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Abstract

In this paper we consider boundary value problems of statics of two-component
elastic mixtures for a half-space, when the normal components of partial displace-
ment vectors and the tangent components of partial rotation vectors are given on the
boundary.Uniqueness theorems of the considered problem are proved. Solutions are
represented in quadratures.
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1 Introduction

In the early 605 of the last century, C. Truesdell and R. Toupin formulated in
[25] the fundamental mechanical principles of a new model of a deformable
elastic medium with complex inner structure and thereby laid the foun-
dation for the continual theory of elastic mixtures. In subsequent years
this theory was generalized and developed in different directions. Based
on kinematic and thermodynamic principles, theories were created for two-
and many-component mixtures of such as fluid-fluid (Crochet and Naghdi
[9], Atkin [2],Green and Naghdi [13], [14], Green and Steel [12], and solid
body-solid body (Crochet and Naghdi [9], Atkin [2], Green and Steel [12],
Khoroshun and Soltanov [16], Hill [15]).

In Natrosvili, Jaghmaidze and Svanadze [20], static and dynamic prob-
lems on the linear theory of a mixture of two isotropic elastic components
are investigated by the method of a potential and singular integral equa-
tions. Atkin, Chadvick and Steel [3] and Knops and Steel [17] deal with
uniqueness theorems for warious linearized dynamic problems of the theory
of anizotropic mixtures.

Questions as to the existence and uniqueness of weak solutions of mixed
static linear problems for mixtures of two nonhomogeneous anisotropic com-
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ponents where considered in Aron [1] and Borrelli and Patria [6], in the for-
mer work, the problem was studied by the method of functional analysis,
while in the latter by the variational method. In Khoroshun and Soltanov’s
monograph [16], along with theoretical questions, quite interesting concrete
problems of thermoelasticity were considered for two-component mixtures.

For a wider overview of the subject (half-space) area of applocations we
refer to the references J. Barber [4], M. Basheleishvili, L. Bitsadze [5], D.
Burchuladze, M. Kharashvili, K. Skhvitaridze [7], E. Constantin, N. Pavel
[8], L.Giorgashvili, K. Skhvitaridze, M. Kharashvili [10], L. Giorgashvili, E.
Elerdashvili, M. Kharashvili, K. Skhvitaridze [11], R. Kumar, T. Chadha
[18], H. Sherief, H.Saleh [21], B. Singh, R. Kumar [22], K. Skhvitaridze, M.
Kharashvili [23], the references therein.

2 Statement of boundary value problems.
Uniqueneous theorems
In the three-dimensional linear theory of elastic two-component mixtures,
a system of homogeneous differential equations of statics is written in the
form [13]
a1 Au' + by grad div e’ + cAu” + dgrad divu” = 0, (2.1)
cAu' + dgrad div’ 4 asAu” + by grad divu” = 0, (2.2)

" T

where u' = (u},uh,u}) ", u” = (uf,uf,u})" are partial displacement vec-
tors, T is the transposition symbol, A is three-dimensional Laplace opera-
tor,

a; = p1 — As, 51=H1+)\5+)\1*%0/, as = 2 — As,

bgz,u2+/\5+)\2+%o/, c= puz3+Xs, o =X3—XN\g

1
d=M3+>\3—)\5—%O/, p=p1+p2,

p1, p2 are partial densities of the mixture; Ay, Aa...As, p1, po, ps are
the elastic module characterizing the mechanical properties of the mixture,
which satisfy the conditions [20]

2
p1 >0, pipe —p3 >0, A5 <0, )\1+§M1—%0/>0,

2 2 2 2
MAcm—2a) (do+ S+ 2o/ ) > (N +Zps - Pal)
3 P 3 P 3 p
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From these inequalities it follows that [20]
dy = ajay — >0, do:= (a1 +b1)(az + by) — (c+d)? >0, (2.3)
a1 >0, ap+b; >0.
The stress vector is written in the from [20]
T(8,n)U = [P (9,n)U, PP (d,n)U]",
where

