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Abstract

Nonlinear parabolic integro-differential model which is based on Maxwell system is
considered. Large time behavior of solutions of the initial-boundary value problem with
mixed boundary condition is given. Finite difference scheme is investigated. Wider
class of nonlinearity is studied than one has been investigated before.
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1 Introduction

Let us consider the following system of nonlinear integro-differential equa-

tions
t

({)(;/I/—i—rot a /\rotW!sz rotW| =0. (1.1)

0
The model (1.1) can be obtained by the reduction of system of Maxwell
equations [22] to the integro-differential model. At first that reduction was
made in [6].
If the magnetic field has the form W = (0,U, V), where U = U(z,t), V =
V(x,t), then we have

rot W = (0, _8V 0U>

dx’ Oz

and from (1.1) we obtain the following system of nonlinear integro-differential
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equations:
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(1.2)

One must note that the systems of type (1.1) and (1.2), as we already
mentioned, at first appeared in [6].

Study of the models of type (1.1) has begun in the works [6] and [7]. In
those works, in particular, the theorems of existence of solution of the
initial-boundary value problem with first kind boundary conditions for
scalar and one-dimensional space case when a(S) = 1+ S and unique-
ness for more general cases are proven. One-dimensional scalar variant for
the case a(S) = (14 5)?, 0 < p < 1 is studied in [4]. Investigations for
multi-dimensional space cases at first are carried out in [3]. Multidimen-
sional space cases are also discussed in the following works [2], [5], [23],
[24].

Asymptotic behavior as ¢ — oo of solutions of initial-boundary value
problems for (1.1) type models are studied in [1], [10], [11], [16] - [18] and in
a number of other works as well. In those works main attention is paid to
one-dimensional analogs. Two-dimensional case for the (1.2) type so called
averaged integro-differential system is considered in [21].

Note that integro-differential parabolic models of (1.1) type are complex
and still yields to the investigation only for special cases (see, for example,
[1] - [6], [9], [23] - [25], [27] and references therein).

Interest to above-mentioned differential and integro-differential mod-
els is more and more increasing and initial-boundary value problems with
different kinds of boundary and initial conditions are considered. Particu-
lar attention should be paid to construction of numerical solutions and to
their importance for integro-differential models. Finite element analogues
and Galerkin method algorithm as well as settling of semi-discrete and fi-
nite difference schemes for (1.1) type one-dimensional integro-differential
models are studied in [9], [12] - [16], [18] - [20], [27] and in other works as
well.

The literature on the questions of existence, uniqueness, regularity,
asymptotic behavior of the solutions and numerical resolution of the initial-
boundary value problems to (1.1) type models and models like it is very
rich (see, for example, [18] and references therein).
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Investigation of semi-discrete scheme for (1.1) type system for one-
dimensional and two component magnetic field is given in [12].

Our aim in this note is to study the fully-discrete finite difference
schemes for numerical solution of initial-boundary value problem with mixed
boundary conditions for the special case of (1.1) system which is given in
(1.2). Attention is paid to the investigation more wide cases of nonlinearity
than already were studied. In particular, the following case of the diffusion
coefficient is studied a(S) = (1+S5)?,0<p < 1.

The paper is organized as follows. In the second section the statement
of the problem unique solvability and large time behavior of solution of cor-
responding initial-boundary value problem are given. In the third section
the finite difference scheme is constructed and its stability and convergence
are proved.

2 Unique Solvability and Long-time Behavior of
Solution with Mixed Boundary Conditions

In the cylinder (0,1) x (0, 00) let us consider the following initial-boundary
value problem for system (1.2) for the case a(S) =(1+S5)?,0<p<1:

B t - - p .
U _ o 1+/81f2+8v2d wl_,
ot or oz oz e | T
L 0o = - J
(2.1)
i tr 2 27 P i
ot or oz oz T ar| T
L 0o - - i
oU (x,t) oV (x,t)
t) = = or Y 2.9
U(0,t) = V(0,t) o | e | 0, (2.2)

where 0 < p < 1, Up and Vj are given functions.

The following statement of existence and uniqueness of the solution
takes place.

Theorem 2.1. If 0 < p < 1 and Uy, Vo € HZ(0,1), then where ex-
ists unique solution (U, V') of problem (2.1) - (2.3) such that: U,V €
Ly (0,00; H*(0,1)) , Ugt, Vit € L2 (0,005 L2(0,1)).

We use usual Ly(0, 1) and Sobolev spaces H*(0,1), H(0,1).

