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Abstract

In the present paper the solutions of Kirsch's type problems are considered by
means of different theories (E. Reissner, A. Lurie, |. Vekua). The obtained results are

compared with each other.
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1 Introduction

In the paper we consider Kirsch type problems by means of different refined
theories of plates (E. Reissner, A. Lurie, I. Vekua).

The complex form of the 3 — D system of the equation for the elastic
plate, we have

1) the system of the equilibrium equations for the stress components:

0:(011 + 022 — 2i012) + Oz(011 + 022) + O304 + ¢4 =0, 1)

0,04 + 00+ + 03033 + ¢3 = 0;
2) Hooke’s law
(011 — 099 + 2i019 = 4pdsuy,

011 + 092 = 2()\ + ,LL)Q + 2A03us,

(1.2)
o4 = 013 + i023 = p[20zu3 + Dzus ],
033 = A0 + (A + 20)O3us,
where
0 = 0yuy = O uq + Ozu4 (v =1,2), (1.3)

Uy = up +iug, ¢p = @1+ igo

and A and p are Lame’s constants;
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3) the system of the equilibrium equations in the components of the
displacement vector:

p(Auy + 0Fus) + 2(A + 1)95(0 + d3uz) + ¢4 = 0, 14
p(Aus + 02us) + (A + p)93(0 + sus) + s = 0 '

4) the boundary conditions on the border of the circle |z| = R:

)

. 1 ] iy
O(rr) T10(r9) = 5 [011 + 022 + (011 — 022 + 2i012)e 2“9}

2
Iz
z]7

(1.5)
O(r3) = Re[o e ] = —Im [J+ 7

where

( 1 ] iy
T(rr) = 3 [011 + 022 + Re(o11 — 022 + 2i012)e 2“9}

)

1 ) iy
Twy) = 5 [011 + 022 — Re(o11 — 022 + 2i012)e 2“9} (1.6)
1 ) e
\U(Tﬁ) = 5 Im [(0’11 — 099 + 22012)6 2“9}.

Y

2 The Kirsch Type Problems

Now consider the Kirsch type problems. These problems were solved by
N. Muskhelishvili’s classical theory as well as A. Lurie and 1. Vekua’s ap-
proximation N = 0. In this case the condition o35 = 0 isn’t satisfied.

Let us see Lurie’s approximation N = 1 (stress-strain).
Now (1.4) has the form

0 0 10

(2.1)
N7}
The general solution of this system has the form

(0) A3 —
uy = o eE) —29(z) —u(e) - [f(2) + 2 f'(2) ],

H (2.2)
o)) A4 2u I
Uz = 2

el )+ 2T @)

o4
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where o
0 24 ’ Ta%Y / TN
0 =51 [F )+ - 2[ ) + 2T, (2.3)
©(z), ¥(z), f(z) are the analytic functions of the complex variable
z=x1 + txo.
Now Hooke’s law has the form:

© O (0) (0)
o11— 022+22012—4M&U+——4M{290 (z )+1/1’(Z)+Zf"(2)}7

0 © 210
(0)11 + (0)22 =2A+pn) 0 + 0 (u)g =

= 4| (2) + 9) - 5 (P + TR,

A+
A 24
&y = 20y = ap A* ), 24
)
(3’33 06+ AtL?u (i)g

3AN+4p
A+

2 () + ) +

The boundary conditions are now written as

om0 = 20[0(0) + 7 - A (£1(0)+ F)-

—(z O(z) + U (2) + 2 f'(2) )6_2i19:| , (2.5)

A+2 —_—
(01')(r3) =4u )\—:_: h Re [f”(z)e_w].

3 Problem I. Uni-Directional Tension of a Plate,
Weakened by a Circular Hole.

Let the edges of the hole be free from external stresses and let the tension
in the direction Oz be equal to p at infinity, where p is a constant.

(0) (0) 0) 1) 0
(I;) o) =p=const, (012 = (022 = (U+ = (0)33)°° =0,
(0) (0) (0) oo
(o11— 0da2+2i012)” =p
0 0
((0)11 + (0)22) =p
0) oo —
(04+)” =0
(0) oo
[(#)* =0

95
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__pP
by = ™
_ P (A+p)(BA+2p)
=178 DGy ¢ G
o P AN+ p)
07 T8 (A +2u)(3A + 2p)

(I2) The boundary conditions on the border of the circle |z| = R:

a pR2
2 = T
@ o +10 rg) = 0 ! 4
= qp, - PR, 3pR™ . (3.2)
(0) 2 = Ta 4 = —T
o (r3)|p =0 1 p

(3.1) and (3.2) =

(P/(Z) =ap + a% )
z
o by
P'(2) =bo+ —5 + A (33)
f(z) = co
(1.6) and (3.3) =
(0) D R?>7 p 4R?* 3R*
O(TT):E |:1_7"72i| +§ |:1_7=72+1"T:|C082197
(0) p R*7 p 3R
T @) Ty [1 + p} -3 [1 + 7“74} cos 29, (3.4)
© p 2R?*  3RYv .
\ g (m?) = E |:]. + TT TT] 3111219.