PW(@,n)U = TW (0, n)u' + TP (8, n)u”,
PP @,n)U =T33, n)u' +TW(9,n)u",

/

T (8, n)u’ :2M1?9% + (A1 — %o/)n divu' + (p1 + As)[n x rot '],

"
T (0, n)u" =243 c’;u + (A3 — ﬂo/)n divu” + (u3 — As)[n x rot u”],
n p
!/
TG)(9,n)u’ :2u388—u + (A3 — ﬂa’)n divu' + (pug — As)[n x rot '],
n p

"

TW(@, n)u" =2u Y

o + (A2 + %a')ndivu” + (p2 + As)[n x rot "],

n = (n1, n2, n3)'is a unit vector, 8% = Z?Zl nja%jis a derivative with
respect to the vector n, the symbol [a x bldenote the vector products of two
vectors in R3.
Denote by 27 a half-space x3 > 0 and let 9€) be the plane x3 = 0.
Problem (N). Find, in the domain Q~, a regular solution U € C%(Q)N

C1(Q7) of system (2.1)-(2.2) such that on the boundary 9 one of the fol-
lowing boundary conditions is fulfilled:

{n(y) o' (y)}~ = f3(y), {n(y) xrotu'(y)}~ = f'(y), yed,
{n(y)-u"(y)}~ = ), {nly) xrotu"(y)}~ = f"(y), yed,

in the neighborhood of a point at infinity the vector U(z) satisfies the
following conditions:

(2.4)

a)Uj(x) = o(1),  Uj(x) = o(|z[1),
k=12, j=1,2,..,6, 23 =0, |z|— oo,
b) Uj(x) = O(||™), OxUj(x) = O(|jz|7?),
k=1,2,3, 7=1,2,...,6, 23>0, |z|] — oo,
where F/:(f{,fé,Fé)T, P = ( {/v é/?F?i/)T ; 7 7=1,2,3, Fé? Fé/

» J g VR
are the function given on the boundary, n(y) is the internal normal unit

(2.5)
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vector passing at a point y € 9 in the domain Q~, z = (z1,x2,x3),
y = (y1,42,0).

Theorem 2.1. If problem (N) have solutions, these solutions are
unique.

Proof. The theorem will be proved if we show that the homogeneous
problems (F' =0, F”" =0, f;=0, f4{=0)haveonly the trivial solution.

Denote by Qg := Q™ N B(O, R), where B(O, R) is the ball with center
at the origin and radius R. Denote by 0Q2r that part of the boundary of
the ball B(O, R) which lies in the domain z3 > 0, by S(O, R) the circle
with center at the origin and radius R which lies on the plane x3 = 0. Let
us introduce the matrix differential operator A(J)

AN (H) AP(9)

AB(0) AN(D)] 46’

A(0) :=

Agj)(a) :=a10;; A + b10y0;,
A,(f}(f)) i=cOpiA + dogdj, 1=2,3,
Ag;)(a) :=a201; A + b201,0;,
where dy; is the Kronecker’s symbol 9; = a%j’ j=1,2,3,0=(01,02,0).

Using these notations, we rewrite system (2.1)-(2.2) as A(9)U(x) = 0.
Let us consider the scalar derivative

U-AQ)U = (aqu + cu”) - Au' + (cu’ + agu”) - Au”

2.6
+ (b + du) - grad divu’ + (du’ + bou”) - grad divu”. (2:6)

Assume that v = (u1, ug, uz)' and v = (vi, ve, v3)' are three-

component vectors. Then, after performing some transformations, we ob-
tain

u - Av = div(udivv) + divju x rotv] — divudive — rot u - rot v,

u - grad dive = div(udiv o) — divudivo.
Substituting these equalities into (2.6), we have
U-A)U =div{[(a1 + bi)u' + (c+ d)u"] dive/ + [(c + d)u’

+ (az + bo)u"] dive” + ar[u' x rot u'] + cfu’ x rotu”]  (2.7)
+cfu” x rot '] + ag[u” x rotu”]} — E(U,U),

where
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1
ar+b
x [((a1 + by) dive + (¢ + d) div u")? 4 dy(div u”)Q] (2.8)