For proving existence part in theorem above the Galerkin modified
method and compactness arguments as in [26], [28] for nonlinear parabolic
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equations is used. Applying this technique the existence theorems for one-
component analogs of (1.1) type integro-differential models are studied in
3] - [7].

As to uniqueness of solution we assume that there exist two different
(U1, V1) and (U, V2) solutions of problem (2.1) - (2.3) and introduce the
differences Z = Uy — Uy and R = V5, — V4. To show that Z = R = 0 the
following identity, analogue of Hadamard formula, is mainly used:

t P
UL\ [9Va\? oU,
1*/ (m)*(ax) Ll B
0
9 p
oU, o oy | fou, oy
(u () < >m) wd (-5
9 p
oV
t 9 p
1+/ ol 3‘/1 g L (oVa vy
T T ox ox ox
0
t
/d 1+/ 6U1 L (V2 _ 9 2
d ox ox
0
o, vy UL\ 8
*[agg”(ax‘axﬂ }C“)
y 3U1 p (22 90N, (920U
ox ox ox ox
d aU, U,  0U\1?
/d(u/{mm%)}
i vy UL\ 8
*[aﬁ (axaxﬂ }6”)
o | Dy, (D2 OV, (P OV
Ox Ox Ox Ox ox )’

The following theorem shows that asymptotic behavior of solution of
problem (2.1) - (2.3) has an exponential character. The validity of theorem

=)
\w ——

+
o

107



AMIM Vol.21 No.1, 2016 T. Jangveladze, Z. Kiguradze

below can be proven by using methodology analogous as in [1], [10], [11],
[16] - [18].

Theorem 2.2. If0 < p < 1 and Uy € H3(0,1), Up(0) = V5(0) =
dUdoiéx) = o) = 0, then for the solution of problem (2.1) - (2.3)

_a dx _
the following estimates hold as t — co:

‘8U(w,t)‘ 8U(:U,t)’ ( t)
+ <Cexp|—=],
ot 2

or

OV(x,t)|  |OV(x,1) ¢
< _-

Oz ‘Jr‘ o | =CeP T3

uniformly in x on [0, 1].
Here C denotes positive constant independent of t.

3 Difference Scheme

In the finite rectangle [0, 1] x [0,T], where T is a positive constant let us
study difference scheme for initial-boundary value problem (2.1) - (2.3).

On [0,1] x [0,7] let us introduce a net with mesh points denoted by
(xi,tj) = (ih,j7), where ¢ = 0,1,...,M; j = 0,1,...,N with h = 1/M,
7 =T /N. The initial line is denoted by j = 0. The discrete approximation
at (x,t;) is designed by (u], v]) and the exact solution to the problem (2.1)
- (2.3) by (UZJ , Vij ). We will use the following known notations [29]:

it ] j 7"?+1 -7 j_ rl =1,

g _ 14 i Jj o _
T,y Ty =y Tp; =

K T T, h

Introduce inner products and norms:
(g =h Y rlg, (7, ¢ =n) rlg,
i=1 j
I#91) = (9, P2, )] = (o, ]2

For the problem (2.1) - (2.3) let us consider the following finite difference
scheme:

w T = - C 1 j

S {(HTZ [(ug’z,»%(v;i)ﬂ) ul, } = s
k=1 T

S j+1 "o .

T { (1 Y k) (v’;,ﬂ) vgs } = f
k=1 T

i=1,2,.,.M—1; j=0,1,..,N —1,
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uh =) =)y =vhy =0, §=0,1..N, (3.2)
’LL? = UO,’ia aU? = Vb,’ia 1= 07 ]-7 7M (33)

It is not difficult to get the inequalities:

n n
[u™> + > d)Pr < G o™+ wi]fPr < G,
j=1

p (3.4)

n=12..,N,

where here and below C' is a positive constant independent from 7 and h.

The a priori estimates (3.4) guarantee the stability of the scheme (3.1)
- (3.3). Note, that using the analogous technique as proving Theorem 3.1
below, it is easy to prove the uniqueness of the solution of the scheme (3.1)
- (3.3) too.

The principal aim of the present section is the proof of the following
statement.