At the internal boundary (i.e. for » = R), as was to be expected, one
has

(0) (0)
Oy = 0 (9) =0,
. (0) L
while the value of o’ (yy) is given by

((Of)(w) = p[l —2cos29] on L. (3.5)

0
The maximum value of (a)(w) thus occurs for cos 29 = —1, i.e. for
9=+
2

56
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where
(0)
max O (¥9) — 3p

so that the value of the tensile is increased.
The coeflicient of concentration

(0)
max O (99)

p

The displacements have the following forms:

K= =3.

Up + TUy + u+e_i’9 -

A+2 2(A+2
e g e P
. r 2u o I
p 2 2 :
= — — 219
Uy 4/~””{)\+/~LR +7r +r2}sm
p A
=——" h.
s 2 3A+2p

4 Problem II. Bi-Axial Tension.

R?+47?

4
1;22 } cos 219}

(3.8)

The problem of bi-axial tension of a plate with a circular hole is solved even

more easily.

(IT;) Conditions at infinity

(0) (0) (0)

((2)11 - (2)22 + Qi(g)u)oo =0
(0) (0)
011+ 02)=2p
((1> - ) =
(o)™ =0
0 00
(D =0

(

bp =0

(011)7 =(02)* =p=const, (o12=04=033)" =0,

P (A+p)(BA+4p)

— ag — —— -

A (AN +2p) (3N + 2p) ;
p AN+ )

(4.1)

co=—"—":

o7

A (AN +2p) (3N + 2p)
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(IIz) The boundary conditions on the border of the circle

=0
CHNRC N RPN I
T rd -
(1)( ) ()R = b2_p2 , b4_0 (42)
7 (13)| g =0 a

(4.1) and (4.2) =

¢'(2) = ao
V() = % _ (4.3)
f'(z) =co

(1.6) and (4.3) =

r2
0) R?
o (99) = p[l + 72} (4.4)
(0)
[ 7 (o) =0
. (0) () (0)
At the internal boundary o (.,) = 0 (,9) = 0 and o (y9) = 2p. The
displacements have the form:
P [ A+2u , 2}
; r= 5 +R
Up + Uy = u+e_“9 = “ 2ur {3)\ +2u " , (4.5)
uy =0
€] p A
=—=" h.
“s w3+ 2u

5 Problem III. Uniform Normal Pressure, Ap-
plied to the Edge of a Circular Hole.

Consider now the case when the edge of the hole is subject to uniform

normal pressure p and when the stresses vanish ar infinity.
We have
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(ITI;) the conditions at infinity

o5, =0 (i,j=1,2,3),

0 0 0 oo
((0)11 - (0)22 + 21'(0’)12) =0 )

(0) 0) oo o =20

o1+ o =0
((1)11 . 22) :> aO — 0 7 (51)
((‘g)+) =0 co =0
(0'3)™

(0) (0) (0)
Cenlg="P Tuolg=0, Tualg=0,
[ 0
© Lo ,
rr rd) —
o = 1 =P =0 (5.2)
g (r3) =0 2:“
cp,=0 n>1
(5.1) and (5.2) =
¢'(2) =0
by
/ 092 5.3
¥() =2 53
fl(z)=0
(1.6) and (5.3) =
(0) pR?
() =~
(0 pR*> 5.4
T W) = (5:4)
(0)
g (r9) = 0

The displacements have the following forms:

Up = p7R2

Up +iug =upe W = 2ur (5.5)
uyg =0
uz = 0.
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6 Lurie’s Method (N=1)

Consider now the same types of problems for the bending and solve them
by means of A. Lurie’s method.

Lurie’s approximation N = 1 (bending).

