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Abstract

In this paper stress-deformed state for some " bridge-form” multystructures studied
having difficult geometry. Particularly the boundary-contacted problem is considered.
Two rectangle (particularly a square) form membranes are connected by a string; We
consider classic linear boundary problems for membranes (Poisson’s equation), but for
string nonlinear Kirchhoff type integro-differential equation. The account program in
MATLAB is created and numerical experiments are made.
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1 Introdaction

The stress - deformed condition for some ”bridge - form” multystructures
with difficult geometry (two rectangular membranes is connected by the
string, (see fig.1)) is studied using numerical methods (finite-difference
methods). Membrane bending is represented by the Poisson’s equation
(see, for example [1]). The equation of the string by Kirchhoff type non-
linear integro-differential equation (see, for example [2]). The function of a
membranes bending in central points is found by direct numerical methods,
and the iterative method for definition of numerical values of function of a
bend of a string for the approached decision of nonlinear equation Kirchhoff

type.
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2 Statement of the Problem

It is possible to dismantle the above boundary - contact problem in three
separate tasks:
a). Boundary value problem for the right membranes

A’LUl(iU,y):fl(l‘,y), (x,y)e le{(.il?,y) ra<z<ec —b<y< b}7 (21)

wi(z,£b) =0, wi(e,y) =0, a<z<e¢, —b<y<b, (2.2)

awl (.’L’, y)

=0, -b<y<h. 2.3
ox r=a ’ =¥= ( )

b). Boundary value problem for the left membranes
sz(:ﬂ,y)ng(x,y), (CL‘, y) € QQ :{(ﬂj‘,y) —c< T < —a, —b< y < b}v (24)

wo(x,+b) =0, wy(—c,y) =0, —c<z<—a, —b<y<hb, (2.5)

an('x: y)
—_— =0, -b<y<hb. 2.6
6,1: r——a ) — y — ( )
¢). Boundary value problem for a string
+a 9
oty [ (0 @t wi@) = o). —asysa @D
w3(—a) = az, ws(a)= a1, (2.8)

where a; ~ wi(a,0), ay =~ wy(—a,0), mg,m; > 0.
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3 The Algorithm

In order to solve of this boundary value problem we use the finite - difference
method. Let’s consider the case of the square is ¢ — a = 2b; 1 and €y
squares to make a regular square grid step hy = he = h, (ny = ngs = n),

_ %
b= =2 b mi=atihy,i=0,1,2,- ,m
ni ny

or

r;=—c+ih1,i=0,1,2,--- ,ny, y; =—-b+jhs, j=0,1,2,--- ny.
The part of a string [—a, a] section is divided 2ns by step hs,
hs =a/ng, x;=—a-+tihg, 1=0,1,2,--- 2n3.

Let’s replace differential operators the finite - difference analog. It is
changed (2.1), (2.4) equations of the second order differential operators by
the template difference five point margin of error O(h?);

Let’s replace the first order differential operators (2.3), (2.6) by method
A : two-point template to change the error O(h) and by method B : three
- point template to change the error O(h?).

Let’s change (2.7) a string equation lookup function by the O(h%) - order
derivatives of the second order derivative by the three - point template.

In order to solve of this given nonlinear difference problem we use the
iterative method.

Let’s accept following marking for grid functions
wiij = wli; R w (T, Y5), Wi = w25 ~ waxs, y;), ws,; = wd; & ws(z;),
frig = flig = fi(@i,yg), foig = 215 = fo(@i,y5), f30 = f3i = f(zi).

Method A. In case of (2.1)-(2.3) problem we have will the task of fol-
lowing a tree - block diagonal system of equation

A E © © 0 6 Wi1,1 F1,1
E B E 06 . 0 06 W1,2 F1,2
®© F B E © 0 O Wi1,3 F1,3
© © E B E © e 6 W1,4 F1,4
0 0 © F B FE © Wilin—3 Fl1,n-3
© 0 - © F B FE Wil,n—2 Fl,n—2
© 0 0 © E B Wilin—1 Flin-1
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and in case of (2.4) - (2.6) problem we will have follow task

