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Abstract

The estimation of quadrature formula residual term for Cauchy type singular in-

tegrals is given for arbitrary values of Jacobi weight function.
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In the present paper, questions connected with approximation of singu-
lar integrals (in the Cauchy principal value sense) of type

Sp,q(φ;x) =

1∫
−1

ρ(t)
φ(t)

t− x
dt (−1 < x < 1) (1)

with Jacobian weight function ρ(t) = (1− t)p(1 + t)q, (p, q− 1) are consid-
ered, at that it is meant that φ(t) is an arbitrary function from a certain
class of functions sufficiently smooth on [−1,+1], for which the singular
integral under consideration exists in the Cauchy principal value sense for
any values x ∈ (−1, 1).

In the theory of quadrature for usual (regular) integrals it is well known
(see, e.g. [1], [2]) that at approximate calculation of integrals of type
b∫
a
ρ(t)φ(t)dt with given weight functions ρ(t), the possible highest alge-

braic accuracy rate can be achieved in the cases when the knots of the
corresponding quadrature formula represent zeros of polynomials of proper
order which are orthogonal on segment [−1,+1] with the given weight.

Hence, similarly to this, below we consider a quadrature formula for
integrals of type (1) with φ(t) replaced by its interpolating polynomial
constructed by the values of φ(t) at the Jacobian knots of order n repre-
senting zeros of polynomial which is orthogonal on the segment [−1,+1]
with the weight ρ(t) = (1− t)p(1 + t)q. On account of this we come to the
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following quadrature formula for the singular integral under consideration
(cf.[3])

1∫
−1

(1− t)p(1 + t)q
φ(t)

t− x
dt

≈
n∑

k=1

J
(p,q)
n (x)γpq(x) + λ

(p,q)
n (x)−AknJ

(p,q)′
n (xkn)

(x− xkn)J
(p,q)′
n (xkn)

φ(xkn)

(2)

where γpq(x) =

1∫
−1

(1− t)p(1 + t)q

t− x
dt, {Akn}nk=1 (Akn > 0) are coefficients

of Gauss quadrature formula, corresponding to the indicated weight, and

λ(p,q)
n (x) =

n∑
j=1

AjnJ
(p,q)
n (x)

x− xjn
. The integrals of type γp,q(x) should be calcu-

lated separately. We will consider some cases when the mentioned integrals
are calculated in closed form or approximately within any needed accuracy.

1. p+ q = −1 or p+ q = 0 (provided p, q ̸= 0). In the plane of complex
variable z, under F (z) = (z − 1)p(z + 1)q we will mean an arbitrarily fixed
branch which is holomorphic (under condition 1) on the plane cut along
[−1,+1] and attaining from above on [−1,+1] values (1 − t)p(1 + t)q. By
Cauchy theorem we have

1

2πi

∫
Γ

(t− 1)p(t+ 1)q
dt

t− z
= 0,

where Γ is the boundary of doubly connected domain, bounded by straight
cut [−1,+1] and a closed Jordan curve containing segment [−1,+1] without
z inside it. Considering that contour L goes around the segment [−1,+1]
anticlockwise we obtain

1

2πi

∫
Γ

(t− 1)p(t+ 1)q
dt

t− z
= −sin pπ

πeπip

∫
Γ

(t− 1)p(t+ 1)q
dt

t− z
.

Further, given that z is located outside the domain bounded by contour L
and the function F (z) is clearly holomorphic in the indicated domain, via
Cauchy theorem we have

1

2πi

∫
Γ

(t− 1)p(t+ 1)q
dt

t− z
= −(z − 1)p(z + 1)q + F (∞).
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Therefore choosing the branch of function F (z) so that F (∞) = 1 for
p+ q = 0 and besides that assuming (−1)p = epπi

1∫
−1

(1− t)p(1+ t)q
dt

t− z
=


π

sin pπ
(z − 1)p(z + 1)q, p+ q = −1;