EU,U) =

1
+ — [(ar rot v + crot u”)? + dy (rot u”)?] .
aj

Applying the Gauss-Ostrogradski theorem, from (2.7), we obtain
/ U(z) - AO)U (2)do — — / U(z) - P(9,n)U (2)ds
Qr g

/ U)}  {P@,)U(y)}ds — / E(U,U)dr,
QR

S(O,R)

(2.9)

where

U-PO,n)U = (n-u)[(a1 +by)dive' + (¢ + d) divu]
+(n-u")[(c+d)divu’ + (ag + be) divu”] — (a1u’ + cu”) - [n x rot u/]

—(cu + agu”) - [n x rot u”].
Here we have used the identity
n-[u xrotv] = —u- [n x rotv).
Applying the boundary conditions of problem (N), we obtain
{Uw)} -{PO,n)Uy)}~ =0, y € S(O,R).

Using this equality in (2.9), we have

/E(U, U)dz + / U(z)- P(0,n)U(z)ds = 0. (2.10)
Qg QR

Passing to the limit on both sides of equality (2.10) as R — +oo and
taking into consideration the asymptotic representations (2.5), we obtain

/ E(U,U)dx = 0. (2.11)
s

According to inequalities (2.3) we have E(U,U) > 0, € Q. By virtue
of this fact, (2.11) implies
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EWUU)=0, z€Q".
Hence, taking into account (2.8), we obtain
dive/(z) =0, dive”(z) =0, rotu/(z) =0, rotu”(z) =0, € Q.

A solution of this system has the form

o' (z) = grad Uy (x), u’(x) =grad¥s(z), z€Q, (2.12)
where V;(x), j = 1,2, is an arbitrary harmonic function.
Slnce {n(y ) u'(y )} =0, {n(y) - v’ (y)}~ = 0, the harmonic functions
U;(x), j=1,2, satisfy, on the boundary 02, the Neumann condition
V;(y) }_
=0, yeoi.
{ In(y)
As is known, the homogeneous Neumann problem has the solution
j®) = Cj = const, j = 1,2, x € Q7. Substituting this value of

L\
U, (z) into (2.12), we obtain v/(z) =0, u”(x) =0, z€ Q™.

Thus the homogeneous problem (IN)g has only a trivial solution. Hance
it follows that problem (N) admits no more than regular solution. O

3 Solution of the (N)~ problem

If in the boundary conditions (2.4) we assume that n(y) = (0,0,1)T, then
these boundary conditions can be rewritten as follows:

{us()}™ = f3(w), {us(W)}™ = f5w),

W)\ _Ofy) ui(y)\ "~ _affy)
{ D5 } - 5;], ~ i), { Des } = 5”% ~fly), B1)

j=1,2.

In formulas (3.1) assume the following

ov(y) |~ . ov(x)
= 1 .
{ 6.%3 } Q*S:;LILGBQ 8953

From equation (2.1)-(2.2), we have

Arotu/'(x) =0, Arotu’(z) =0, ze€ Q. (3.2)
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From the boundary conditions (3.1), we obtained

{rot u'(y)}; = 015 fo(y) — 02 f1(y),

_ (3.3)
{rot U//(Z/)}j =01 f5(y) — 025 f1(y), 7=1,2,
0 o 0fily)  9f3(y)
{8383 rot u (y)}3 = Yo - D1 ) (3 4)
K3 T _0fly)  0f) '
{8:103 rot (y)}3 Oy oy1

The Dirichlet and Neumann problems (3.2) — (3.4) has a following so-
lution [19],[24]

[rotu'(2)], = // 51yf2 — &2 fi(y))dy, Jj=1,2,

lrot u(z)]. // o LG ) — i )y, =12,
afi(y ofs
ot/ (@), = // (= )
fy)  0f5(y)
ot // (o~ o)

r=lz—yl :\/($1—91)2+($2—yz)2+x§.

from this we obtain that
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22015 — 56152g <8f{(y) 3f§(y)>

X 1Ot - d

[:U o u J // Dy E Y
—// —ffj Jdy, j=1,2,

T109; — 56251] offly)  9f5(y)
[a: x rot u”( j / / 9 o dy
1 01 .