B E © © © 0 W2, 1 2.1
F B E 6 - © 06 W2,2 2,2
®© FE B E 6 - © 0 Ww2,3 2.3
©®© 6 FE B EF © © 06 W2, 4 2.4
0 0 © F B E © W2,n—3 F2,n—-3
© 6 - © F B FE W2,n—2 F2,n—2
© 0 06 ©® FE A W2,n—-1 F2,n—1
where
-3 1 0 0 0
1 -3 1 0 0 0
0 1 -3 1 0 0 0
0 0 1 -3 10 0 o0
A=
0 0 01 -3 1
0 0 . 1 -3 1
0 0 O o 1 -3
-4 1 0 O 0 O
1 -4 1 0 - 0 O
0 1 -4 1 0 0 O
0 1 -4 10 0 O
B —
0 O 01 —4 1 0
0 0 . 0 1 4 1
0 0 0 1 —4
1 0 00 0 0
0100 - 0 0
00100 - 00
000100 00
Jo
00 00100
0 0 0010
0 0O 0 1
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00 0 O 0 0
0 0 0 O 0 0
000 O0O0 - 0 0
000 0 O00O0 0 0
O =
0 0 000 00O
0 0 -0 0 0 O
0 00 0 0 0
wlyq wla wly—11
wly o wlg o wly 12
wlyz wla 3 wly—13
wlyy wlgy wlp—14
W1,1= : W1,2= : Wl n—1= - :
wlyp3 wlgp3 wly_1p-3
wlin—2 wlo 2 wlp—10-2
wlin_1 wlo 1 wlp_1p-1
flia flaa fla—1
flio flao fla12
fliz flagz fla13
flia flaa flac14
Fl,1= . ,F1,2= . oo Flon—1= . ,
flin—3 flan—3 fla1in-3
flin—2 flan_2 flo—1in—2
flin—1 flan—1 floin—1
w21 1 w291 w2p_1,1
w219 w299 W2p_1,2
w213 w293 W2p-13
w21 4 w29 4 W2p_14
W2, 1= . W2, 2= . o W2 n—1= . ,
w21 p-3 w22 pn—3 W2y 13
w21 p—_2 W29 p—2 W2p—1,n—2
W21 -1 w2251 W2p—1.n—-1

) )

o1
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f211 f221 f2n_11
f212 [22 f2n—1p2
f213 f223 f2n-13
214 [22.4 f2n—14
F2,1= . F2,2= . ,oouF2,n—1= . ,
f21n-3 2203 [2n-1n-3
f21n-2 f22n-2 f2n_1mn—2
f210—1 f22-1 f2n—1n—1

Method B. Let’s replace the first order differential equations (2.3), (2.6)
by three-point template to change the error O(h?):

own (z,y) _ —1.5Wlp; +2W1y,; —0.5W 1y ; n O(h2),
8m r=a h
8w28(;:, y) = +1-5W2n,j — QWQ;LZ_LJ' + 0.5W2n_2,j " O(hQ),

j=1,2-,n—1.

In case of (2.1) - (2.3) problem matrix form of algebraic equation system
will have such view

C D © 06 © 0 Wi,1 F1,1
E B E © 0 o W1,2 F1,2
© E B E © - © 0 wW1,3 F1,3
© 6 E B E © © 0O W1,4 F1,4
0 0 © F B E O Wi,n—3 Fl,n-3
e 0 - - © F B FE Wiln—2 Fl,n—-2
©® 0 © © EF B Wiln—-1 Fl,n-1
and in case of (2.4)-(2.6) problem we will have follow task
B E © © 0 0 w2, 1 F2,1
E B E O - e o W2,2 F2,2
© FE B E © © © w2,3 F2,3
© 6 FE B E © © © W2,4 F2,4
0 0 © F B E © W2,n—3 F2,n—3
o o . © E B E W2,n — 2 F2,m — 2
0 O © FE C W2,n—-1 F2,n—1
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where
—8/3 1 0 0 0 0
1 —8/3 1 0 . 0 0
0 1 —8/3 1 0o - 0 0
0 0 1 -8/3 1 0 0 0
C = .
0 0 . . 0 1 —-8/3 1 0
0 0 . . 0 1 —8/3 1
0 0 0 . - 0 1 —8/3
2/3 0 0 0 0 0
0 2/3 0 o - 0 0
0 0o 2/3 0 0 - 0 0
0 0 0 2/3 00 0 0
D= .
0 0 0 0 2/3 0 0
0 0 . . -0 0 2/3 0
0 0 0 . - -0 0 2/3

In order to solve of the (2.7)-(2.8) nonlinear system of equations let’s use
the iterative method combined with factorization methods:

w3 203 3T = p2 g3, (mo + myth f(w3(k))> = 3,

i=1,2,---.,2n—1; k=0,1,2,---

(k) . ak)\ 2 (k) . ok)\ 2
thf(w3®) = 0.5 (“’31“’30> + <M> bt

h 2h
2 2
R A I
+ °h + 0. 3 ;

w3§0), 1=0,1,2,---,2n is the initial approach.
Remark: we can take as initial approach

w3l = az, w3 =0, w3 =0, -, W3 | =0, w3 =as;
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For a finding in central points of required functions of a deflection it is
received the following tree - diagonal system of the algebraic equations:

—2w3F Y 3t = p3th) g,

w3 _ g3 | ygth) _ prglh),

k+1 k+1 k+1 k
w3§n—3) - 2w3§n—2) + w3;n—1) = F3(2n)—2’

Al -2l = P, -,
k=0,1,2,--.
The method of factorization is stabile, as W31 coefficients through W39
(in first equation), and W39, through W39, _2 (in last equation) are equal
0.5.
It is created system of programs in MATLAB on the basis of the above-
stated algorithm which is intended for a wide range of consumers.
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