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Abstract

I. Vekua constructed several versions of the refined linear theory of thin and shallow
shells, containing, the regular processes by means of the method of reduction of 3-D
problems of elasticity to 2-D ones. In the present paper, by means of Vekua's method,
the system of differential equations for the Geometrically nonlinear theory non-shallow
shells is obtained.
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1. A complete system of equilibrium equation and the stress-strain
relation of the 3-D geometrically nonlinear theory can be written in the
vector form ,

1 9,/90" .

ﬁ Oz + & :0, (Z: 1,2,3) (1)
where ¢ is the discriminant of the metric quadratic form of the 3-D domain,
o' are the contravariant constituents of the stress vector, ® is an external
force.

The stress-strain relation for the geometrically nonlinear theory of elas-
ticity has the form

o' = Uij(Rj +0;U) = Eiquepq(Rj +9;U), (2)

o' are contravariant components of the stress tensor, e,, are covariant
components of the strain tensor, U is the displacement vector, E*P? and
e;; are defined by the formulas:

EUPE = \g' g1 4 ,u(gipgjq 4 giqgjp),

1
eij = 5 (RiO;U + R;0,U + 0,U9;U), (3)
97 =R'R, (i,j,p.g=1,2,3).
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2. To construct the theory of shells, we use more convenient coordinate
system which is normally connected with the midsurface S. This means
that the radius-vector R of any point of the domain {2 can be represented
in the form

R(z', 2%, 23) = r(z!, 2?) + 23n(z', 2%) (23 = x3),

where r and n are respectively the radius-vector and the unit vector of the
normal of the surface S(x® = 0) and (z!,2?) are the Gaussian parameters
of the midsurfaces S.

The covariant and contravariant basis vectors R; and R’ of the sur-
faces S (3 = const) and the corresponding basis vectors 7; and ¢ of the
midsurface S(2® = 0) are connected by the following relations:

R, = Agrj = Aijrj, R = Afjrj = Aijrj, (1,7 =1,2,3),

where
Af = ag
AL = A3 =649 =1 —2Hx3 + Kx3, (4)

)

— x3b?, A% = 91 - 2Hx3)af + w3b3],

R;=R)’=r3=13=n, (0,8=1,2).
H and K are a middle and Gaussian curvature of the midsurface S:
2H =% = b} + b3, K = bib3 — bib3.
The main quadratic forms of the midsurface S(z3 = 0) have the forms

[ = ds® = agpdz®dz®, 1T = bypdx®dz®,
where

Ao =TaTg, bag = —narg, (a,f=1,2)
and for surfaces S(z® = const) we have

[=ds® = gagdxadxﬂ, II= KgdSQ = l;aﬁda:adwﬁ,

where
JaBf = GaB — 21’31)(15 =+ m%(?Hbaﬁ — Kaag),

~

baﬁ = (1 — 2H$3)baﬁ + $3Kaa5.

The equation of equilibrium of elastic shell-type bodies (1) can be writ-
ten as

1 9y/ado” oo

B . 2
N + 55 TIR =0, (a=anaxn —ap). (5)
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where

o' =0 (R; + 0;U) = EgP)epg(R; + 0;U)] =

. ) o 1 :
ol = AL AP MO e 9)U + S Al apanU] (rjl + A;IajU) , (6)

274
Muipian — \ghjigPrar 4 M(ailplajlfh 4 ailqlajlm)7 (aij - ,,,i,,,j).

Note that sometimes under non-shallow shells be meant the following
approximate equalities

R* = (aj — l’gb%)’l’ﬁ

(Reissner, Koiter, Haghdi, Lurie)

which are the first approximation of the general case (4).

3. The isometrical system of coordinates in the surface S is of the special
interest, since in this system can be obtain basic equations of the theory
of shells in a complex form, which in turn, allows one to construct for a
rather wide class of problems complex representation of general solutions by
means of analytic functions of one variable z = &’ 4 iz%. This circumstance
makes it possible to apply the methods developed by N. Muskhelishvili and
his disciples by means of the theory of functions of a complex variable and
integral equations.

