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Abstract

We consider the three-dimensional system of the equations of elastic static equi-
librium of bodies with double porosity. From this system of the equations, using a
method of a reduction of |. Vekua, we receive the equilibrium equations for the shal-
low shells having double porosity. Further we consider a case of plates of constant
thickness in more detail. Namely, the system of the equations corresponding to ap-
proximations N = 1 it is written down in a complex form and we express the general
solution of these systems through analytic functions of complex variable and solutions
of the Helmholtz equation. The received general representations of decisions give the
opportunity to analytically solve boundary value problems about elastic equilibrium of
plates with double porosity.

Key words and phrases: Double porosity, Shallow shells, General solution,
Boundary value problems.
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1 Introduction

A model of elastic equilibrium of porous media with double porosity (Fig.
1) was constructed in [1-3]. The theory justified in these papers combines
the previously proposed model of Barenblatt for media with double porosity
[4] and that of Biot for media with ordinary porosity [5]. For a detailed
account of the development of the theory of porous media and relevant
references see [6].Various issues related to the elastic equilibrium of bodies
with double porosities are treated in [7-15].

In the works mentioned above three-dimensional or two-dimensional
problems of a double poroelasticity were considered. But we do not know
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of any works where problems of double porous elasticity would have been
considered for shells or plates.For this reason, we considered the elastic
equilibrium of porous shallow shells.

2 Basic three-dimensional relations

Let an elastic body with double porosity occupy the domain Q@ C R3.
Denote by (2!, 22, 23) a point of the domain § in the arbitrary curvilinear
system of coordinates. Let the domain ©Q be filled with an elastic isotropic
homogenous medium having double porosity. The considered solid body is
characterized by the displacement vector u = (u',u?,u?), and also by the
fluid pressures p1(z!, 22, 23) and po(z!, 22, 2%) occurring respectively in the
pores and fissures of the porous medium.

Then a homogeneous system of static equilibrium equations is written

in the form [13]
Vol =0, (1)

where %z are symbols of a spatial covariant derivative; ¢/ are contravariant
components of stress tensor; the summation over the recurring index ¢ is
assumed to be made from 1 to 3.

Formulas that interrelate the stress components, the displacement vec-
tor components and the pressures p1, po have the form [13]

0 = (\divu — B1p1 — Papa)g + 2ue", (2)

where A and p are the Lamé parameters; 51 and (B2 are the effective stress
parameters; g are the contravariant components of the spatial metric ten-
sor; €% are contravariant components of the deformation tensor

e = 0.5(Vid 4+ Viub);
o .. O
Vi = g”V;; the contravariant and covariant components of a vector of
displacement are connected by a relation u' = g"u;.

In the stationary case, the values p; and ps satisfy the following system
of equations [13]

(l<:1V2 —¥)p1 + (k:12V2 +9)p2 =0,

in Q, (3)
(7421vz +Y)p1 + (k2V2 —7)p2 =0
where k1 = %,k‘g = %,k‘lz = %2,14:21 = %; p' is fluid viscosity; k1

and k9 are the macroscopic intrinsic permeabilities associated with matrix
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and fissure porosity; k1o and ko; are the cross-coupling permeabilities for
fluid flow at the interface between the matrix and fissure phases; v > 0
is the internal transport coefficient and corresponds to fluid transfer rate
with respect to the intensity of flow between the pore and fissures; is the

o [e]
V2= VOZ-Vi three-dimensional Laplace operator.