− π

sin pπ
+ π(1− x)p(1 + x)q cot pπ, p+ q = 0

for any x ∈ (−1, 1). Particularly, if p = q = −1

2
we have γ− 1

2
,− 1

2
(x) = 0

(−1 < x < 1).
2. p+ q = 1. (1− t)p(1+ t)q is taken as the boundary value of function

(1− z)p(1 + z)q which is holomorphic outside the cut [−1,+1] and has an
expression (1− z)p(1 + z)q = e−πip{z − 2p+ 1 +O(z−1)} for big values of
|z|. With the help of the Cauchy theorem we get

1∫
−1

(1− t)p(1 + t)q
dt

t− z
=

2πi

1− e−2πip
{(1− z)p(1 + z)q − e−πip(z − 2p+ 1)}

(z ∈ [−1, 1]).

From this using Sokhotskii-Plemelj formula we get

γpq(x) = π

{
(1− x)p(1 + x)q cot pπ − x− 2p+ 1

sin pπ

}
.

In several cases when the integrals γpq(x) cannot be calculated in a closed
form they can be computed approximately with some or other accuracy [4].

Coming back to formula (1), let us note that in paper [3], a question
on accuracy estimation of singular integrals of type (1) was studied using
the indicated above quadrature formula (2). Namely, in [3] it is stated that
for functions φ(t) ∈ Hr(α) (0 < α ≤ 1), which have a derivative of order
r (r ≥ 1) on the segment [−1,+1] and satisfy the Hölder condition on this

segment with index α (0 < α ≤ 1), provided x ∈ (−1,+1) and p, q ≥ 1

2
(for

any values of x, p, q) the following is valid

Sp,q(φ;x)− S(p,q)
n = O

(
lnn

nr+α

)
(n > 1), (3)

at this the estimate is uniform with respect to on any segment belonging to
(−1,+1). The further reasoning refers to proof that the estimate of type
(3) is true under condition p, q ≥ −1.

Proof of the corresponding statement however turns out to be signifi-
cantly tedious. In our considerations, it is based on evidence of some lem-
mas which are provided by short indication to the corresponding approach
of their proof.
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Everywhere further, we will assume that the above mentioned Jacobi

polynomials J
(p,q)
n (x) are normed under condition J

(p,q)
n (1) = Cn

n+p.
Proposition 1. For any p, q ≥ −1 and x ∈ (−1,+1) along each seg-

ment contained in (−1,+1) the following estimate λ
(p,q)
n (x) = O

(
n− 1

2

)
is

true, where λ
(p,q)
n (x) stands for expression of type

1∫
−1

(1− t)p(1 + t)q
J
(p,q)
n (t)− J

(p,q)
n (x)

t− x
dt

= J (p,q)
n (x)γpq(x) +

+1∫
−1

(1− t)p(1 + t)qJ
(p,q)
n

t− x
dt.

(4)

Proof. Since x is fixed in (−1,+1), according to the known estimate ([5],

sec. 8.21) the first term in the right side of (4) is O
(
n− 1

2

)
. The second

term (integral) in (4) can be brought to the form

2p+q

π∫
0

(
sin

ϑ

2

)2p(
cos

ϑ

2

)2q J
(p,q)
n (cosϑ)

cosϑ− cosϑ0
sinϑdϑ. (5)

Stating further δ > 0 so that [ϑ0 − δ, ϑ0 + δ] ⊂ (0, π), we will partition
the considered integral (5) into three integrals I1, I2, I3 along [0, ϑ0 − δ],
[ϑ0 − δ, ϑ0 + δ], [ϑ0 + δ, π] respectively. Taking into account that for any
fixed constant c > 0 and for a sufficiently large n relation cn−1 < ϑ0 − δ is

true, on the basis of estimates J
(p,q)
n (x) on segments [0, cn−1], [cn−1, ϑ0−δ],

