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Abstract

The case of statics of the two-temperature elastic mixtures theory is considered,
when partial displacements of the elastic components of the mixture are equal to each
other.

We consider boundary value problems of statics of the two-temperature elastic
mixture for a half-space, when limiting values of the normal components of displace-
ment, temperature and tangential components of rotation vectors are given on the
boundary x3 = 0. Solutions are represented in quadratures.
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1 Introduction

In this paper we develop a new approach to the Dirichlet and Neumann type
boundary value problems for the two-temperature elastic mixture theory for a
half-space. Solutions are presented in quadratures.

Similar problems are considered in the references J. Barber [1], M. Basheleishvili,
L. Bitsadze [2], D. Burchuladze, M. Kharashvili, K. Skhvitaridze [3], E. Constantin,
N. Pavel [4], L.Giorgashvili, K. Skhvitaridze, M. Kharashvili [5], L. Giorgashvili,
E. Elerdashvili, M. Kharashvili, K. Skhvitaridze [6], R. Kumar, T. Chadha [8], H.
Sherief, H.Saleh [10], B. Singh, R. Kumar [11], K. Skhvitaridze, M. Kharashvili
[12].

2 Statement of boundary value problems.
Uniqueness theorems

When the two partial displacements of two elastic components of the mixture
are equal, a homogeneous system of static differential equations of the theory of
two-temperature elastic mixtures has the form [7]

µ∆u(x) + (λ+ µ) grad div u(x) + grad(η1ϑ1(x) + η2ϑ2(x)) = 0, (2.1)
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κ1∆ϑ1(x) + κ2∆ϑ2(x) + α(ϑ2(x)− ϑ1(x)) = 0,

κ2∆ϑ1(x) + κ3∆ϑ2(x)− α(ϑ2(x)− ϑ1(x)) = 0,
(2.2)

where u = (u1, u2, u3)
⊤ is the displacement vector, ϑ1, ϑ2 are temperature func-

tions. α, κj , j = 1, 2, 3 are physical constants; λ, µ are elastic constants; η1, η2
are coupling constants for which the following inequalities are valid,

µ > 0, 3λ+ 2µ > 0, κ1κ3 − κ2
2 > 0, ηj > 0, j = 1, 2,

⊤ is the transposition, ∆ is the three-dimensional Laplace operator.
Denote by Ω− a half-space x3 > 0, and by ∂Ω its boundary plane x3 = 0.
Problem (A). Find, in the domain Ω−, a regular solution U = (u, ϑ1, ϑ2)

⊤ ∈
C2(Ω−)

∩
C1(Ω−) of system (2.1)-(2.2) such that on the boundary ∂Ω one of the

following group of boundary conditions is fulfilled:

{n(z) · u(z)}− = f3(z), {n(z)× rotu(z)}− = f(z), (2.3)

{ϑ1(z)}− = f4(z), {ϑ2(z)}− = f(z), (2.4)

or {
∂ϑ1(z)

∂n(z)

}−

= f4(z),

{
∂ϑ2(z)

∂n(z)

}−

= f5(z), (2.5)

where f = (f1, f2, F3)
⊤, F3, fj , j = 1, 2, 3, 4, 5 are the functions given on the

boundary ∂Ω z = (z1, z2, 0),

∂

∂n(x)
=

3∑
k=1

nk
∂

∂xk
,

in neighborhood of infinity the vector U = (u, ϑ1, ϑ2) satisfies the following condi-
tions:

u(x) = O(1), ϑj(x) = O(|x|−1), j = 1, 2, |x| → ∞,

lim
R→∞

1

2πR2

∫
ΣR

n(x) · u(x)dΣR = 0, (2.6)

ΣR is the part of the boundary of the ball B(O,R) = {y ∈ R3 : |y| < R} which
lies in the domain x3 > 0.

We denote the problems with boundary conditions (2.3), (2.4) and (2.3), (2.5)
respectively by (A.I) and (A.II).

Theorem 2.1.The problems (A.I) and (A.II) have at most one solution.
Proof. The theorem will be proved if we show that corresponding the homo-

geneous problems (f = 0, fj = 0, j = 3, 4, 5) have only the trivial solutions.
Denote by ΩR := Ω−∩B(O,R) with R > 0. Denote by ΣR = ∂ΩR that part of

the boundary of the ball B(O,R) which lies in the domain x3 > 0 and by S(O,R)
the circle with center at the origin and radius R which lies in the plane x3 = 0.
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Using the Stokes formula from system (2.2) we obtain

∫
∂ΩR

[
(κ1ϑ1(x) + κ2ϑ2(x))

∂ϑ1(x)

∂n(x)
+ (κ2ϑ1(x) + κ3ϑ2(x))

∂ϑ2(x)

∂n(x)

]
ds

−
∫

S(O,R)

[
(κ1ϑ1(z) + κ2ϑ2(z))

∂ϑ1(z)

∂n(z)
+ (κ2ϑ1(z) + κ3ϑ2(z))

∂ϑ2(z)

∂n(z)

]
ds

−
∫
ΩR

[
κ1| gradϑ1(x)|2 + 2κ2 gradϑ1(x) · gradϑ2(x) + κ3| gradϑ2(x)|2

+α(ϑ1(x)− ϑ2(x))
2
]
dx = 0. (2.7)

Passing to the limit in both sides of equality (2.7) as R → +∞ and taking into
consideration the boundary conditions of the homogeneous problems (A.I)0 and
(A.II)0 as well as the asymptotic representations (2.6), we obtain

∫
Ω−

[
κ1| gradϑ1(x)|2 + 2κ2 gradϑ1(x) · gradϑ2(x) + κ3| gradϑ2(x)|2+

+α(ϑ1(x)− ϑ2(x))
2
]
dx = 0.