It is easy to show that if v > 0, k1ko — k12ko1 > 0, then the system of
equations (3) is equivalent to two independent equations: to the Laplace
equation [16]

V20 =0 in Q (4)

and to the Helmholtz equation
V2P — (PP =0 in Q, (5)

where

p1 = (k1 + ko1)p1 + (k2 + k12)p2, D2 := p1 — po,

CZ _ ’y(kl + ko + k12 + k:gl) S0
k1ko — k12ko1

Fig. 1. Material with double porosity

3 Reduction of three-dimensional relations
(1)-(5)

Let € represent a shell with constant thickness 2h, symmetric concerning
the middle surface w. w is smooth bilateral surface. We will denote the set
of side surfaces of a shell through I'. Surfaces of w and I' in each point are
crossed at the right angle. We assume that thickness 2A is much smaller in
comparison with other sizes of a shell.
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We will consider the coordinate system which is normal connected with
a middle of surface. In this system the radius vector R of any point M of
domain € is expressed by means of a formula (see fig. 2)

R = r(z!, 2%) + 2°n(2', 2?),
where z!, 2% are Gaussian parameters of the surface w; r and n are radius
vector and normal of the point (z!,2?) € w. 23 is the relative length from
the point M to the surface w.

Fig. 2. The considered shell of constant thickness

We will start at first a reduction of equations (4) and (5). For this
purpose we will write down these equations in a form

;gaawgg“ﬂaﬁﬁl) + \jgas)(\/gagﬁl) —0, ()
\jgaawggaﬂagisz) 4 ;ga;a(\/gagﬁz) ~ Py =0, (5')

where g are discriminant of the appropriate metric square form; 9; :=
%, j =1,2,3; the summation over the recurring Greek index is assumed
to be made 1 to 2.

We apply I. Vekua’s method [17] to a reduction of equations (4’) and

(5"). We accept the following assumptions of geometrical character
1— k=1, 1 — koa® 21, 230,k 20, 230,ks =20, —h <23 < h. (6)

These requirements mean that main curvature ki and ko of a surface are
small (shallow shell), or thickness of shell is small (thin shell). From as-
sumptions (6) it follows that the spatial covariant (R,) and contravariant
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(R®) basis vectors are approximately equal to the corresponding basis vec-
tors of a middle surface (r,), (r*). Therefore, corresponding covariant and
contravariant components and discriminants of metric tensors of space and
a middle surface are also approximately equal

R, =1, R* =1 R3_I‘3—n7 8aB = Gap;

(7)

g = qf g ~q, 05,/g —2H /a,
where aqg = rorg, a®® = r®rP; @ is the discriminant of quadratic form of
the surface w; H = %(kl +ko) = %bg are middle curvatures of the midsurface

w3 bag, bg, are covariant and mixed components of the tensor of curvature
of the midsurface w.

Taking into account the formula (6) and (7), equation (4’) and (5’) take
the form

V?Pa + O33Pa — 2HO3Pa — 602(Pa =0, a=1,2, (8)
where V2 = ﬁaa(\/ava) = V.V% V, and V% are symbols of a covariant

and contravariant derivatives on the midsurface w; d,9 is the Kronecker
delta.

On the faces of the shell we set one of the following boundary conditions
(a=1,2)

1) Pala,2® h) = fH(2'2?), Palz!,2® —h) = f (a',2%);
2)  OPales—n = —qd (2", 2%), BPales—_p = ¢o (2", 27); (9)
3)  (O3Pa + KlPa)lasn = I} (¢',27),

(03P = FgPa)lss=—1 = ~lg (2',27)

(no summation),

where fF ¢E, 1% are known functions; k- are known constants.

It is assumed that p; and ps are rather smooth functions p, € C2(Q) (N C1(Q2)
and they are presented as a uniformly convergent series at Legendre’s poly-

nomials
p(m .CL' CL' E pox $ Fk(h) (|U)
3

where Py (‘%) are the Legendre polynomials of order k;

h
(k) 1\ 1 3
N R N 1 1 3
pa(xax)—(k+2)h/pa(x z? x)Pk<h>dx~
h
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From (10)

[e.9]

_ 2k +1 [+ (k+3) 3
o = « fo" | B : 11
d3p z;:o z < Pa + Do + e ( - > (11)

If we differentiate both parts of equality (11), we will obtain

L 2%kt & (k+2m) 25
33P0 = % 2 n;m@k +2m+1) po P <h> . (12)

If we substitute relation (10)-(12) into equation (8) and take into ac-
count that the system of Legendre polynomials is full on the segment [—1; 1]
we obtain an infinite system of equations

B ki1 & oy hiznon
V2, +T—;— Z m(2k+2m+1) po —2hH p, (13)
m=1

(k)
—002C%Ppa =0, k=0,1,2,...

