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Abstract

The paper deals with the boundary value problem for the nonlinear integro-

differential equation u′′′′ − m
( l∫
0

u′2 dx
)
u′′ = f(x), m(z) ≥ α > 0, 0 ≤ z < ∞,

modeling the static state of the Kirchhoff beam. The problem is reduced to an in-

tegral equation which is solved using the iteration method. The convergence of the

iteration process is established and the error estimate is obtained.
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1 Statement of the problem

Let us consider the nonlinear beam equation

u′′′′(x)−m

( ℓ∫
0

u′2(x) dx

)
u′′(x) = f(x), 0 < x < ℓ, (1)

with the conditions

u(0) = u(ℓ) = 0, u′′(0) = u′′(ℓ) = 0. (2)

Here u = u(x) is the displacement function of the length ℓ of the beam
subjected to a force given by the function f(x), the function m(z),

m(z) ≥ α > 0, 0 ≤ z < ∞, (3)

describes the type of relationship between stress and strain. Namely, if
the function m(z) is linear, this means that the latter relation is consis-
tent with Hooke’s linear law, while otherwise case we deal with material
nonlinearities.
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Equation (1) is the stationary problem associated with the equation

utt + uxxxx −m

( ℓ∫
0

u2x dx

)
uxx = f(x, t),

m(z) ≥ const > 0,

which for the case where m(z) = m0 +m1z, m0,m1 > 0, and f(x, t) = 0,
was proposed by Woinowsky–Krieger [11] as a model of deflection of an

extensible dynamic beam with hinged ends. The nonlinear term
ℓ∫
0

u2x dx

was for the first time used by Kirchhoff [2] who generalized D’Alembert’s
classical linear model. Therefore (1) is frequently called a Kirchhoff type
equation for a static beam.

The topic of solvability of equations of (1) type is studied in [3]–[5]
and [10], while the problem of construction of numerical algorithms and
estimation of their accuracy is investigated in [1], [4], [6], [8] and [9].

In the present paper, in order to obtain an approximate solution of
problem (1), (2), an approach different from the ones applied in the above
references is used. It consists in reducing problem (1), (2) by means of
Green’s function to a nonlinear integral equation, to solve which we use an
iteration method. A condition for convergence of the method is established
and its accuracy is estimated.

The Green’s function method with a further iteration procedure has
been applied by us previously also to a nonlinear problem for the axially
symmetric Timoshenko plate [7].

2 Assumptions

Suppose that f(x) ∈ L2(0, ℓ) and the function m(z) satisfies, in addition to
requirement (3), the Lipschitz condition on an interval∣∣m(z2)−m(z1)

∣∣ ≤ L|z2 − z1|, (4)

0 ≤ z1, z2 ≤ c,

where L = const > 0 and

c =
ℓ2

2

(
α+

2

ℓ2

) ℓ∫
0

f2(x) dx. (5)

10
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3 The Method

Applying the Green’s function of the problem u′′′′(x) − au′′(x) = f(x),
0 < x < ℓ, u(0) = u(ℓ) = 0, u′′(0) = u′′(ℓ) = 0, a = const > 0, and
performing some transformations, from problem (1), (2) we come as a
result to the equivalent nonlinear integral equation

u(x) =

ℓ∫
0

G(x, ξ)f(ξ) dξ +
1

τ
φ(x), (6)

where

G(x, ξ) =

=
1

τ
√
τ sinh(

√
τ ℓ)

{
sinh(

√
τ (x− ℓ)) sinh(

√
τ ξ), 0 < ξ ≤ x < ℓ,

sinh(
√
τ (ξ − ℓ)) sinh(

√
τ x), 0 < x ≤ ξ < ℓ,

τ = m

( ℓ∫
0

u′2(x) dx

)
,

φ(x) =
1

ℓ

(
(ℓ− x)

x∫
0

ξf(ξ) dξ + x

l∫
x

(ℓ− ξ)f(ξ) dξ

)
.