Theorem 3.1. If problem (2.1) - (2.3) has a sufficiently smooth so-
lution (U(z,t), V(x,t)), then the solution v/ = (uj,u,...,u);), v/ =

(v],v3,...,v}), 7 =1,2,...,N of the difference scheme (3.1) - (3.3) tends
to the solution of continuous problem (2.1) - (2.8) UJ = (Ui U4, .. .,UXJ),
Vi = (‘Gj,‘/g,...,V]{%), j=1,2,...,N as7— 0, h = 0 and the following
estimates are true:

[/ = U7 <C(r+h), v/ =V <C(r+h). (3-5)

Proof. For U = U(x,t) and V = V(z,t) we have:

J+1 P
U@—{<1+T§jWﬁ»%ummﬂ>z@f} = fli+ v,
k=1 T

, j+1 L . , (3.6)
Vi = { <1 + Z [(Ug,i)Q + (V;ji)ﬂ) V;cjjl} = f3,+ V5,
k=1 x

i=1,2,...,M—1,

Uo(t) = Volt) = Us.ar () = Vi aa(t) = 0, (3.7)
Ui(0) = Ups,  Vi(0) = Vs, i=0,1,..., M, (3.8)

where

Ypi =O0(T+h), k=1,2.
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Let zg = uf - Uij and wg(t) = vlj - VlJ From (2.1) - (2.3) and (3.6) -
(3.8) we have:

J+1 p
j k k +1
Zgz - { (1 +7 Z {(Um)Q + (%Jﬂ) u?m
k=1

j+1 P '
—<1+TZ[<U§,Z->2+<V;’2>2]> Ugf} —
. (3.9)

Multiplying the first equation of system (3.9) scalarly by T =
T(Z{H, z%“, e ,zﬂil), using the discrete analogue of the formula of inte-

gration by parts we get

J+1

o p

. 3 N j 1

||ZJ+1||2 — (zJ+1, 2))+1h E { (1 + T E [(ugz)2 + (v’%,)ﬂ) u?@t
i=1 k=1

Jj+1 p
i (l oG <Vx’fi>2}> N 1} A1 = (], 1),
k=1
Analogously,

j+1

M p
‘ L .
o112 = (@ w?) + 7Ry { (1 +r Y [wh)?+ m’z,ﬂ) vl
=1 k=1

J+1 P
o (R ol ) R R
k=1
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Adding these two equalities we have

127712 = (27, 27) + [T = (w0 )
M j+1 p
+1
-l-ThZ { (1 +7 Z [(u%)2 + (v’jﬁﬂ) ugg
i=1 k=1

Jjt+1 p
- (1 Tty Uk + <vf,i>2}> Ugtl} 245
k=1
(3.10)

M j+1 p '
-l-ThZ { (1 + 7 Z [(ugz)Q + (U§Z)2]> v%jgl
i=1 k=1

J+1 p
- (1 +7 Z [(ng)Q + (kaz)2]> ij;‘rl} ng#
k=1

= _T(w{7 Zj—H) - T(¢%’wj+1)-

Note that,

j+1 P
(1 rr Y [k + (Vx’fi)ﬂ) Uit 1} (it - v2)

j+1 P
(1 +r Y [k (Vf’fi)ﬂ) V;jl} (v =vir)
k=1

1 d j+1 2
= /CZM <1 +7 Z { |:U:§7, + M(ng - ng)}
0 k=1
+ {Vj]fl + M(U’%,i - V:?:Ifz)] 2}>p
K .0

j+1 j+1 j+1 j+1 j+1
< (UL + st = U2 | de (- U2
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o j+1 )
i (1 T { Uk + b — U]

0
1)
[V el v e (21 - )

T, T,

+ [kaz +p(vf; - Vi)

[ I

Jj+1

= 2p/1 (1 + TZ { {U}fl + N(ufm - Ug,i)]2
: k=1
+ [V;zkz + (vl — Vikji)} 2}>p_1

xr 3Ok + ik - UE)) (uhi = U + [VE + (ks = VE)]
k=1

(o VE)Y [0+ et 020 s (1 — 022
L j+1 )
+/ (1 +7 Z { [ng + M(Ul%z - U%fz)}
9 k=1

+ |:V£kz + M(U’aj,z‘ - V:zlfi)] 2})7’

j+1 j+1 Jj+1 j+1
X (Um - Uz, )dﬂ (“',z’ - Uz, )

x

L j+1 )
o2 | (1 er>-{ ot s - )
k=1

0

Jj+1

# [t )
xT Z { [Uﬁ,i + M(U%i - Ug,i)} (U L
k=1

+ [kaz + M(Ulg,z' - V;':kz):| (Ul%z - ijz)}
[V e VI (o5 )
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+/I<1+r§{ J.—U;ii)r
0

! j+1 )
:2p/(1+72{[U’“ (ub, — UL
0 k=1

+ |:V:Ekz + M(Ug,i - ‘/.ikl):| (Ul%z - Va?kz)}
- . - . .
oL + el =) (ulf - vit)