We will rewrite equations (13) as follows

(k+2)  (k+4)

®) 2k +1 ot ot
2 —5 |2k+3)| Pa + Pa +- |+ (2k+T7)

a)v pOé+ h2

(h+4)  (k+6) (h+1)  (k+3)
5| Pa 4 Pa toor |4 —20H( Pa + Pa -
®)
_5a2c2pa:0, k=0,1,2,...

(14)
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*) 2k 41 2k +3 (k+2)
b) V2 ba k+2)(k Do
)V et |G g (D63 P
(k+4) 2(2k + 5) 2k +3
k 4)(k 5 » —
HE+O(k+5) Pa +oo) ((k+4)(k+5) (k:+2)(k+3)>
(k-+4) (k-+6)
x((k+0)(k+5) pa +k+6)(k+T) Fo +---)
4. —2hH (1 (15)
(k+1)(k+2)
k1) (k+3)
x| (k+1)(k+2) pa +(k+3)(k+4) pa +-
L L k+3)(k+4 o
+<(k+3)(k+4)_(k+1)(k+2)> (k+3)0k+4) P
(k+5) (k)
H(k+5)(+6) P+ £ ) [ =00 pa =0, k=0,1,2,...
o B 2k 41 (k+2) (k+4)
) ViPat—5— |(k+2)(k+3) pa +(k+4)(k+5) pa +--
(k+2)  (k+4) (k+1)  (k+3)
~k(k+1) [ Pa + Pa +-- | —4RH | Do + Pa +-- (16)
(k)
_6012€2p()é:0) k:071727"‘
Given the properties of Legendre polynomials
(%Vm) (k+gvm+2) 1 B
Pa + Pa +o = §<f;+(_1)kfo¢)
(k+2m—2)  (k+2m—4) (17)
- Pa + Da +c |, m=1,2..;
(k+1)  (k+3) 1 o (k=1)  (k=3)
Pa + Da +"':§(f(j_(_1) fa)_ Po + Pa +--]; (18)
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_ 1 & (k)
(a3pa)|z3=h = ﬁ Z k(k + 1)pa7

L " (19)
= > (—Dk(k + 1) pa -

2h —

(03Da) w3 =—n

From relations (19) we obtain

(k+2m) (k+2m+2)
(k+2m)(k+2m+1) po +(k+2m+2)(k+2m+3) pa

b= bl (D) — [+ 2m =2+ 2m 1) e (20

(k+2m—4)
+k+2m—4)(k+2m—3) Pa +---];

(k4+2m—1)
(k+2m—1)(k+2m) po +(k+2m+1)(k+2m+2)

(k—i—?vm—i-l) .
X Do +--=—hlgd - (-1)"q¢;)

(k+2m—3)
C{k42m—3)(k+2m—2)  Pa

(k+2m—5)
+(k+2m—=5)k+2m—4) pa +---];

By substituting formulas (17) and (18) in equations (14), we obtain

)V e 2’““ ZZ[ (2 + 4m + 3)

m=0n=0

(k+2m—2n)
X(é(fiﬂ—l)kfa)— A )

(k—2n-1)
SORHL(fF — (D)~ o )]

(k)
_6a2C2 ﬁo& = 07 k= 07 17 27 Tt (22)
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By substituting formulas (20) and (21) in equations (15), we obtain

(k)
bV 21 2/<:+1ZZ

m=Ih=1
m(2k +2m + 1) (m—1)2k+2m —1)
% {((k:-k?m)(k—l—?m-l—l) B (k+2m—2+5k0)(k‘—|—2m—1)>

