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Abstract

In this work we consider the two-dimensional version of statics
of the linear theory of elastic materials with inner structure whose
particles, in addition to the classical displacement and temperature
fields, possess microtemperatures. The Dirichlet BVP is solved for a
circle.

Keywords and phrases: Microtemperature, thermoelasticity, plane
boundary value problems.
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1 Introduction

In the work we consider a two-dimensional system of differential equations
describing the plane statical thermoelastic balance of homogenous isotropic
elastic bodies. The linear theory of thermoelasticity with microtempera-
tures for materials with inner structure whose particles, in addition to the
classical displacement and temperature fields, possess microtemperatures
was presented by Iesan and Quintanilla [1]. The fundamental solutions
of the equations of the theory of thermoelasticity with microtemperatures
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were constructed by Svanadze [2]. The exponential stability of solution of
equations of the theory of thermoelasticity with microtemperatures was es-
tablished by Casas and Quintanilla [3]. In [4, 5], the basic BVPs of steady
vibrations were investigated using the potential method and the theory of
singular integral equations.

Various issues of termoelastic equilibrium of isotropic homogeneous
bodies taking into account the microtemperature are devoted to [6-19].

In the present paper we consider the two-dimensional system of the
differential equations describing the plane statical thermoelastic balance of
homogenous isotropic elastic bodies, the microelements of which have mi-
crotemperature in addition to the classical displacement and a temperature
field. The general solution of this system of the equations is construed by
means of analytic functions of complex variable and solutions of the equa-
tion of Helmholtz. We solve the Dirichlet boundary value problem for a
circle.

2 Basic three-dimensional relations

Let (x1, x2, x3) be the point of the Euclidean three-dimensional space.

The fundamental system of field equations in the linear equilibrium
theory of thermoelasticity with microtemperatures consists of the equations
of equilibrium [1]

∂iσij + ρF
(1)
j = 0, (1)

the balance energy

∂iqi + ρS = 0, (2)

the first moment of energy

∂iqij + qj −Qj + ρF
(2)
j = 0, (3)

the constitutive equations

σij = λerrδij + 2µeij − βTδij ,

qj = k∂jT + k1wj ,

qij = −k4∂rwrδij − k5∂jwi − k6∂iwj ,

Qj = (k1 − k2)wj + (k − k3)∂jT

(4)

and the geometrical equations

eij =
1

2
(∂jui + ∂iuj), (5)
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where u = (u1, u2, u3) is the displacement vector, w = (w1, w2, w3) is the
microtemperature vector, T is the temperature measured from the constant
absolute temperature T0 (T0 > 0), σij is the stress tensor, ρ is the reference

mass density (ρ > 0), F(1) = (F
(1)
1 , F

(1)
2 , F

(1)
3 ) is the body force, q =

(q1, q2, q3) is the heat flux vector, S is the heat supply, qij is first heat flux
moment tensor, Q = (Q1, Q2, Q3) is the mean heat flux vector, F(2) =

(F
(2)
1 , F

(2)
2 , F

(2)
3 ) is first heat source moment vector, λ, µ, β, k, k1, ..., k6

are constitutive coefficients, δij is the Kronecker delta, eij is the strain
tensor, i, j = 1, 2, 3, and repeated indices are summed over the range (1,2,3).

By virtue of Eqs. (4) and (5), system (1)–(3) can be expressed in
terms of the components of the displacement vector u, of the components
of the microtemperature vector w and the temperature T . We obtain the
system of equations of the linear equilibrium theory of thermoelasticity
with microtemperatures [1]

µ∆3ui + (λ+ µ)∂iΘ1 − β∂iT = −ρF (1)
i ,

k6∆3wi + (k4 + k5)∂iΘ2 − k3∂iT − k2wi = −ρF (2)
i ,

k∆3T + k1Θ2 = −ρS,

(6)

where ∆3 = ∂11 + ∂22 + ∂33 is the three dimensional Laplace operator,
Θ1 = ∂1u1 + ∂2u2 + ∂3u3, Θ2 = ∂1w1 + ∂2w2 + ∂3w3.

3 The plane deformation case

Let the homogenous isotropic cylindrical body be classified by the Cartesian
system of coordinates of x1, x2, x3 in such a way that the generatrix of
the lateral surface is parallel to an axis, x3. In the case of a change in
temperature T , and also the components of displacement vector u1, u2 and
components of microtemperature vector w1, w2 along axes x1, x2, do not
depend on coordinate x3. Additionally, the components of displacement
and microtemperature along axes x3 (u3 and w3, respectively) are equal to
zero, we have a case of the plane deformation state.

As follows from formulas (4)-(5), in the case of plane deformation

σα3 = σ3α = 0, qα3 = q3α = 0, q3 = Q3 = 0.