- 271'//%383337’ ;/(y)dyv J= 1727

[a: X rotu // xlfl )+ xzfé(y))dy,

(3.5)

[z x rotu”(z)], = // xlf (y) + z2f3 (y))dy

If the following equality grad divu = Awu + rotrotw is consider in the
equations (2.1)-(2.2), we get

(a1 + b)) A/ (z) + by rot rot v/ (z) + (¢ + d)Au” ()
+drotrot u” (x) = 0,
(¢ + d)Au'(x) + drot rot v (z) + (ag + bo)Au” () (3.6)
+byrotrot u” () =
reQ .

On the other hand
Alz x rotu'(x)] = 2rotrotu/(z), Alz x rotu”(x)] = 2rotrot u”(z),
there fore the equations (3.6) will be rewrote so
Av'(z) =0, AV'(z)=0, z€Q, (3.7)
where
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v'(x) = 2(ay + by)u' (x) + 2(c + d)u” (z) + bi[z x ot u/ ()]
+d[z x rotu” (z)], (3.8)
V" (x) = 2(c + d)u'(z) + 2(az + bo)u” (z) + dlx x rot v ()] '
+ba[x x rot u” ().

If consider (3.1),(3.3)-(3.4) boundary conditions, we will get

(o)) = (1) ), {wy) = (2> ), (3.9)
a , IEG) 9 ) -
{axgvj(y)} =1 W), {%vj(y)} =W =12 (3.10)
y € 09,

where

P y) = 2(a1 +01) fi(y) +2(c + d) FE (y) — b1 (v F1(Y) + v2/5(y))
—d (i f1' W) +v2 07 (),

£ () = 2(c+ d) fi(y) + 2(az +b2) fi () — ¢ (0 fi () + v fo(y))
— by (11 (v) +v2/5(v)) ,

D) = 2(ar +by) (W Do piw) + 2+ a) (Wy( Do)
- [ (20 250 g (98100 WY]

0y oy 0y2 o
1) =2 +0) (“B2 i)+ 200+ i) (P52 - 1)
Of)  Of) NG O
T (201~ 1102) [d< 513/2 - 32yl >+b2< 2  Om )]7
j=1,2.

The Dirichlet problems (3.7),(3.9) and Neumann problems(3.7),(3.10)
has a following solution
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, 1791
@) =5 [ [ 5o 15 W),
101
@) =50 [[ 5 1887 Wi
e (3.11)
1 1
gla) =5 [[ 110w, =12
1 ::) 1
o (2) = —5- / / S )y, =12,
From (3.8), we have
u'(z) = (v (@) — v (x) + G [z x rot ! (2))]
+¢5 [z x rotu” ()] (3.12)

u'(z) = G’ (z) — (30’ (2) + G [ x rot v (z)]
+(7 [z x rot v ()] ,
where
¢1 = (a1 + b1)/2ds, = (ag +b2)/2d2, (3= (c+d)/2dy,
G = (d(c+d)— bl(a2 +b2)) /2da, (5 = (ba(c + d) — d(az + ba)) /2d2,
G = (bi(c+d) —d(a1 +b1)) /2da, (7= (d(c+d) —ba(ar + b1)) /2ds.
If we consider the equality (3.5), (3.11) in (2.11), we get

/ K(x,y)f(y)dy, xe Q™ (3.13)
where
KW (x,y) K@ (x,y) (P) (p)
K(X7 Y) - K(3) (X, y) K(4)( ):| o6 9 K (X, y) — |:K1_] (X7 Y):| 3x3 ’

p= 1’273747 f — (fl,f”) , f/ — (f{,fé,fé)T, f// _ ( // él)T,

K(l)(X y) = (1 =d3)(1 - d35) <5lj(C4 - 1)% — (4 Or )

8m18x]~
01 01 0 1
+ (1 — 613)03j — d G(1 53])531563a - + 01303 +— .
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@ o) — (1 51— 5o (6k — LT\ o] — aVsrapa O L
K7 (x,y) = (1 —di3)(1 53])<5IJT axax) (1 533)5133338ij7

K (x,y) = Go(1 — 013) (1 — ds;) (‘5’% 07,0 ) Ol = o)ty
7 J

K{]‘l) (X’y) = (1 — 553)(1 - 53]') <5lj(c7 ); - C? 27” >

0x10x;
0 1 01 0 1
+ (1 — 013)03j 5— 07 ¢r(1 53;)531903a - + 813035 — .