(k+2m—2n)
X (=h(gT(=1)*¢ ) (k+2m —2n)(k+2m —2n+1)  pa ) (23)

1 Om1
—2ni <(k+2m— D(k+2m)  (k+2m—3)(k+2m — 2))

(k+2m—2n—1)
X (—h(qJr — (=1)*¢)(k+2m — 2n — 1)(k + 2m — 2n) Da )]

-4, 2(~k)—0 E=0,1,2,---
a2CPa—a — Y L4

)

where

5* _ O’ k#oa * Oa m:17
=01, k=0, ™71, m#1.

If in equations (16) we substitute formulas (20) and (18) and take into
account boundary conditions 3), we obtain the following equations

(k)
¢) V2 po —2HL (KDt + (—1)*k505) + (k—2)(k — 1)

(k=2) (k—4)
X pa +(k—4)(k—=2) pa +---k(k+1) (305 + (-1)*py)

(k=) (h=3)
~| Ba + Pa +--

(k=2)  (k—4)
ﬁa + ﬁa +- +4hH (%(ﬁ(—)’;_(_l)kﬁg)
— 2L (s HE o+ (~1)RRSL),

K

where
ﬁ;t :ﬁa(ﬂjl,ﬂﬁz,h), ﬁ; :ﬁa($17x2)_h)'
Equations (24) include unknown values p! and p} whom we will exclude

when we pass to finite approximations.
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Thus, we obtained three infinite systems of equations (22), (23) and
(24) which correspond to the boundary conditions (9, 1) (9, 2) and (9, 3)
(set on surfaces x3 = +h). In all these formulas it is meant that

(k)
Do =0, when k > 0.

If we take now

o P
pxmx Zpa:a: k(h)

0) (1) (k)
where N is some non-negative integer. For Dy, Do, - - , Do 0N the boundary

of the domain w one of the following boundary conditions can be set

k) B
1)pa—foz( ) kzO,L---ME@w;
&) (k)
2)8Vpa:ga(M) k:()vla"'Meaw;
(k) (k) (k)
3) Oy pa +kDo = ha(M), k=0,1,--+ M € Jw;
where v is an external normal of a contour.

Further we carry out a reduction of system of the equations (1), (2)
using the method of Vekua. At the same time we almost repeat verbatim
reasonings in the monograph [16]. Therefore we will present the reduced
two-dimensional equations at once without details of derivation

(%) ®&)  op 1 (kD (k3
Voo™ — b3 — 7;_ o+ o .

(k) (k)
—2Ho3 =FB) 5=1,2,

(25)
(k) ) op 1 (k7D (k3)
Vao® + bgﬁaaﬁ s o 4+ % o
(k) (k)
—2Ho3% = F®),
(k) N1 F 3 (—k)
where kK =0,1,...; o = | k+ = /aj(xlx )P, dz3; ot =
2) h h
0, when k > 0;
*) 2%k 41
By = 20 gyt a2, 1) — (Dot 2%, —h));
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(k) ( (k)
OaB — ( - /81 pl /82 p2) Gap + 2ﬂeo¢,37
k k
Gry = 2p1éns, (26)

(k) N (O N () (k)
033 = A0 — B p1 —B5 p2 +2uess,

h
(k) 1 1 3
where ((7]2 = Qi okt é]) <k + 2) . /szj(acl 22, 23) P, ( W ) da?;

. Bi+B2 . Pilke+ki2) — Ba(ks + ka1)
1= ; Po =
k'() kO

, ko =ki+ka+kio+kor.
k k k
o = (v ) £V 5 4t —2bs &ﬁ)

(k) (k)
1 1
éf}, = <va gfgf +bos u” +E u'a> , (27)

where

h
25
/ui(xl,x 23\ P, < h ) da?;
~h

— (2k+1) <(k“)+(k@3)+---> .