This relation implies ϑ1(x) = ϑ2(x) = C = const, x ∈ Ω−.
Since ϑj(x) → 0 as |x| → ∞, we have C = 0, i. e. ϑj(x) = 0, j = 1, 2, x ∈ Ω−.

Thus for the vector u(x) we obtain the following problem

µ∆u(x) + (λ+ µ) grad div u(x) = 0, x ∈ Ω−,

{u(z) · n(z)}− = 0, {n(z)× rotu(z)}− = 0.

These problem has only a trivial solution (for details see [9]). Thus U(x) = 0, x ∈
Ω−. ⊓⊔

3 Solution of the boundary value problems

Taking into consideration in the boundary conditions (2.3)-(2.4) that n(z) =
(0, 0, 1)⊤, then these boundary conditions can be rewritten as follows:

{u3(z)}− = f3(z),

{
∂uj(z)

∂x3

}−

=
∂f3(z)

∂zj
− fj(z), j = 1, 2, z ∈ ∂Ω, (3.1){

∂ϑ1(z)

∂x3

}−

= f4(z),

{
∂ϑ2(z)

∂x3

}−

= f5(z), z ∈ ∂Ω, (3.2)

where
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{
∂v(z)

∂x3

}−

= lim
Ω−∋κ→z∈∂Ω

∂v(x)

∂x3
.

In view of the conditions (3.2) we get{
(κ1 + κ2)

∂ϑ1(z)

∂x3
+ (κ2 + κ3)

∂ϑ2(z)

∂x3

}−

= (κ1 + κ2)f4(z) + (κ2 + κ3)f5(z),

(3.3)

{
∂ϑ1(z)

∂x3
− ∂ϑ2(z)

∂x3

}−

= f4(z)− f5(z). (3.4)

By simple transformations, from system (2.2) we find

∆[(κ1 + κ2)ϑ1(x) + (κ2 + κ3)ϑ2(x)] = 0, x ∈ Ω−, (3.5)

(∆− λ2
1)(ϑ1(x)− ϑ2(x)) = 0. (3.6)

where λ2
1 = αd2/d1, d1 = κ1κ3 − κ2

2 , d2 = κ1 + 2κ2 + κ3.

The Neumann boundary value problems (3.5), (??) and (3.6), (3.4) have the
following solutions [13]

(κ1 + κ2)ϑ1(x) + (κ2 + κ3)ϑ2(x)

= − 1

2π

+∞∫∫
−∞

1

r
[(κ1 + κ2)f4(y) + (κ2 + κ3)f5(y)]dy1 dy2,

ϑ1(x)− ϑ2(x) = − 1

2π

+∞∫∫
−∞

e−λ1r

r
(f4(y)− f5(y))dy1 dy2.

From this equalities we derive

ϑ1(x) = − 1

2π

+∞∫∫
−∞

[
1

r
f4(y) +

κ2 + κ3

d2

e−λ1r − 1

r
(f4(y)− f5(y))

]
dy1 dy2,

ϑ2(x) = − 1

2π

+∞∫∫
−∞

[
1

r
f5(y)−

κ1 + κ2

d2

e−λ1r − 1

r
(f4(y)− f5(y))

]
dy1 dy2,

(3.7)

where r =
√
(x1 − y1)2 + (x2 − y2)2 + x2

3.

If we substitute equalities (3.7) into (2.1), we obtain
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µ∆u(x) + (λ+ µ) grad div u(x)

= − 1

2π

+∞∫∫
−∞

grad

[
1

r
(η1f4(y)η2f5(y)) + (η1(κ2 + κ3)

+ −η2(κ1 + κ2))
e−λ1r − 1

r
(f4(y)− f5(y))

]
dy1 dy2,

(3.8)

A general solution of system (3.12) has the form

u(x) = u0(x) + ũ(x), x ∈ Ω−, (3.9)

where u0(x) is a solution of the homogeneous system

µ∆u(x) + (λ+ µ) grad div u(x) = 0, x ∈ Ω−, (3.10)

satisfying the boundary conditions (3.1) on the boundary ∂Ω.
Vector ũ(x) is a particular solution of system (3.12) satisfying the homogeneous

boundary conditions (3.1)0 on ∂Ω .
The solution u0(x) of the problem (3.10), (3.1) can be represented in the form

u0(x) = − 1

2π

+∞∫∫
−∞

K(1)(x, y)f ′(y)dy1 dy2, (3.11)

where f ′ = (f1, f2, f3)
⊤,

K(1)(x, y) =
[
K

(1)
lj (x, y)

]
3×3

,

K
(1)
lj (x, y) = (1− δl3)(1− δ3j)

(
−1

r
δlj + a

∂2r

∂xl∂xj

)
+(1− δl3)δ3j

∂

∂xl

1

r
+ a(1− δ3j)δl3x3

∂

∂xj

1

r
+ δl3δ3j

∂

∂x3

1

r
, a =

λ+ µ

2(λ+ 2µ)
.