([5], sec. 7.32), also due to the fact that (cosϑ− cosϑ0) for 0 ≤ ϑ ≤ ϑ0 − δ

is bounded from below by a fixed positive number, we find I1 = O
(
n− 1

2

)
(0 < ϑ0 < π). The estimate I3 = O

(
n− 1

2

)
(0 < ϑ0 < π) can be stated

with the help of similar consideration. As far as the singular integral

ϑ0+δ∫
ϑ0−δ

(
sin

ϑ

2

)2p(
cos

ϑ

2

)2q J
(p,q)
n (cosϑ)

cosϑ− cosϑ0
sinϑdϑ

is concerned, transform it to the form

J (p,q)
n cosϑ0

ϑ0+δ∫
ϑ0−δ

(
sin

ϑ

2

)2p(
cos

ϑ

2

)2q sinϑdϑ

cosϑ− cosϑ0

+

ϑ0+δ∫
ϑ0−δ

(
sin

ϑ

2

)2p(
cos

ϑ

2

)2q J
(p,q)
n (cosϑ)− J

(p,q)
n (cosϑ0)

cosϑ− cosϑ0
sinϑdϑ.

(6)
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As far as the point ϑ0 is stated in the indicated way in (0, π), in accordance

to the known estimate of I
(p,q)
n ([5], sec.8.21) the first term in the right side

of (6) is evidently O
(
n− 1

2

)
.Proceeding to estimation of the second term in

the mentioned expression, according to the known formulas ([5], sec. 8.8)
we come to the following

J
(p,q)
n (cosϑ)− J

(p,q)
n (cosϑ0)

cosϑ− cosϑ0
= n− 1

2k(ϑ)
cos(Nϑ+ γ)− cos(Nϑ0 + γ)

cosϑ− cosϑ0

+O
(
n− 1

2

)
(ϑ0 − δ < ϑ < ϑ0 + δ),

(7)
where

N = n+
p+ q + 1

2
, γ = −

(
p+

1

2

)
π

2
,

k(ϑ) =
1√
π
sin

(
ϑ

2

)−p− 1
2

cos

(
ϑ

2

)−q− 1
2

,

at that the estimate of the remainder in (7) is uniform on segment [ϑ0 −
δ, ϑ0 + δ]. On this basis we have only to show that

ϑ0+δ∫
ϑ0−δ

F (ϑ)
cos(Nϑ+ γ)− cos(Nϑ0 + γ)

cosϑ− cosϑ0
sinϑdϑ = O(1) (0 < ϑ0 < ϑ), (8)

where F (ϑ) stands for sin

(
ϑ

2

)p− 1
2

cos

(
ϑ

2

)q− 1
2

. Further, using identity

ϑ+ ϑ0

2
=

ϑ− ϑ0

2
+ ϑ0, the expression in the left side of (8) can be repre-

sented in the form of sum

sin(Nϑ0 + γ)

ϑ0+δ∫
ϑ0−δ

F (ϑ)
sinN ϑ−ϑ0

2 cosN ϑ−ϑ0
2

sin ϑ+ϑ0
2 sin ϑ−ϑ0

2

sinϑdϑ

cos(Nϑ0 + γ)

ϑ0+δ∫
ϑ0−δ

F (ϑ)
sin2N ϑ−ϑ0

2 cosN ϑ−ϑ0
2

sin ϑ+ϑ0
2 sin ϑ−ϑ0

2

sinϑdϑ.

(9)

Using the identity sinϑ = sin
ϑ+ ϑ0

2
+ 2 sin

ϑ− ϑ0

4
cos

3ϑ+ ϑ0

4
, the first

integral in (9) can be presented in the form

1

2

ϑ0+δ∫
ϑ0−δ

sinN(ϑ− ϑ0)

sin ϑ−ϑ0
2

dϑ+O(1). (10)
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Further, allowing n to be big enough to satisfy

(
ϑ0 −

1

n
, ϑ0 +

1

n

)
⊂ (ϑ0 −

δ, ϑ0 + δ), split the integral in (10) into sum of integrals on segments[
ϑ0 − δ, ϑ0 −