Substituting relations (27) in formulas (26) and entering the obtained ex-
pressions into system (25), we obtain the system of poroelastic equilibrium
of shallow shells with respect to the components of the displacement vector

(k) (k) (k) (k)
Vo | VOUP | + uVa | VUS| + AV | Vouo | + MP

(k) (k) (k)
~Vs | Bip+B5p2 | =F°, p=1,2,
28
(k) (k) 2k+1 (k=1)  (k=3) 28)
uVa <VQU3> + M3 + il pn + p1 +---

(k=1) <k;3) (k)
"‘/6; p2 + p2 +--- :Fga k':()?l?"'a

26

(k‘)
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(k).
where M7 are homogeneous linear differential expressions that contain func-

(k)
tions U; and first order derivatives with the variable xt, 2.

In order to obtain the finite system of equations we accept the assump-
tion
N 3
1.2 .3 B 1 2 z
u(z,x”,x°) = u(z,z°)P, | — ).
it =3 Wt ()

k=0

k
Thus, in all expressions(25)-(28) received above we will assume that (u) =0,

when £ > N, we obtain the system of second-order partial differential
(k)

equations. It contains 3N + 3 unknowns v’ (k = 0,1,...,N; i = 1,2,3),

and its order is equal to 6N + 6.

4 Approximation N =1

(0) @
a) In equations (22), (23) and (24) we need p, and p,. At the same time

(k)
Pa = 0, when k > 3. The system of equations (22) in this case takes the

form

( (0) ©
V25a~ (g + 00aC?) o =~ g+ £+ U2+ £,

h2 C2K2
O /15 O 6H O
v2 Pa — <h2 + 0a2C2> Pa +T Pa (29)

= o = 1)+ 2L+ g,

(0)
In this case we restore functions p, as follows

3 (k) L 3
Do = Do ’ Pl — )
o= Y mla i ()

k=0

where

B = U4 ) = Pos o= AU~ )~ -
In case of a plate of constant thickness H = 0 and the system of the
equations (29) breaks up to the independent equations for ;700)4 and 1(72

27
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O 73 5\ © 3 o

Ao = (5 + 0026?) Bo = =gy U+ £, (30)
@ /15 5\ 15 _

Apa — (h2+5a2< >pa = _Thg(f;- _fa)a (31)

b) In the case when on the face of the shell the boundary conditions (9,
2)) is given we obtain the following system of equations

© 5@ © 1 H
VQpa —%pa _5042(;229& = %(q;’; + qa) - 7(Qa - qa)7
O] 5 @ 15
2~ 2 2\ 5 — Yt ) + -
V* pa <2h2 + 0a2( >pa 4h(Qa qa) H(qa +qa)v

0
For p, we have the formula (30), where this time

2 ®) h 1O

h - - a
Pa = —g(qIJrqa), Pa = —ﬁ(q;r —4a) = g Pa-

In case of a plate we will have the independent equations

(0) (0) 1

vﬁa _5a2<2 ﬁa = ﬁ(q(;r + Q;)a (33)

) 5 AW 15 L
V pa — <2hz+6(12C )pa— ﬂ(qa _qa) (34)
c) If in the system of equations (24)

~ 0~ O @

P& = DPa+Das Pa = Da — Das

we obtain the following system of equations

( (0) 1 0 1 1)
V5 = (068 42) + ) B =3 8 = i+ 2H) o
1 .
= ﬁ("{jv_l(—;t + ’{ala)v
(1) 1) (35)
vy 3, 4 _ 3 5.2\ 5
Pa — E("ia +/fa)+27h2+ a2C” | Pa
3 _ 0 3 o
_E(Hg — Kq + 2H)pa = ﬁ(’iili_ - Hozla)'
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In this case we restore functions p, as follows

