that the density of x ≡ y is zero when x 6= y, but whose total measure
is 1 (instead of 0). This can be done conceptually by increasing the density
at the points where x = y. To do this, we must first introduce the Factor(e)
space, which acts like IsTrue(φ), but e gives directly the factor to be used

1Readers who are not familiar with this property can convince themselves informally
by seeing that getting x and y to be equal requires an impossible alignment of infinite
precision. Formally this can be seen by carrying out the computation of integrals as
defined above.

38

A Logic with Measurable Spaces ... AMIM Vol.25 No.2, 2020

in the integration (which can thus be greater than 1). Hence, its integrator
is as follows: ∑

x:Factor(e1)

e2 = Je1K · Je2[♦/x]K.

Second, we need to pick a sufficiently great factor, so when integrating it
over a 0-measure area, the result end up being 1. This can only be done
with an infinitely large factor.

One may believe that no such space exists, but, fortunately, such a
space has already been extensively studied, and it is known as the Dirac δ
function. Classically, δ has a single parameter, and its density is 0 when
this parameter is nonzero, and its defining property is:∫ ∞

−∞
f(x)δ(x) dx = f(0)

In terms of spaces, the same property becomes:∑
x:Distr(δ)

t = t[0/x]

Hence we can define x ≡ y to be for Factor(δ(x− y)).

We can now compute the measure of our motivating example B:

measure(Σ(x : A)Σ(y : A)x ≡ y) =
∑
x:A

∑
y:A

∑
p:Factor(δ(y−x))

1

=
∑
x:A

∑
z:{y−x |x:A}

∑
p:Factor(δ(z))

1 by substitution

=
∑
x:A

∑
z:{y−x |x:A}

∑
z:Distr(δ)

1

=
∑
x:A

∑
z:{y−x |x:A}

1 by δ property

=
∑
x:A

∑
y:A

1

= measure(A)2

We see that involving x ≡ y does not make the measure of spaces 0, and
hence probabilites remain well-defined. Computing symbolic integration
involving δ is not possible in every case, but we refer the reader to [12] for
a generic method.

39

AMIM Vol.25 No.2, 2020 Jean-Philippe Bernardy at al.

2.1.2 A numerical approach

Perhaps more disturbing that δ not being always computable, it does not
lend itself well to Monte Carlo methods, which we describe in 2.3. We
essentially are faced with the same problem as originially. If we sample
random any x and y, and their numerical representations have a high res-
olution then, it will be extremely rare that x = y, and the Monte-Carlo
approximation will not converge.

A possible solution is to increase the density in a non-zero region around
the points such that x = y, in a smooth fashion. One way to do that is to
take the density of the space x ≡ y to be a Gaussian curve of a suitably
small standard deviation σ2 and which has its maximum at x = y:

1

σ
√

2π
e−

1
2

(
(x−y)
σ

)2

Like all probability density functions, the gaussian has density 1, and we
thereby avoid spaces of zero measure.

While this approach is pleasing, choosing a suitable value for σ is not
necessarily obvious. If it is too small, then we fall into the original pitfall:
most of the time the density will be too small to contribute significantly
to the integral. Conversely, if σ is too large, then one gets an excessively
imprecise result. Unless otherwise stated, we have run our models with
σ = 1.

2.2 Record notation

When dealing with complex structures involving nested Σ spaces, the ex-
pressions for projections become quickly inscrutable. For this reason we
use the record notation for such spaces and the corresponding projections.

Definition 5. (Record spaces and projections) Formally, record spaces are
defined by translation to Σ spaces, as follows:

[x1 : A1; . . . ;xn : An] = Σ(x1 : A1)Σ(x2 : A2) . . . An

Additionally if e : [x1 : A1; . . . ;xn : An], then e.xi is a shorthand for
π1(π2(π2(. . . e))) (the number of repetitions of π2 is the index of the field
in the record).

For similar reasons, we use a shorthand notation for the expected value
over several variables, defined as follows:

Ex0:A0,...,xn:An(e) = Ex0:A0(. . . (Exn:An(e)))
2In fact, if fσ is a gaussian function with mean 0 and standard deviation σ, then

δ(x) = limσ→0 fσ(x)

40

A Logic with Measurable Spaces ... AMIM Vol.25 No.2, 2020

2.3 Approximation via sampling

Unfortunately, in the majority of cases the mathematical expressions pro-
duced by the semantics given above contain integrals which cannot be eval-
uated symbolically.

Hence, we are forced to resort to a numerical approximation algorithm
to evaluate them. We use a variant of Gibbs sampling, which is itself an
instance of a Markov Chain Monte Carlo (MCMC) method. The algorithm
that we use closely follows the one described in [9].

All Monte Carlo methods are based on the same principle, which can
be outlined as follows.To evaluate Px:A(φ[x]): 1. Sample a random x in A;
2. Check if φ[x] holds for a chosen value of x; 3. Repeat this process a
large number of times.The ratio of the number successes to the number of
tries converges to Px:A(φ[x]) as the number of tries tends to infinity.

In certain cases it is very hard to find any sample x : A. If (say) A
contains an IsTrue(ψ) space where ψ is satisfied one time in a million, then
it will be necessary to try a million samples until one try can be counted. In
our application, these kind of situations will happen whenever 1. sets with
many hypotheses are considered, 2. very strong hypotheses are tested. For
example, “99.9 percent of men walk” requires such a precise arrangement
of parameters that most samples will end up being discarded when this
condition is checked.