1

n

]
,

[
ϑ0 −

1

n
, ϑ0 +

1

n

]
,

[
ϑ0 +

1

n
, ϑ0 + δ

]
. At this, for the in-

tegral along the segment

[
ϑ0 −

1

n
, ϑ0 +

1

n

]
via | sinx| ≤ |x| we get estimate

2N

n
= O(1). Regarding the integral along

[
ϑ0 − δ, ϑ0 −

1

n

]
, with the help

of integration by parts it is reduced to the following expression

F (ϑ0 − 1
n) cos

N
n

N sin 1
2n

−
F (ϑ0 − 1

δ ) cosNδ

N sin δ
n

− 1

2N

ϑ0− 1
n∫

ϑ0−δ

F (ϑ)
cosN(ϑ− ϑ0) cosN

ϑ−ϑ0
2[

sin ϑ−ϑ0
2

]2 dϑ+
1

N

ϑ0− 1
n∫

ϑ0−δ

F ′(ϑ)
cos(ϑ− ϑ0)dϑ

sin ϑ−ϑ0
2

.

Taking into account

xν n∫
xν−1 n

J (p,q)′′
n (t)dt = −

ϑν∫
ϑν−1

J (p,q)′′
n (cosϑ) sinϑdt, it

is clear that

F (ϑ− 1
n) cosNδ

N sin 1
2n

−
F (ϑ− 1

δ ) cosN

N sin δ
2

= O(1),

also

1

N

ϑ0− 1
n∫

ϑ0−δ

F ′(ϑ)
cosN(ϑ− ϑ0)dϑ

sin ϑ−ϑ0
2

=
O(1)

N
max

ϑ∈[ϑ0−δ,ϑ− 1
n ]

1

ϑ0 − ϑ
= O(1).

Besides,

1

2N

ϑ0− 1
n∫

ϑ0−δ

cosN(ϑ− ϑ0) cos(ϑ− ϑ0)[
sin ϑ−ϑ0

2

]2 dϑ

=
O(1)

N

ϑ0+
1
n∫

ϑ0−δ

dϑ

(ϑ− ϑ0)2
=

O(1)

N

(
n+

1

δ

)
= O(1).

The presented statements convince us in the correctness of Proposition 1.
Proposition 2. For any p, q > −1 and x ∈ (−1,+1), estimate akn(x) =

O(lnn) (n > 1), k = 1, 2, . . . , n is true.
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Proof. Along with this it is uniform on any segment [a, b] ⊂ (−1, 1).
In the proof of this statement it is sufficient to put 0 6 x 6 1. For the
rest values the considerations are similar. Assuming ν ̸= k with the help of

expression λ(p,q)
n (x) =

n∑
j=1

AjnJ
(p,q)
n (x)

x− xjn
we can write

akn(xνn) =

[
Aνn

J
(p,q)′
n (xkn)

− Aνn

J
(p,q)′
n (xνn)

]
J
(p,q)′
n (xνn)

xνn − xkn
. (11)

To be definite, we consider in (11) k and ν such that k ̸= ν and besides that

0 < ϑk 6 π

2
, 0 < ϑν 6 π

2
. Further, as is known ([5], sec 8.9), the following

1 holds: J (p,q)′
n (cos(ϑk)) ∼ n

1
2ϑ

−p− 3
2

k . Also, ϑk =
1

n
[kπ +O(1)], where O(1)

is bounded uniformly for all values k = 1, 2, . . . , n (n = 1, 2, . . . ).
We will as well recall a known estimate ([5], sec. 15.3)Aνn ∼ ν2p+1n−2p−2

(0 < ϑν 6 π − δ). For 0 < δ < π we can obtain
Aνn

J
(p,q)′
n (cosϑk)

∼

ν2p+1n−3p−3kp+
1
2 sin(ϑk)

−1. Additionally, for any ν and k (ν, k = 1, 2, . . . , n)
the following is true:

Aνn

J
(p,q)′
n (xkn)