The main quadratic forms in this system of coordinates are of the type

I =ds? = A(z!, 22)[(dz")? + (dz?)?] = A(z, 2)dzdz, (A >0)
1 (7)

U:kﬂf:@Wm%ﬁziAwwhnHWﬁ+Qﬁ%

(2Q = b} — b3 + 2ibl)
Introducing the well-known differential operators
20, = 01 — ida, 20z = 01 — 0y,

for the nonlinear theory of non-shallow shells(5) and (6) we obtain the
following complex writing for the system of equations of the equilibrium
and “Hook’s Law”:

1
1 (OAod  OAGT ~
N < 823 + 8(,;3 >+H(0§+0§)+R6(Qa+r+)+830§’+F3 —0 (Fy = Fn)
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where
1

otry = (ol +i0?)(r, +iry) = 01 — 05 + i(04s + 0?)
= H{Mpu(RTO.U + RT9: — U + 0°UO*U)(R" + 20°U)r,
+u2(RT+0°U)0:U (R 4+20°U)r , +(R, 05U +2nd*U+20°U 83U ) d3U |},

for a7t r, +, O’; , ag we have analogous formulas, where

_ ) 1
© = RYO,U + R"9,U + 20,UU + d3Us + 50U,
1 _ _
RT=R'+iR? &U= 5[(R+R+)aZU+ + (R"R")y. U,

R™ =971 — Has)r™ 4+ 23Q7 "], »T =2 4ir?, ry =r| +iry,

Further
4x31 — Haxs _ L 294 222Q
+pt+ _ 9 77O + e et il
R™R" = A 52 Q, R"R A 52 ,
_ 1-H 2
RT = T+ 2%_@3’ R+'r+ = QT‘%B’ rTt = X’ ’T‘+F+ =2,
1
rto.U = XaZUJ,_ — Hug, r70,U = 0,u — Qus,
_ e
nd,U = d.us + w’

The displacement vector U representable in the form

dz

dsr +Usn

1 _
U = urytUsn = S(UHT+U )+ Usn = I | (U +iU)

where
Uy =uy +iug =Ur,, UT =Ur", uey=Ue, U =Us, Ixs=n

4. 1. Vekua’s method reduction. There are many different methods of
reducing 3D problems of the theory of elasticity to 2D ones of the theory
shells. Since the system of Legendre polynomials P —m(%) is complete in
the interval [—h, h] for equation (5) we obtain the equivalent infinite system
of 2D equations

h
1 0yabo™ 0o x3 B
/ [\/a Dz + 923 + (9‘1):| P, (%) dxs =0,
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> M)/ (m) (m
(0 U®) =3 o ((U)(¢)>P (%)

m=0

or in the complex for m, for approximation of order N we have

W [ 5 (m m) )
K& 0'+’l"+ +h£ 5'+'l"+ — €& HO';_—{—Q&;_ R

m—1) (m+3) (m)
—@2m+1)| 0% + 0% +...|+hF1 =0
(m) (m)
hloot a5 (m) _m (8)
1| o 93 +e{H 0% +Re[Q(aFr)|}R

m—1)  (m+3) (m)
—@2m+1)| 0% + 0% +...|+hF5=0

(m=012.---,N)

where (now we write only linear part in explicit form)

(m) ()
hotry =4ulA (h@z Ut —eQUs R)

N (m,s) (m,s) (S) (S)
22 (o —H L Q[t(AﬂL) ho —HeUs R }
s=0

(s) (s) (m,s) (s) (s) (9)
+2u (,}{az U, —eH Us R) + I Q[ (haz Ut —e0Us R) A+ p)

_ (s) (s) (ms) () (s) (s)
+(A+30)Q <haz Ut —eQUs R) } +2\ Iy QUi+ Ly U3}

For [t r, ,a?{ = <03,n> ,0‘3_ = <0+n> ai = agn we have

(m) s

analogous formulas, where L; (U) (i = 1,--- ,s) are the nonlinear parts of
relations (4.2)
Then we have
(mﬂs) (m) (m) — (m)  (m) (m+1)  (m+3)
Q (a Ui +0:U )+ U5, U =C2m+1)( U + U +---),
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h
(m,s) ~_2m+1 T3PmPsdxs

! 2h 1—2Ha:3—|—kx§’
—h

h
(’7_75) 2m +1 / :c%pmpsdwg
2 =

2h 1 —2Hxg + ka3’
(m,s) _};L 1)
m,s 2m +1
I3 = 2% /'r3pmpsdx37
—h
(m,s) o9m +1 h
; m
Iy = o /(1 — 2Hx3 + ka3)pmpsdzs,
—h

The above integrals can be calculated explicitly and their expressions
with regard to £ have the form, for example

(m,s) 9 1 ©_(m,s)
Iy = LSS Mper R ((H 4 VB R

—[(H = VE)R]* ™2t
where

(m,s) (—1)"(2m + 2r)!(s + p)!(s + 2p)

M, =2 , (E=H*—k>
P rl(m —r)(m —2r)pl(2s + 2p + 1)! ( = 0)

and ¢ is a small parameter is expressed in the form

€—E< <1

Here h is the semi thickness of the shell and R is a certain characteristic
radius of curvature of curvature of the midsurface S.