[VJH e J+1 Vij;-l)} du (U]_'-‘gl _ ng—l)}du

Z,

+/1<1+T§{ ,i—Ugi)}2
0

2 p
+ [Va’fk,z + M(U’%,i - V:?:Ifz)] })
x [(uﬂfl Ugjlf + (o3t - nglﬂ du

/<1+7’§{[ 71-—U§7i)]2

0

k AN\
R )l B A R

; j+1 )
o f (e[t k- et
0

k=1
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. 2 . . 2
x [(ugl v (vl - i) } du,

Jj+1

§]+1 =T Z { { - U:é:z)} (ng - U:%z)

where

+ [Vk + vk — V:ckz)] (ng - Va_skz)} ;
and therefore,
0 = [V - 03] (it - o)
+ [Vjﬂ u( VJH)} (vﬁl — Vjﬂ) )

Introducing the following notation

j+1

]‘H —TZ{[ ,i_Ugﬂr‘i‘ {ka,i—i_“(

we have from the previous equality

J+1 p
{ (1 ey [k <v§-z,i>2}> ulf!
k=1
J+1 p
— (1 Yy [(Ugiﬁ n (Vf’fi)ﬂ) Ugjl} (u;;;l — Ugf)
k=1
j+1 p
+ { (1 Yy [(ug,f + (v’gi)ﬂ) vit!
k=1
j+1 P
(1S [+ <v;fi>2}) vt} (i)
k=1

1
2]9/ J+1 p §]+1 d,u
0

85

Vzi — Va:kz)r} )
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. 2 . . 2
+ [ (14 ) [(uﬁl v+ (vl - Vi) } d.

o _

After substituting this equality in (3.10) we get

12717 = (7 27) + [l P = (w7 )

NE

+27‘hp

.
Il
—

1
1 p 1
/ J+ £J+ du
0

(3.11)

oy

1 p +1 i+1) 2
(147 w) [(u] -uith)
=1

o _

N . .
1 1 j j
Tacking into account restriction p > 0 and relations s’ Jrl(u) >0,
(9+1,19) = SR R - S - R,

1/ ..\2 17 N2 72/ .1\2
j+1 +1

rete=5 (8) -5 (€) 5 ()
we have from (3.11)

: 1, 1o 1 A
e e e e [ e

1.
[lw’ 1 -

2

s 0/ (s ) (€)= ()] «

1 . 1 . .
Sl |I* + §Ile+1 — |

J+112 _
| :

=1
(3.12)

M 1 ) )
p— .
+7’2hp§ / 1+8]+1 <j“> du
0

i=1

M

. . 2 . 2

SO CHETED R CREEDY
=1

< —r (9], 7Y — 7(yh, Wi,
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From (3.12) we arrive at

1, . 1,
SIE P =121 + Hzt I

2w = S )2 4 L - 5 llwi |12

2 2 !

M ; 1 2 2
p . .

=17

7 (12712 + ed12)

< 2 (A2 + 19302) + 5 (127112 4 1)
Using discrete analogue of Poincare inequality [29]
1P < (lrE P
from (3.13) we get
17T = 112712+ 21 1P+ P = )P+ 72 ] |2
YR
+2hp Y / s (u ,,,1 [(5{3“)2 — (5{3)1 dp (3.14)
=1

+7 (1272 + 13 ™12) < 7 (1P + 1))
Summing (3.14) from j =0 to j =n — 1 we arrive at

n—1 n—1

1212+ 72> Ml 1P + w1+ 72w
Jj=0 j=0
n-l M| . p—1 . 2 N 2
+2hpZZ/ <1+8§+1(/~0)> [(52“) - (Si-) } dp (3.15)
j=0i=1

+TZ (12797 + et ™12) < Z (12 + 1ed)2)
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Note, that since SJH(,u) > sg (1) and p < 1, for the second line of the
last formula we have

n—1

> (1) (€)' - (€)]

=0

.

= (1+sH ()" (€)= (1 +stw)" ()
+ (14 s2w)" (€)= 1+ W) (6D
e (L s ()P (ED? — (1 + s ()P (€Y

= (14 s7()P " (€7) +Z [(1+5 ) v (1+53+1(u)>p_1] (§g>220.

Taking into account the last relation and (3.16) one can deduce

n—1 n—1
127117 + ™12+ 72> 117+ 72D llwl |
7=0 7=0

(3.16)

n—1

+TZ (1212 + ™ ]2) < TZ (IR + 12]1)

From (3.16) we get (3.5), and Theorem 3.1 is proved.

Some numerical experiments for different initial and boundary data are
carried out. All experiments were performed by using software FreeFem++
[8]. The results of numerical experiments agree with theoretical ones.
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