= O(n− 3
2 ) sinϑk. (12)

Continuing consideration, we have

1

n

sinϑk

|xνn − xkn|
6

sin

(
ϑν + ϑk

2

)
cos

(
ϑν − ϑk

2

)
n sin

(
ϑν + ϑk

2

) ∣∣∣sin(ϑν−ϑk
2

)∣∣∣ , (ν ̸= k). (13)

Using in (13) sinx > 2

π
x

(
0 6 x 6 π

2

)
, we also have

sinϑk

|xnν − xkν |
6 π

|ϑν − ϑk|
, ν ̸= k (14)

Now we will state the lower estimate of expression ϑν − ϑk basing on the
fact that for any (ν ̸= k) relation |ϑν − ϑk| > ϑν −ϑν−1 holds. Considering∣∣∣J (p,q)′

n (xν−1n)− J (p,q)′
n (xνn)

∣∣∣ = ∣∣∣∣∣
∫ xνn

xνn−1

J (p,q)′′
n (t)dt

∣∣∣∣∣
1As is usual τν ∼ µν τν ̸= 0µν ̸= 0 means that the modulus of ratio of these values is

bounded from below and above by constants independent of n
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=

∣∣∣∣∣
∫ ϑν

ϑν−1

J (p,q)′′
n (cosϑ) sinϑdϑ

∣∣∣∣∣ ,
for calculation of J

(p,q)′′
n (cosϑ), we use known equalities ([5], sec. 4.21):

J
(p,q)′
n (t) = 1

2(n + p + q + 1)J
(p+1,q+1)
n (t), taking into account at this (see

[5], sec. 7.32) validness of estimate J (p+2,q+2)
n (cosϑ) = ϑ−p− 5

2O
(
n− 1

2

)
(
0 < ϑ 6 π

2

)
(p, q > −1) under condition p+2 > −1

2
, from these estimates

we obtain ∫ xνn

xν−1n

J (p,q)′′
n (t)dt = O(n

3
2 )

∫ ϑν

ϑν−1

ϑ−p− 5
2 sinϑdϑ.

Next, since usually p+ 3
2 > 0, we can write∫ ϑν

ϑν−1

ϑ−p− 5
2 sinϑdϑ 6

∫ ϑν

ϑν−1

ϑ−p− 3
2dϑ 6 ϑ

−p− 3
2

ν−1 (ϑν − ϑν−1).

Consequently, there exists a constant C0 > 0 such that

ϑν − ϑν−1 > C0n
− 3

2ϑ
p+ 3

2
ν

∣∣∣∣∫ xν−1n

xν n

J (p,q)′′
n (t)dt

∣∣∣∣ .
Moreover, in spite of J

(p,q)′
n (xν−1n) and J

(p,q)′
n (xν n) have different signs,

the following holds:∣∣∣J (p,q)′
n (xν n)− J (p,q)′

n (xν−1n)
∣∣∣ > ∣∣∣J (p,q)′

n (xν−1n)
∣∣∣ .

Besides this it is clear that (cf. [5], sec. 8.9), |J (p,q)′
n (cosϑν−1)| ∼ (ν −

1)−p− 3
2 np+2. Collating the indicated equalities yields ϑν−ϑν−1 > C1n

−1 (ν =
1, 2, . . . ), where C1 is a constant independent of ν and n. Onward, on the
basis of the above mentioned asymptotic representation of ϑk and inequal-

ity
|ν − k|π

n
6 |ϑν −ϑk|+

∣∣∣∣ν − k

n
π − ϑ+ ϑk

∣∣∣∣ , after some computations we

find |ϑν − ϑk| >
C1π|ν − k|
(C1 + C2)n

(C1, C2 = const) for any k and ν. Also, re-

membering (14), we obtain that
1

n

sinϑk

xνn − xkn
= O(1) (ν ̸= k). Combination

of (12) and (14) leads us to the following

Aν n

J
(p,q)′
n (xkn)(xνn − xkn)