O 22 O

ﬁa :pa‘{'ﬁpa-

In case of a plate the system of equations (35) takes the form

0 71 ~ 0 1 NG
V25 = (068 42) + ) Ba = 58 = )
1
— Lttt + et
RO 3 \O 3 o O
V25 = (068 42) + gy + 002 ) a6k~ ) o
3
= S (k1Y — K 17).
hg("ia @ a‘a

If in the system of equations (36) k! = , then this system breaks up into
independent equations

(0) 2t (0) 1
V2o — (52 4002 ) o = 5 (KEIE + K3 l3), (37)
h h?
(1) Grt 3 (1) 3
2~ Yo v 2\ 5 2 (gt il
V* Pa < . + 57,2 + 0a2C )pa 3 (ol + koly), (38)
In case of approximation N = 1 the displacement vector u has the form
o 23
u=u + u.

The system of equations (25) can be written as

(0) (0) © ()
Voo -0 2H oY = FF g=1,2,

(0) (0) 0 (0
Va0 +bops o —2H 03 = 3

(1) L 5 (O n @
VQ Ua/B _bg 0.013 _E 0—3,8 —2H 0-36 = Fﬁ? 6 = 17 27

1) SN () CORENCY)
Vo3 +bag P ~% o3 —2H ¢33 = F3,

where
0),, © O O
U’B—<)\0—ﬁ1p1—52p2 a®® +2p e

29
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1) (1) (1) (1) (1)
0P = (A 0 —BipL—Bsp2 | a®” +2pe™”,

s _ 2 (g)ag’ (ag _ 2 (ém’
(0) © O 0 (0)
B =xg —B1p1 —B5p2 +2u € 33,

(1) (1) (1) (1)
0¥ =X\9 —BFp1 —B5 pa;

& — % <va )+ V5t —2bag 9) ,

1
e(i)ﬁ = 5 <Va ,&15) +V5 1(}5), —Qbaﬁ 8;) ,

(0)
1
ég:;@mgwww+ha)

1 (1) DN w1
2 )

(1) 8
€a3 = 7 | Vauz +bagu €33 = 5 Us;

(0) ©) (1) 1)
AR A )

In case of a plate of constant thickness b,3 = 0, H = 0 the system of the
equations (39) in the Cartesian system of coordinates will take a form

( (0)
6aa((o)c),3:F7 BZI,Q,

0 ©
aO0a3 = F37
40
®» 3 @© O “0)
8040-045_50-35:}757 /8:]-727

® 3@ @
aao'a?)_EUS?): 3

30
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(0) <o> L O (0) (0)
Oap = )‘8 u’y ﬁl pl 52 P2) ot 1 (8 ug +aﬁ ua) 5

(1) (1) *@ L@ (1) (1)
0ag = | AOyuy =31 Pp1 —B5D2 | 6ap + 1t | Oaug +05uqs | ,

O (0 B418),

&= 10,8

(41)

(0) © O O Xq2u )
033 = A0y Uy —31 D1 —f35 P2 + huu&

(1) ORI
033 = A0y u'y —Bip1—B5 D2

If we substitute relations (41) in (40) we obtain the system of equations of
poroelastic equilibrium of porous plates with double porosity in displace-
ment vector components.This system of equations is divided into two inde-

0 (0) (1) © O
pendent systems:equations of stretch-press for unknowns ui, us, us, p1, p2

: : () 1) (© OO
and equations of bending for unknowns wuq, w2, us3, p1, p2. The system of

equations of stretch-press

(0) © X, Lo ) (0)
NA ug +(>‘ + M)aﬂ ) +E85 us —85 Bl D1 —|—ﬁ2 P2 | + Fﬁ =0,
i (42)
1 3XO0)  3(X4+2u) (1) (0) (0) (1)
;LAug,—W 9 — (h2'u)u (ﬂ PL+B3p2 | + F3 =0,

The system of equations of bending

,
(1) M 3p (0) 3 (1)
pAug+(A+ 1) 9 —~-0uz —75 us
© (1)
~03(B{ P +85 2 ) + B =0, B=1,2, (43)
0 L O
MA&§+Z 9 +Fy—0,