Therefore the system of equilibrium equations (1-3) takes the form

∂ασαγ = 0, (7)

∂αqα = 0, (8)

12
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∂αqαγ + qγ −Qγ = 0. (9)

Relations (4) are rewritten as

σαγ = λθδαγ + µ(∂αuγ + ∂γuα)− βTδαγ ,

σ33 = λθ − βT,

qαγ = −k4ϑδαγ − k5∂γwα − k6∂αwγ ,

q33 = −k4ϑ,

qα = k∂αT + k1wα,

Qα = (k1 − k2)wα + (k − k3)∂αT α, γ = 1, 2,

(10)

where θ = ∂1u1 + ∂2u2, ϑ = ∂1w1 + ∂2w2.

If relations (10) are substituted into system (7-9), then we obtain the
following system of equilibrium equations with respect to the functions uα,
wα and T

µ∆uα + (λ+ µ)∂αθ − β∂αT = 0,

k6∆wα + (k4 + k5)∂αϑ− k3∂αT − k2wα = 0,

k∆T + k1ϑ = 0,

(11)

where ∆ = ∂11 + ∂22 is the tow dimensional Laplace operator.

On the plane Ox1x2 a complex variable z = x1 + ix2, where i the imagi-
nary unit, and the following operators ∂z = 0.5(∂1−i∂2), ∂z̄ = 0.5(∂1 +i∂2)
are introduced. Then the system consisting of the equations (1) can be
written in complex form as follows

µ∆u+ + 2(λ+ µ)∂z̄θ − 2β∂z̄T = 0,

k6∆w+ + 2(k4 + k5)∂z̄ϑ− 2k3∂z̄T − k2w+ = 0,

k∆T + k1ϑ = 0,

(12)

where ∆ = 4∂z∂z̄; u+ := u1 + iu2; w+ := w1 + iw2.

For the positive definiteness of the corresponding quadratic form will
satisfy the conditions

k4 + k5 + k6 > 0, k2 > 0, k1k3 − kk2 < 0, k > 0.

In [19] it is shown that the general solution of system (12) is represented

13
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as follows:

2µu+ = κφ(z)− zφ′(z)− ψ(z)

+
µβ

λ+ 2µ

{
k2

2k3

[
ϕ(z) + zϕ′(z)

]
− 2k1

kk∗
∂z̄χ1(z, z̄)

}
,

w+ = −ϕ′′(z) + ∂z̄[χ1(zz̄) + iχ2(zz̄)],

T =
k2

2k3
[ϕ′(z) + ϕ′(z)]− k1

2k
χ1(zz̄),

(13)

where κ =
λ+ 3µ

λ+ µ
, ϕ(z), φ(z) and ψ(z) are the arbitrary analytic func-

tion of a complex variable z, χ1(zz̄) is a general solution of the following

Helmholtz equation ∆χ1 − k∗χ1 = 0, k∗ =
k2k − k1k3

k(k4 + k + 5 + k6)
> 0; χ2(zz̄)

is a general solution of the following Helmholtz equation ∆χ2 − k̃χ2 =

0, k̃ =
k2

k6
.

4 A problem for a circle.

In this section, we solve a concrete boundary value problem for a circle of
radius R (Fig. 1).

Figure 1:

We consider the following problem

2µu+|r=R = 2µ(G1 + iG2),

w+|r=R = H1 + iH2, T |r=R = Q.
(14)

The expressions 2µ(G1 + iG2), H1 + iH2, Q may be represented by the

14
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series

2µ(G1 + iG2) =

+∞∑
−∞

Ane
inα,

H1 + iH2 =
+∞∑
−∞

Bne
inα,

Q =
+∞∑
−∞

Cne
inα, Cn = C−n.

(15)

The analytic function φ(z), ψ(z), ϕ(z) and the metaharmonic functions
χ1(z, z̄), χ2(z, z̄) are represented as a series

φ(z) =

∞∑
n=1

anz
n, ψ(z) =

∞∑
n=0

bnz
n, ϕ(z) =

+∞∑
n=1

cnz
n,

χ1(z, z̄) =
+∞∑
−∞

αnIn(
√
k∗r)einα, χ2(z, z̄) =

+∞∑
−∞

βnIn(
√
k̃r)einα,

(16)

where In(·) is modified Bessel function of n-th order.
From (13), substituted (15), (16) in the boundary conditions (14) we

have (z|R = Reiα)

κ
∞∑
n=1

anR
neinα − ā1Re

iα −
∞∑
n=0

(n+ 2)ān+2R
n+2e−inα −

∞∑
n=0

b̄nR
ne−inα

+
µβ

λ+ 2µ

{
k2

2k3

[ ∞∑
n=1

cnR
neinα + c̄1Re

iα +

∞∑
n=0

(n+ 2)c̄n+2R
n+2e−inα

]