= O(n− 1
2 ),

Ak n

J
(p,q)′
n (xνn)(xνn − xkn)

= O(n− 1
2 ),

137



AMIM Vol.21 No.1, 2016 J. Sanikidze, M.Mirianashvili, ... +

uniformly with respect to ν and k (under condition ν ̸= k ). From this and

another known relation (cf. [5], sec. 8.9):
∣∣∣J (p,q′)

n cosϑν

∣∣∣ ∼ ν−p− 3
2np+2 (0 6

ϑ 6 π
2 ) it follows that akn(xνn) = O

(
ν−p− 3

2np+ 3
2

)
(−1 < xνn 6 0). Anal-

ogous estimate takes place also for ν such that 0 6 xνn < 1. Beyond that
we can make sure in validity of the next equality

aνn(xνn) =
1

2
Aνn

J
(p,q)′′
n (xνn)

J
(p,q)′
n (xνn)

+

n∑
σ=1

Aσn

xνn − xσn
(ν = 1, 2, . . . , n),

besides J (p,q)
n

′′
(cosϑν) = ϑ

−p− 5
2

ν O
(
n

3
2

) (
0 < ϑν 6 π

2

)
for any p, q > −1.

From here again by virtue of performance ϑν =
1

n
[νπ + O(1)] we get

J (p,q)
n

′′
(cosϑν) = O

(
ν−p− 5

2np+4
) (

0 < ϑν 6 π

2
; p, q > −1

)
. For the lower

bound of expression
∣∣∣J (p,q)′

n (xνn)
∣∣∣ we will recall again estimate (used above)

from ([5], sec. 8.9) that as a result gives

AνnJ
(p,q)
n

′′
(xνn)

J
(p,q)
n

′
(xνn)

= O(ν2pn−2p).

Taking into account these formulas and some next simple transformations,

with the help of asymptotic equality

(
n+ p
n

)
=

np

Γ(p+ 1)

[
1 +O(

1

n
)

]
,

where Γ is Euler function [6], we get akn(xkn) = O(k2pn−2p lnn). More-
over, akn(xkn) = O(lnn) (n > 1; k = 1, 2, . . . , n). Evidently, the expression
akn(x) can be represented by the Lagrange interpolating polynomial:

akn(x) =
n∑

i=1

J
(p,q)
n (x)

(x− xln)J
(p,q)′
n (xln)

akn(xln)

For further considerations we split this sum into
∑m−2

1 +
∑n

m−1 . Both sums
are estimated similarly. Putting for definiteness 0 6 x < 1, we outline
shortly some details related to this question, considering, e.g., the sum∑m−2

1 . Meaning as above,ϑj 6 π
2 (ϑj = arccosxjn; j = 1, 2, . . . , n) and

noting that under condition x− xkn = O(n−1), the following estimate ([5],
sec. 14.4) is true

J
(p,q)
n (x)

(x− xkn)J
(p,q)′
n (xkn)

= O(1),

we may get the relation

J
(p,q)
n (x)

cosϑ− cosϑ0
= n− 1

2K(ϑ)
cos(Nϑ+ γ)− cos(Nϑν + γ)

cosϑ− cosϑν
+ rn(ϑ),
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γ = −
(p+ 1

2)π

2
, K(ϑ) =

1

π

(
sin

ϑ

2

)−p− 1
2
(
cos

ϑ

2

)−q− 1
2

.

At that rn(ϑ) = O(n− 1
2 ). Besides, if in the indicated presentation under

assumption that for the given m the point x is located between xmn and
xm+1n, then for k = m after some estimations we obtain

J
(p,q)
n (x)amn(xm−1n)

(x− xmn)J
(p,q)′
n (xmn)

= O(1),

J
(p,q)
n (x)amn(xmn)

(x− xmn)J
(p,q)′
n (xmn)

= O(lnn) (n > 1).