(0) (0) (1) 1 © © @ @)
where ¢ = 0yuy, ¥ = O0yuy; pP1,D2,D1, P2 satisfy one of systems (29),

(32) or (36), depending on what boundary conditions for pressures are set
on the face planes of a plate.
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5 The general solution of systems of equations
(42) and (43)
On the plane Ox17z9 we introduce the complex variable z = x1 + ixo (i2 =
—1) and the operators 9, = 0.5(01 —i02), 0z = 0.5(01 +1i02) (2 = x1 —ix2).
The two-dimensional Laplace operator is expressed as A = 40,05.
The homogenous system of equations (42) will be written in a complex
form as follows

©) 2\ 0 0)
B q&l +2(A + )05 9 —=—0s u b3 <ﬁ1 p1+53 pz) =0,
0) ! (0) (0) 1) (44)
) 3M0) 3(\+2
MA&(%_WIC} (hQ'u)%L (5 p1+52p2>—|—F3:0,

0 0 0) (0) () 0
where z(u)r = 7(“) +1 7&2), 9 = 0, + 0 z(u)r, 591),572) satisfy one of the equations

(30), (33) or (37), depending on what boundary conditions for pressure are
set on the surfaces x3 = £h. For example, we take the case when on the
face planes of the plate are given Dirichlet boundary conditions (9, 1)).

(0) o) . .
When p; and py satisfy the equations (30)

o 3 © 3 _
App —ﬁpl = _W(fr +f1), (45)
0) 3 0)
AR () P = a5 + 02 (16)

We assume that f;” + f{ and f;” + f, are constant values ff + f, =
const, a =1,2.

We take the operator 205 out of the brackets in the left-hand part of
the first equation of system (44)

© Ao O (0
205 (2;@ &l +(A+p) 9 + u3 —Bi p1 Bé‘pz) = 0. (47)

Since (47) is a system of Cauchy-Riemann equations, we have

) © A@w O 0 )
200, Uy +(A+ M) ¥ + U3 51 4! /82 p2 = ap (Z)v (48)

where ¢'(z) are an arbitrary analytic function of z, a, are arbitrary nonzero
constant. Summing equation (48) with the conjugate equation, we will

obtain
© @) ) 0 4

(A +2p) 9 45 us =By p1 —B2 P2 = (¢ ¢'(2) +¢'(2)). (49)
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©)
From the second equation of system (44) we will define ¢

©)  uh (1) A+ 2 ( (0) (0)
9 = DAl -2 2 (BB +65 ). (50)
(50) we will substitute in (49), we obtain the following equation
(1) 120+ p) ¢, (1) 3\ /
A2 — AR (g a2t /
(uw) R (20 ) = 0y (1) + T o
124 (0) (0)
—m (5 p1+065 p2 )

(0) (0)
The general solution of equation (51) taking into account that p; and po

satisfy equations (45) and (46), will have the form

(0) (0)

( Aha ~ ~
) (&) + P @) + ar Py +as po+b,  (52)

2puz = x(2,2) — 0+

where x(z, Z) is the general solution of the following Helmholtz equation

12(A + p)
Ay — =AW,
X g 2ne X =0
12uh
a = *7 :172;
o = N6 duaC? (A 4 Zp)h2 o @
A+2u _ _

—m[(ferﬁ Jar + (5 + f3 )as).

Substituting equation (50) into (48) we obtain

(0) (0)

0) ph () P
2u0, uy +( N+ p )SAAU3—(3)\—|—2 )E (5 D1 +ng2> = ay'(2).

Here the last formula are substituting the expression (52) for &;

3\ + 2u AR

(0)  HA+6p
ot A 50w

21044 = S0 )

ap'(z) — 0,05

©
+0.05 (ao P1 +bo p2 ) + co, (53)
where

4ph?
3(3A +2p)

o Auh? 3 —h2(? 5
T3 h2C2 N+ 6p— N+ )2

/BT7 bO

apg =
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31 9N+ 6 + (A + p)h?
2M(B+ h2C2) 9N+ 61 — C2(A + p)h?