− k1

k
√
k∗

+∞∑
−∞

αnIn+1(
√
k∗R)ei(n+1)α

}
=

+∞∑
−∞

Ane
inα,

k2

2k3

∞∑
n=1

[
ncnR

n−1ei(n−1)α + nc̄nR
n−1e−i(n−1)α

]
− k1

2k

+∞∑
−∞

αnIn(
√
k∗R)einα =

+∞∑
−∞

Cne
inα,

−
∞∑
n=2

n(n− 1)c̄nR
n−2e−i(n−2)α +

√
k∗

2

+∞∑
−∞

αnIn+1(
√
k∗R)ei(n+1)α

+i

√
k̃

2

+∞∑
−∞

βnIn+1(
√
k̃R)ei(n+1)α =

+∞∑
−∞

Bne
inα.

Compare the coefficients at identical degrees. We obtain the following
systems of equations

κRa1 −Rā1 +
µβ

λ+ 2µ

[
k2R

2k3
(c1 + c̄1)− k1

k
√
k∗
I1(
√
k∗R)α0

]
= A1, (17)
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κRnan +
µβ

λ+ 2µ

[
k2R

n

2k3
cn −

k1

k
√
k∗
In(
√
k∗R)αn−1

]
= An, n > 1, (18)

−(n+ 2)Rn+2an+2 −Rnbn +
µβ

λ+ 2µ

×
[
k2R

n+2

2k3
(n+ 2)cn+2 −

k1

k
√
k∗
In(
√
k∗R)αn+1

]
= Ā−n, n ≥ 0,

(19)

k2

2k3
(c1 + c̄1)− k1

2k
I0(
√
k∗R)α0 = C0, (20)

k2

2k3
(n+ 1)Rncn+1 −

k1

2k
In(
√
k∗R)αn = Cn, n > 0, (21)

√
k∗

2
I1(
√
k∗R)α0 + i

√
k̃

2
I1(k̃R)β0 = B1, (22)

√
k∗

2
In+1(

√
k∗R)αn + i

√
k̃

2
In+1(k̃R)βn = Bn+1, n > 0, (23)

−n(n+ 1)Rn−1cn+1 +

√
k∗

2
In−1(

√
k∗R)αn − i

√
k̃

2
In−1(k̃R)βn

= B̄−n+1, n ≥ 1.

(24)

From (22) and (23)

α0 =
2 ReB1√
k∗I1(

√
k∗R)

, β0 =
2 ImB1√
k̃I1(k̃R)

,

c1 + c̄1 =
2k3

k2
C0 +

2k1k3

kk2

ReB1√
k∗I1(

√
k∗R)

.
(25)

From (17) and (25) we have

a1 =
κA′1 + Ā′1
(κ2 − 1)R

,

where

A′1 = A1 −
µβ

λ+ 2µ

[
k2R

2k3
(c1 + c̄1)− k1

k
√
k∗
I1(
√
k∗R)α0

]
.

(remembering that always κ > 1).
From (21), (23) and (24)

cn =

B̄−n+2 +
In−2(

√
k̃R)

In(
√
k̃R)

Bn + Γn
k
√
k∗Cn−1

k1In−1(
√
k∗R)

−(n− 1)nRn−2 + Γn
kk2

√
k∗nRn−1

2k1k3In−1(
√
k∗R)

, n > 1,

16
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αn =
kk2(n+ 1)Rn

k1k3In(
√
k∗R)

cn+1 −
2k

k1In(
√
k∗R)

Cn, n > 0,

βn = i

√
k∗In+1(

√
k∗R)√

k̃In+1(
√
k̃R)

αn − i
2√

k̃In+1(
√
k̃R)

Bn+1, n > 0,

where

Γn = In−2(
√
k∗R) +

In−2(
√
k̃R)In(

√
k∗R)

In(
√
k̃R)

.

The coefficients an are determined by these formulae (18)

an =
An
κRn

− µβ

(λ+ 2µ)κRn

[
k2R

n

2k3
cn −

k1

k
√
k∗
In(
√
k∗R)αn−1

]
, n > 1.

finally, (19) determines all coefficients bn for n ≥ 0:

bn = −Ā−n − (n+ 2)R2an+2 +
µβ

λ+ 2µ

×
[
k2R

2

2k3
(n+ 2)cn+2 −

k1

k
√
k∗Rn

In(
√
k∗R)αn+1

]
.

It is easy to prove the absolute and uniform convergence of the series
obtained in the circle (including the contours) when the functions set on
the boundaries have sufficient smoothness.

Similarly the problem can be solved when on the boundary of the con-
sidered domain the values of stresses are given.
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