Here we used the identities

Lofiy // .
72 —1,2
//T‘ ay] or JTfl dya la] s 4y
13fk // .
_ =1,2.
// €y l r 8:1/] 8 dya l7]>k 72

Calculate the stress vector T'(9,n)U(x) by (3.13), we get

T(9,n)U // x,y)f(y)dy,

L® X, L® X,
L) =[G ) ) 2 [

3x3
l: 172737 47
01
Ll(:J)($;y) = (1 — 5k3)(1 — (53j) |:(CC6 + a1y — al)é‘kjaix?’;
—2(p1Cs + MSCG)W] +2u1(1 — 5k3)53jm;
(1 — 635)0n3 [( p1 +ay + 5 ) 9 7 +2(p1Gs + p3le)xs D :0rs r
9% 1

+ 2#15k353j87x§;7
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01
L2 (,y) = (1 - 0k3)(1 — 83) |:(a1<5 +elr — 6)5’”873?
o’ 2 1
—2 — | 4+ 2u3(1 -6 o 2
(1G5 + M3<7)a$ka$ja:lj3:| + 2p3(1 — 0p3) 03, 02,025 1
— (1= 03 -2 S )= +2 1
(1 = 037)0ns [( p3 2> Bz, 1 +2(p1G5 + pslr)zs Pz, 003 7
0% 1
+ 2#3514:353]'87%;7
01
Ll((:;)(l‘,?/) = (]_ — 5k3)(1 - 63]) |:(Q2C6 + C<4 — C)5k]87m3;
—2(p2Ce + C)L +23(1 — By3) 3, » 1
H2Ge T U364 8xk6xj6x3 M3 k3)03; Dzpdzs T
— (=03 5= 2u ) 5 +2 :
(1 —635)0n3 [(C—I— 2 Ms) D 7 + 2(p2Ge + p3ls)z3 D:0s T
0% 1
Qg
(4) 01
Ly; (z,y) = (1 — 6k3)(1 — 635) |(cCs5 + aalr — a2>5kj87x3;

—2(u3Cs + 4)073’“ + 2p9(1 — 643)d A
M35 T H2G7 Gmk&xj@xg H2 k3 3J6mk8m3r

by 01 9% 1
— (1 — 035)0k3 Kag + 5 2M2> 9w, v + 2(p3Cs + palr)es 92,005 1

0% 1
+ 2“26]6363‘]'@;‘
3

Assume that the functions f](y), f/(y) € CY(09), fily), fily) €
Ch(09), 7 = 1,2, 0 < a < 1, then by straight forward verification we
establish that the vector U(z) represented in form (3.13) is a solution of
system (2.1)-(2.2) in the domain Q7. If in the functions 875%6(:), auagcix),
J = 1,2, uh(z),uf(x) from (3.13) we pass to the limit as x — y € 9N
(x3 — 0) and taking into account [19], [24]

“+00

0
tim o [[ 5y =), v e o,
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we obtain that the vector U(z) represented in form (3.13) satisfies the
boundary conditions (3.1).
If the boundary vector-function satisfies the conditions

Wl < e Wl < =12
/ A 4 A .
}f3(y)‘ < Tl ik ‘f3 (3/)‘ < Tl i y €09, A= const >0,

then the vector U(z) represented by formula (3.13) is a regular solution of
problem (N) which satisfies the following decay conditions at infinity

wj(w),uf(x) = O (Ja| " nfz]), j=1,2, uy(z),uf(z) =0 (|z[7),

3(), 4
Ouy(x), Opuff () = O (2| 7?), j=1,2,
Oul (@), Opuf () = O (Jz| > In]z]),

k=1,23.
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