Let a = ?K‘L‘Q , then integrating on z the above formula (53), we obtain

(f1 + f1)B1 + (f1 + f1 )83,

— — Ah
2uut = K p(z) — 2’z — P(2) — mﬁgx(z, Z)

(0) (0)
+ / (ao p1 +bo po )dz + coz, (54)
where
« DA+ 6p
2342
¥ (z) is an arbitrary analytic function of z. Thus, the general solution of
(44) is represented by formulas (53) and (54). Substituting this expressions
into corresponding formulas (41), for combinations of the stress tensor com-
ponents we obtain the following formulas

A © © ]

0 0
<§1)1+<§1)1 =2

1
©'(2) +¢'(2) + T QMX(Z7 Z) — ag p1 —bo p2 —co

0 (0 (0) — h A
011 — 0922 -|—22 012 = 2 |:—ZQDII(Z) - ( ) + gma sz(z Z)
(0) (0)
6 ao P1 +bo D2 )dZ : (55)

The homogenous system of equations (43) will be written in the complex
form as follows

( 1 (1)
HAGL 420N+ )05

6 © 3 (1) 1) 1)
—=0; ug =~ . —20%( B pu+65 72 ) = 0, (56)

0 p@

A = ¢ =0.
uu:),—i—hﬁ 0

1) 2)
When p; and py satisfy equations (31)

@ 15 @) 15 _
Apy —ﬁpl 2 (f1 fi), (57)

(1) 1)
Ap (i3 + ) P2 = o (s — f3). (59)
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From the second equation of system (57)

o 1@ 7
285 us +E Uy = Eagw, (59)
where w is yet an unknown real function.
From (60) we have
(1) 0 .
Uy = —2h82 us +282w. (60)

0
Substituting (61) and ¢ = —hA gl,gz in the first equation of system (57) and
integrating on z we obtain the equation

—(A+2u)hA us +ip | Aw — ﬁw — 2<ﬁ1 D1 +065 pz) =af'(z), (61)

where f/(z) is an arbitrary analytic function of z; a is an arbitrary nonzero
real constant. Summing equation (61) with the conjugate equation, we will
obtain

- W
A+ 2hA G = a(f'(2) + F) + 451 P +63 2 ).

From the last equation it follows that

(0) a - —

ug = —m(gf(z) +2f(2) +8(2) +8(2)
1 LoD _
—m // <ﬁ1 P1+65 P2 )dZdza (62)

where g(z) is an arbitrary analytic function of z.
Considering the imaginary part of the equation (62), we obtain the equation

ou(Bw — Sw) = ~ilf(2) - ),

whose general solution is represented as follows

h2
wZT(Z,Z)ﬂLi@(f'(Z) — ['(2)), (63)
where 7(z, z) is the general solution of the following Helmholtz equation

3
AT—ET:O,
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Substituting formulas (61) and (62) in (59), we obtain (a = 8(\ + 2u))

2
5&=ﬁ@f+yz%:2mf%a+zﬂ@»+fu»+ﬂa—2@«@
1 RORC
+m / (51 p1+535 D2 )dz. (64)

Taking into account the value of a constant a we will rewrite a formula
(61)

3 = — 5 (2£(2) + 7)) + &(2) + 8(2)
)\+2M // ﬁ1p1+62p2)dzdz (65)

Substituting the expressions into corresponding formulas (41), we obtain

1 1 1 1 1 0 0
expressions for combinations <§1)1 + 0('2)2, él)l — 0('2)2 +21 0('1)2 and <§1)3 +1 0(2)3.

The constructed general solution enables one to solve analytically a
sufficiently wide class of boundary value problems of the elastic equilibrium
of porous plates with double porosity.
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