We have

1) the system of the equilibrium equations in the components of the
displacement vector:

(1) 1)
AU 4+ 20N+ )00 =0

- (6.1)
MA(u)g—i— Arp 0 =0,
where "
1 2”
R L O 2
e W)+ TR (62
2) the general solution of this system has the form:
(1) A+3
uy = el(x) — 29 U,
o X H (6.3)
us =5 (Zp(z )+ 2¢(2)) + f(2) + f(2);
3) now Hooke’s law has the form:
(1) 1) 1) (1)
011—022+22012—4M&U+——4M[ ()‘Hﬂ/(Z)L
(1 ( (1)
11+ T = 200+ 1) 0 = 4p¢'(2) + ¢'(2) ],
0 0 1@
(U)+ =i {2(%(16)3 +a (U)+] = (6.4)
_ 2 m 1 ,
=5 [y 99 — 296 - 596 + AT,
(1) O 2p
P =20 = =2 [0(2) + 93 );

A+

4) the boundary conditions on the border of the circle |z| = R are written
as

n —2i
3 )+ 9 oy =20 [0 () + )~ (2 9T+ (2) )2

D=2 Re | (3 o(2) = T BE+ATET)e .

(6.5)

60
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7 ProblemI'. Uni-Directional Bending of a Plate,
Weakened by a Circular Hole.

We have conditions at infinity

1) | (1) (1) (0) (1) (oo
(011)® =p=const, (012=09=04=033) =0,

(D= W+ 20010 = p = 4k

(011 — 020+2i012

((011 + 022) = p = 8uag

A 1

- (7.1)
>\+Iuaoz—§boz] #0

((g)

(1) 0o
=4 a 0
[ (733) A a7
because the conditions at infinity are not satisfied therefore we consider the
same problem for the approximation N = 2.

We have

o= [hf’(z) -

1) the system of the equilibrium equations in the components of the
displacement vector

1 1) 2
WAL 200+ wo=(0 + > (u)g) o,
L 2 2
WA, AR 202, (7.2)
3 h?
MA%):& =0,
where
M 2M / 2SN / TN
0 = [©1(2) + &1 (2) | —2[f2(2) + f5(2) ]; (7.3)

A+

2) the general solution of this system has the form

(%L) A+ 3
+ A+

(3)3 = fo(z) + fo(z)—

p1(2) = 2 ¢1(2) = U1(2) = (fal2) + 2 f5(2) ),

_% [2901(2) +2zp1(2) + Q;iiﬂ (Zf2(2) +z%)},
= 2 ) + T

A+ p
(7.4)
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where ¢1(2), ¥1(2), fo(z), fa(z) are the analytic functions of the
complex variable z = x1 + ixo;

3) Hooke’s law has the form

1 1
P11~ 0o+ 21010 = an[= ) + W) + 2 2]

(0) (0) 1)
O'+:'LL|:2&Z’U/3+E ’UJ+:| =
= BT + 52 o1(2) — 220 (2) — Ta(2) -
h 0 A !
3N +4p
Sl (e +2BE)],
2 _

1 1) 2 (2
(0‘)33:>\0 +(>\+2/«4)E(U)3:

3A+4p —
— ! / / /
=[5 (W) (B RE)]
(7.5)
4) the boundary conditions on the border of the circle |z| = R
(1) (1) / ; jz / /
—9 - -
7 )0 e =21 (2)+ )~ () +44(2)
(¢ + ¥ () +2 fg<z))e—2w},
P sy = £ Red [207§(2) + 2 pr(2)-
r8) ™ p Ay
— —_ 3)\+4 1
2 -0 S () ) |
(2) A+ 2p0 9
g = 2 hRe [ f7(2)e ™.
) = 2T e[ f5(2)e™"]
(7.6)

8 Lurie’s Method (N=2)
Let’s solve the above-mentioned problem.
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We have
(I}) conditions at infinity

1 1 1 0 2 1
((0')11)00 =p= const, ((0')12 = (0')22 = (O')+ — (O')+ — (0.)33)00 — 07

(1) (1) (1) oo -
(o011 — 02+2i012)" =p=—4ubo
(1) 1) oo L
(o114 0 2) —p—SM(ao )\+Md0>
0 oo _ B[, 2A L 3+ B
(o 4) —h[2hf0 /\‘f‘HaOZ boz — 2 N doz}—() =
2 /\+2,u —I 100
(@ =2 2 =0
1 dp
P =—— A 3A+4u)dy| =0
(0'11) )\+N[a0+( + 4p1)do]
7 p
bo = by = — 2
0 = bo 14
___p (A+pBA+4)
ag = ag = — -
8 (A4 2u) (3N +2p)
= ; (8.1)
d0230:—£ AN+ )
8u ()\+2,u)(3>\+2u)
/__L 3
I},) the boundary conditions on the border of the circle |z| =
2
(1) (1)
0 (rr) + 10 )|, = 0
(0)
0 (r3)],_p =0 =
2) 0
73—
a/ —_L‘R2
2=
b __LW b __3pR4
— 7T 4 4 4 (8.2)
d, =0, n>1
o = PR PR A+3u
(DT TRk T T 8uh At
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(8.1) and (8.2) =