Similar estimates are obtained for k = m−1 and along with that for the rest
values of x. Next,using the known estimate ([5], sec. 89) J (p,q)

n (cosϑν−1) ∼
(ν − 1)−p− 3

2np+2 and estimate |ϑν − ϑν−1| >
C0

n
(ν = 1, 2, . . . , n) where C0

is a constant independent of ν and n, we come to validity of Proposition
2. �

Proposition 3. For any p, q > −1 and x ∈ (−1, 1) the equality

n∑
k=1

∣∣∣∣∣J (p,q)
n (x)γp,q(x) + λ

(p,q)
n (x)−AknJ

(p,q)′
n (xkn)

(x− xkn)J
(p,q)′
n (xkn)

∣∣∣∣∣ = 0(lnn) ] (n > 1) (15)

is true. The estimate is uniform on any segment that belongs to (-1,1).
Proof. In order to prove Proposition 3, denote after akn(x) expression

in
∑n

k=1 of formula (15). We have

|akn(x)| 6

∣∣∣λ(p,q)
n (x)

∣∣∣+ ∣∣∣γp,q(x)J (p,q)
n (x)

∣∣∣∣∣∣(x− xkn)J
(p,q)′
n (xkn)

∣∣∣ +
Akn

|x− xkn|
.

We need to estimate

n∑
k=1

|akn(x)| on the basis of the preceding inequal-

ity. With this aim, meaning m = 1,n-1, split the concerned sum into∑m
1 +

∑n
m+1 . Both of them are estimated similarly and, for the sake of

definiteness, we will show shortly estimation of the sum
∑m

1 . Regarding
m∑
k=1

|akn(x)| =
m−2∑
k=1

|akn(x)|+ |akm−1(x)|+ |akm−2(x)|, due to Proposition 2,

we have |akm−1(x)| + |akn(x)| = O(lnn). Further, taking into account the
previous estimate for |akn(x)|, also relations ([5], sec. 14.4)

J (p,q)
n (x) = O(n− 1

2 ) (−1 < x < 1),
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m−2∑
k=1

1∣∣∣(x− xkn)J
(p,q)′
n (xkn)

∣∣∣ = O(n− 1
2 lnn)(xmn 6 x 6 xm+1n),

applying some transformations and estimates (see, namely, [5], sec. 15.3),
also Ak = O(n−1)(k = 1,n) along with Proposition 1, we can ascertain
validity of relation

n∑
k=1

|akn(x)| = O(lnn) (−1 < x < 1),

which means (15). �
Let Pn−1(t) be a polynomial of order n− 1 (n > 1), such that for func-

tions φ(t) ∈ Hr(α) (see the formulation of the statement (3)) the following
takes place

∥φ(t)− Pn−1(t)∥C 6 A

nr+1
(A = const > 0).

Putting further η =
1 + |x|

2
for given x ∈ (−1,+1), denote the expression

sup
t∈[−η,η]

|φ(t)− φ(x)|

|t− x|β

by Mη(φ;β), where β > 0 is an arbitrary number, less than α (0 < α 6 1).

Proposition 4. For any function φ(t) ∈ Hr(α) , the following is true

Mη (φ− Pn−1;β) 6
A

nr+α−β
, (−1 < x < 1).

Proof. We outline the main moments in proof of Proposition 4. Assum-
ing n so small, that x + h ∈ [−η, η], denote ∆xh = |φ(x + h) − Pn−1(x +
h) − [φ(x)− Pn−1(x)] |. Two cases are possible: |h| > n−1 and |h| 6 n−1.
In the first case we have

∆xh 6 2max |φ(t)− φn−1(t)| 6
2An−β

nr+α−β
<

2A|h|β

nr+α−β
.

For |h| 6 n−1 we can write

φ(t)− Pn−1(x) =

n∑
k=1

Vk(x), Vk(x) = P2k n(x)− P2k−1 n(x)
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similarly to [7]. We separate two cases r = 0 and r > 1. Consideration of
the appropriate cases providing the previous reasoning and Proposition 2
(see, also, [8]), leads us to validity of the needed statement. �
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