Now we assume the validity of the expansions for approximation of order
N:

(M) (m) (n) < ((mn) (mn) (m,n)
o, U F|=) o ,U,F | (m=01,-,N)
n=1

Substituting the above expansion into the (4.1) and (4.2), then equaliz-
ing the coefficients of expansion for €™ we obtain the following 2D infinite

69



AMIM Vol.21No.2, 2016 T. Meunargia

system of equilibrium equations with respect to components of displace-
ment vector in the isometric coordinates:

(m,n) (mn) 92X _ (mn)
400, (N710, Uy +2(0+ p)ds 6 +5-0: U}
om + 1 (m—1n)  (m-3n)
_mh u[QAg U HU - (11)

(m—1,;m)  (m=3,n) (m,n)
+ u +Uq---, }—i‘ F. =0,

(mm) (mn) (m—=1,n)  (m+3,n)

(m—=1,n) (m—3,n) (m,n)
+A+2u)( Us + Us +---, }Jr k3 =0,
where (below it will be omit the upper index n)

() ) m) my m) )
U+:U1+ZU2, @:A 8U++8 U+

(m) 9y 41 [(m+1)  (m+3) 4 02
r_ i . 2_ =
U = — U + U + V=555

The beharmonic solution of the homogeneous system (4.4) we can find
the form

Uy =0z <V1 +i V2> ( // #0(€ kl% 5)Glss - %f) b0 +hapgz 2
( // AEOTAE) o, 4 mFT(2) - wl(z)) o7 mPl()oy, (1)

(m) m
Us = { //901 ) +¢1(8)]In € — z[dse — (Y1(2) + (2 ))}}Uﬁn

—*k‘z[( 0(2) + @p(2))]lot" + (¥1(2) + ¢ (2)03")],
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0o 0 0 o
Vi+Va=0, Usz=11(2) +1(2), if N=0

where V;(i = 1.2.3) are unknown metaharmonic functions, ¢g, ¢o, 1o, 11 are

analytic functions of Z, (5{ - Kroneeker delta, ds¢ = A(&,€)dédn, & = & +in,

then
A+
A3 v PR gt A
by = At - 4A+u N—9 ,_ 33N+ 2u’
A+ X+ 2 _ 43 +4p
3A+ 21 ’ BAF2AUp g TS W
5+ 2p)

Note that for approximation of order N = 0, when A(z,z) = 1, the

(0)
expression for Uy, coincides with well-known representation of Kolosov-

Muskhelishvili for plane deformation (see[1])

(0)
U+ = U+ = );\_:_3:@('2) - ZSOI(Z) - QD(Z)

Further
Case N =1
o —/w §) —
Uy = (H Do+ // ) =R s — 002,
(1) 2(N + 2
U = i+ - // =2 4 (;;M)@’(é)%so’@)
0 |
Us = 0(2) + 96 - 1 [[16/9)+ T@)nle - zldse
S
o) Wh
Us = (1) + o 9/(2) +
where 5 3()\+
2 _ 2 oATH
VX T X =00 Ve s ne =0
Case N =2
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(1) 4\ — A
Uy = z‘azx+§—+ i // § Sf d85—2hg0”(z)—7u Ozw,
-z

(2
Uy =

[SVIN )

. ag —k 20 —
= 05V, ? ,
(23&1—}—; o k+3)\+2u¢ (Z)>
(0)

U =) + 00 - - [ T + (O (€) ~ sldse +
S

2(A+u)w
o 2\ , -
Us=Vi+Va— m(‘ﬂ (2)¥'(2)),
2 2\ , -
Us=w-— m(@ (2)¥'(2)),

where

12(A 180 (A
V2V, = apVi, a2 — (A+n) pA+ )

=0, (k=1,2
0(A
V2w:6)\(+;:)w, V2x =3y, Viw=15w.

Acknowledgment

The designated project has been fulfilled by financial support of the Shota
Rustaveli National Science Foundation (Grant SRNSF/FR /358/5-109/14).

References

1. N.I. Muschelishvili, Some Basic Problems of the Mathematical Theory
of Elasticity, Nauka, Moscow, 1966.

2. LLN. Vekua, Shell theory: General methods of Construction, Pitman
Advanced Publishing Program, Boston-London-Melburne, 1985.

72