The solution ũ(x) of the problem (3.10), (3.1)0 can be represented in the form

ũ(x) = − 1

2π

+∞∫∫
−∞

grad
[
r(α1f4(y) + α2f5(y))

+ α3
e−λ1r − 1

r
(f4(y)− f5(y))

]
dy1dy2,

(3.12)

where

α1 =
(η1 + η2)(κ1 + κ2)

2(λ+ 2µ)d2
, α2 =

(η1 + η2)(κ1 + κ2)

2(λ+ 2µ)d2
,
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α3 =
η1(κ2 + κ3)− η2(κ1 + κ2)

(λ+ 2µ)d2λ2
1

.

Substituting the expresions of the vectors u0(x) and ũ(x) into (3.9) and taking
into account expressions of functions ϑ1(x) and ϑ2(x), finally we get

U(x) = − 1

2π

+∞∫∫
−∞

K(1)(x, y)f(y)dy1 dy2, (3.13)

where U = (u, ϑ1, ϑ2)
⊤, f = (f1, f2, f3, f4, f5)

⊤,

K(x, y) =

[
K(1)(x, y) K(2)(x, y)
K(3)(x, y) K(4)(x, y)

]
5×5

,

K(2)(x, y) =
[
K

(2)
lj (x, y)

]
3×2

K(4)(x, y) =
[
K(4)(x, y)

]
2×2

, K(3)(x, y) = [0]2×3 .

K(1)(x, y) is defined in (3.11)

K
(2)
lj (x, y) = (δ1j + δ2j)αj

∂r

∂xl
+ α3(δ1j − δ2j)

e−λ1r − 1

r

∂r

∂xl
,

K
(4)
lj (x, y) = δlj

1

r
+

1

d2
(δ1j − δ2j) (δ1l(κ2 + κ3)− δ2l(κ1 + κ2))

e−λ1r − 1

r
.

From (3.13) we can calculate the stress vector P (∂, n)U(x),

P (∂, n)U(x) = − 1

2π

+∞∫∫
−∞

L(x, y)f(y)dy1 dy2, (3.14)

where

L(x, y) = [L(1)(x, y)L(2)(x, y)],

L(1)(x, y) = [L
(1)
kj (x, y)]3×3, L(2)(x, y) = [L

(1)
kj (x, y)]3×2,

L
(1)
kj (x, y) = (1− δk3)(1− δ3j)

(
−µδkj

∂

∂x3

1

r
+ 2µax3

∂2

∂xk∂xj

1

r

)
+2µ(1− δk3)δ3j

∂2

∂xk∂x3

1

r
+ (1− δ3j)δk3

(
µ2

λ+ 2µ

∂

∂xj

1

r

+2µax3
∂2

∂xj∂x3

1

r

)
+ 2µδk3δ3j

∂2

∂x2
3

1

r
, k, j = 1, 2, 3,
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L
(2)
kj (x, y) = (δ1j + δ2j)

{[
(2(λ+ µ)αj − ηj)

1

r
+ 2µαjx3

∂

∂x3

1

r

]
δk3

+2µαj(1− δk3)x3
∂

∂xk

1

r

}
+ (δ1j − δ2j)α

{[
λλ2

1

1

r

+2µ

(
∂2

∂x2
3

− λ2
1

)
e−λ1r − 1

r

]
δk3 + 2µ(1− δk3)

∂2

∂xk∂x3

e−λ1r − 1

r

}
.

If the boundary vector-functions satisfy the conditions

fj(z) ∈ C0,α(∂Ω), j = 1, 2, 4, 5, f3(z) ∈ C1,β(∂Ω), 0 < β < 1,

|fj(z)| <
B

1 + |z|2
, j = 1, 2, 4, 5, |f3(z)| <

B

1 + |z|
, z ∈ ∂Ω, B = const,

then the vector U(x) represented by formula (3.13) is a regular solution of the
problem (A.II) which satisfies the following decay conditions at infinity

uj(x) = O
(
|x|−1 ln |x|

)
, ϑj(x) = O

(
|x|−1 ln |x|

)
, j = 1, 2,

u3(x) = O
(
|x|−1

)
,

∂

∂xk
uj(x) = O

(
|x|−2

)
,

∂

∂xk
ϑj(x) = O

(
|x|−2

)
,

∂

∂xk
u3(x) = O

(
|x|−2 ln |x|

)
, k = 1, 2, j = 1, 2.
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