( a
@) =20+
bo by
Ve =bot 5+ (8.3)
b c1 | ¢3
f()(z) _8M7h Z+ ; + ?
3(2) = do
(1.6) and (8.3) =
m p R*1 p 4R?* 3R
Ton =3 [1=7z] + 5 [1- T + T eos20
(1) p Ry p 3R*
O (99) = 5 |:]- + ﬁ} - 5 [ + TT} cos 20 . (84)
(1) p 2R?>  3R%Yq .
O—(T’ﬂ) = —5 [1 =+ 7”'72 — T'Ti| Sln2'l9
At the internal boundary
1 1
(U)(rr) = (0)(r19) =0,
. (1) L
while the value of o (y9) is given by
%)(M) = p[l —2cos2v] on L. (8.5)
The maximum value of %)(1919) thus occurs for cos 29 = —1, i.e. for ¥ = 7,
where
(1)
max 0 (99) = 3p (86)

so that the value of the tensile is increased.

9 Problem II'. Bi-Axial Bending.
We have
(IT}) conditions at infinity

1 1 1 0 2 1
((0)11)OO = ((0)22)00 = p = const, ((0)12 = (U)+ = (U)+ = (0)33)00 =0,
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1 1 1) oo
((0)11 — (0)22 + 21'(0)12) =0

(1 1 D00)™ = 2

(0) [e’s) 12 —/
== |2hfy — — -9
(O'Jr) h[ fo )\+M(IQZ )\—1—#
(2) oo
(04)*=0

1
((0)33)00 = Xag + (BA+4p)dy =0

o= P AT WBA+ )
07 4 (N 2)(3XN + 2p)
bo =0

- g — P AA+ 1)
7 T4 (A +2u)(3A + 2p)
f(0)=0

ag = 0
(1) (D)
() 10 )|, = 0 pR?
© be="p 0 =0
U(TS)’T:RZO — do, n>1
(2)
o ¢3)ly—p =0 . _ PR
L 2uh
(9.1) and (9.2) =
(¢(2) = ao
bo
wl(z) 2
1y — G
0(2) = >
5(2) = do
(1.6) and (9.3) =
(1) R?
U(rr) _p|:1 - 7'72:|
( R?

(9.1)

(9.2)

(9.3)

(9.4)
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At the internal boundary

(1) (1) (1)
O ()= 0 (o) =0, 0 (99)=2p.

Thus we have considered and solved Kirsch’s type problems: case of uni-
directional and bi-axial tensions, as well as the uniform normal pressure,
applied to the edge of a circular hole.

For A. Lurie first approximation the coefficient of concentration k = 3,
whereas 1. Vekua’s coefficient of concentration depends on Lame’s constants
Aand p (A= (IJFU)E(+2U), W= ﬁ, E is the modulus of elasticity, o is
the Poisson’s coefficient) and % value (R is the radius of a circular hole, h
is the thickness of a plate).

As to the bending, besides A. Lurie and I. Vekua’s refined theories, we
consider E. Reissner’s well-known theory, which refers only to the bending.

For the first approximation according to Lurie 05° # 0 and o33 # 0
and according to I. Vekua 0%° = 0 and 055 # 0, therefore we consider the
second approximation N = 2.

In Lurie’s case the coefficient of concentration equals to three k = 3,
but it should be noted, that v parameter was introduced in to the theory of
plates by Prof. T. Vashakmadze, which connects different refined theories.

10 The Stress Coeflicient

In this case the stress coefficient of concentration has the following form

(14 0)ka(xR)
2ko(#R) + (1 + 0)ka(xR)’

3 R
%R_,/1+27ﬁ. (10.2)

From this formula it is clear that the coefficient of concentration K depends

not only on the material o, but on % relation and on v as well.

Assume that
3 R
X =xR= —.
SR U

For X (with a large radius or small thickness) taking into consideration the
asymptotic formulas

Ko(z) = \/Ze—l‘ (1 —&—o(é)) (10.3)

max (99) .

K = 1+2

(10.1)

where
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5430
3+o

we obtain the coefficient of concentration for the classical case k =
o is Poisson’s coefficient.
When v = —0.5 we obtain the same result.
When v = 0 we obtain the same result as in I. Vekua’s theory.
When ~v = 0.1 we obtain the same result as in E. Reissner’s theory.
The formula (10.2) for small X (with a small radius or large thickness)
gives the coefficient of concentration K, which is equal to 3, that is the
same result as Lurie’s theory, when N = 2 (the second approximation).
Note: for small X the classical result isn’t obtained.
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