To mitigate this problem, MCMC methods do not sample elements
independently. Rather, each new sample x is based on a previous sample.
Typically, only a single parameter is changed at every step. On average,
the next sample is chosen to be as probable as the previous one, or more
so. This way, the system is able to find many (probable) samples.

But samples can form (probably) disconnected regions in the chain
space, and thus certain configurations may end up being explored more
thoroughly than other, equally (or more) probable ones.

Ultimately, it is up to the designer of the underlying problem to avoid
the pitfalls of the approximation methods. Because the phrasing of the
hypotheses are infinitely variable for any natural language, we cannot avoid
these pitfalls entirely. However, certain semantic designs will be more prone
to problems than others.

3 Quantifiers

Even though it has very few constructions, LMS is sufficently expressive to
encode the usual logical quantifiers: every x in A satisfies φ iff the subspace

41

AMIM Vol.25 No.2, 2020 Jean-Philippe Bernardy at al.

of A where φ holds is (at least) as big as A itself.3 The definition of the
existential quantifier follows a similar pattern.

∀x : A.φ
def
= measure(A) ≤ measure(Σ(x : A).IsTrue(φ))

∃x : A.φ
def
= 0 ≤ measure(Σ(x : A).IsTrue(φ))

4 Comparison with probabilistic programming lan-
guages

With LMS, we propose a way to describe types and an associated density
(spaces). The tradition in the linguistic community is to use instead prob-
abilistic programming languages [8, 5, 9]. Simply put, probabilistic pro-
gramming languages do not describe spaces as such, but instead functions
which generate elements of a certain type. Using LMS presents advantages.
First, probabilistic programming languages typically do not natively offer
the option to run an inference within another inference. In contrast this
is done straightforwardly in LMS using the measure(e) expression. Sec-
ond, the semantics of LMS is more straightforward than that of a formal
probabilistic programming language: this is because LMS does not allow
sampling within expressions. (Only spaces can refer to other spaces). We
refer the reader to the work of [5] for an example of a probabilistic pro-
gramming language equipped with formal semantics. Third, constructing
spaces is very similar to constructing types and logical formulas. Thus we
hope that LMS can readily be used by linguists who are used to interpret
natural language into type theories (or similar logical systems).

5 Conclusion

In sum, LMS aims to solve a language design problem. It aims to bridge a
semantic gap between abstract syntax for natural languages and the eval-
uation of probabilistic truth values.

On the one hand, this language is sufficiently powerful to express proba-
bilistic problems, is convenient enough to support probabilistic syllogisms.
On the other hand, it has a simple model in terms of integrators, and,
for linguistic purposes it compares favourably with usual probabilistic pro-
gramming languages.

3This definition is problematic when φ logically false for some x, but still stochastically
true. To deal with such cases, one must then use disintegrators, as explained by [12].

42

A Logic with Measurable Spaces ... AMIM Vol.25 No.2, 2020

References

1. Barendregt, H. P. Lambda calculi with types. Handbook of logic in
computer science 2 (1992), 117–309.

2. Bernardy, J.-P., Blanck, R., Chatzikyriakidis, S., and Lap-
pin, S. A compositional Bayesian semantics for natural language. In
Proceedings of the International Workshop on Language, Cognition and
Computational Models, COLING 2018, Santa Fe, New Mexico (2018),
pp. 1–11.

3. Bernardy, J.-P., Blanck, R., Chatzikyriakidis, S., Lappin, S.,
and Maskharashvili, A. Bayesian inference semantics: A modelling
system and a test suite. In Proceedings of the Eighth Joint Conference
on Lexical and Computational Semantics (*SEM), Minneapolis (2019),
Association for Computational Linguistics, pp. 263–272.

4. Bernardy, J.-P., Blanck, R., Chatzikyriakidis, S., Lappin, S.,
and Maskharashvili, A. Predicates as boxes in bayesian semantics
for natural language. In Proceedings of the 22nd Nordic Conference on
Computational Linguistics (2019), ACL.

5. Borgström, J., Gordon, A. D., Greenberg, M., Margetson,
J., and Van Gael, J. Measure transformer semantics for Bayesian
machine learning. Logical Methods in Computer Science 9 (2013), 1–39.

6. Fox, C., and Lappin, S. Foundations of Intensional Semantics.
Blackwell, 2005.

7. Goodman, N., and Lassiter, D. Probabilistic semantics and prag-
matics: Uncertainty in language and thought. In The Handbook of
Contemporary Semantic Theory, Second Edition, S. Lappin and C. Fox,
Eds. Wiley-Blackwell, Malden, Oxford, 2015, pp. 655–686.

8. Goodman, N., Mansinghka, V. K., Roy, D., Bonawitz, K., and
Tenenbaum, J. Church: a language for generative models. In Pro-
ceedings of the 24th Conference Uncertainty in Artificial Intelligence
(UAI). 2008, pp. 220–229.

9. Goodman, N., and Stuhlmüller, A. The Design and Implemen-
tation of Probabilistic Programming Languages. http://dippl.org,
2014. Accessed: 2018-4-17.

10. Lassiter, D., and Goodman, N. Adjectival vagueness in a Bayesian
model of interpretation. Synthese 194 (2017), 3801–3836.

43

AMIM Vol.25 No.2, 2020 Jean-Philippe Bernardy at al.

11. Ranta, A. Grammatical framework. Journal of Functional Program-
ming 14, 2 (2004), 145–189.

12. Shan, C.-c., and Ramsey, N. Exact bayesian inference by symbolic
disintegration. In Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages (2017), POPL, pp. 130–144.

44