Equation (6) is solved by the method of ordinary iterations. After choosing
a function u0(x), 0 ≤ x ≤ ℓ, which together with its second derivative
vanishes for x = 0 and x = ℓ, we find subsequent approximations by the
formula

uk+1(x) =

ℓ∫
0

Gk(x, ξ)f(ξ) dξ +
1

τk
φ(x), 0 < x < ℓ, (7)

k = 0, 1, . . . ,

where

Gk(x, ξ) =
1

τk
√
τk sinh(

√
τk ℓ)

×

×

{
sinh(

√
τk (x− ℓ)) sinh(

√
τk ξ), 0 < ξ ≤ x < ℓ,

sinh(
√
τk (ξ − ℓ)) sinh(

√
τk x)), 0 < x ≤ ξ < ℓ,

(8)

τk = m

( ℓ∫
0

u′k
2(x) dx

)
, (9)

k = 0, 1, . . . ,

11
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and uk(x) is the k-th approximation of the solution of equation (6).
At the (k + 1)-th iteration step, having the k-th approximation uk(x),

to find uk+1(x) we first calculate the parameter τk by (9) and then, taking
(8) into account, find the function Gk(x, ξ), which is used together with
τk in formula (7). The numerical integration technique can be used for
calculating definite integrals in the general case.

4 Estimation of the Method Error

Our aim is to estimate the error of the method, by which we understand
the difference between the approximate and the exact solution

δuk(x) = uk(x)− u(x), k = 0, 1, . . . . (10)

For this, it is advisable to use not formula (7), but the system of equalities

u′′′′k+1(x)−m

( ℓ∫
0

u′k
2(x) dx

)
u′′k+1(x) = f(x), 0 < x < ℓ, (11)

uk(0) = uk(ℓ) = 0, u′′k(0) = u′′k(ℓ) = 0, (12)

k = 0, 1, . . . ,

from which formula (7) follows.
If we subtract the respective equalities in (1) and (2) from (11) and

(12), we get

δu′′′′k (x)− 1

2

((
m

( ℓ∫
0

u′ 2k−1(x) dx

)
+m

( ℓ∫
0

u′2(x) dx

))
δu′′k(x)+

+

(
m

( ℓ∫
0

u′ 2k−1(x) dx

)
−m

( ℓ∫
0

u′2(x) dx

))(
u′′k(x)+u′′(x)

))
=0,

(13)

δuk(0) = δuk(ℓ) = 0, δu′′k(0) = δu′′k(ℓ) = 0, (14)

k = 1, 2, . . . .

System (13) and conditions (14) are the starting point of estimation of
the method error. We shall have to derive preliminarily several a priori

estimates. Let us denote the norms in
◦
W 1

2(0, ℓ) ∩W 2
2 (0, ℓ) as

∥u(x)∥p =
( ℓ∫

0

(dpu
dxp

(x)
)2

dx

) 1
2

, p = 0, 1, 2, ∥u(x)∥ = ∥u(x)∥0.

12
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The symbol ( · , · ) is understood as a scalar product in L2(0, ℓ).
Lemma 1. The inequalities

√
2

ℓ
∥u(x)∥ ≤ ∥u(x)∥1 ≤

ℓ√
2
∥u(x)∥2 (15)

are valid for u(x) ∈
◦
W 2

2(0, ℓ).

Proof. Using the equality u(x) =
x∫
0

u′(ξ) dξ we obtain

|u(x)| ≤
( x∫

0

dξ

) 1
2
( x∫

0

u′2(ξ) dξ

) 1
2

≤ x
1
2 ∥u(x)∥1,

which implies the left inequality of (15). Applying the latter and taking
into account that

∥u(x)∥21 = u(x)u′(x)
∣∣ℓ
0
−
(
u(x), u′′(x)

)
=

= −
(
u(x), u′′(x)

)
≤ ∥u(x)∥ ∥u(x)∥2,

we complete the proof. ⊓⊔
Lemma 2. For the solution of problem (1), (2) the inequality

∥u(x)∥1 ≤ c1, (16)

where

c1 = max z, 0 <

√
2

ℓ
z
( 2

ℓ2
+m(z2)

)
≤ ∥f(x)∥, (17)

is true.
Proof. We multiply equation (1) by u(x) and integrate the resulting

equality with respect to x from 0 to ℓ. Using (2), we get the relation

∥u(x)∥22 +m
(
∥u(x)∥21

)
∥u(x)∥21 =

(
f(x), u(x)

)
.

By (15) we obtain( 2

ℓ2
+m

(
∥u(x)∥21

))
∥u(x)∥21 ≤

ℓ√
2
∥f(x)∥ ∥u(x)∥1,

which means the fulfillment of (16). ⊓⊔
Note that when we deal with the problem of finding c1 by (17), by

virtue of (3) c1 can be defined by c1 = max z, 0 <
√
2
ℓ z( 2

ℓ2
+ α) ≤ ∥f(x)∥.

As a result we get c1 =
ℓ√
2
( 2
ℓ2
+α)−1∥f(x)∥, but, speaking in general, this

solution is not the best way to cope with the situation.

13
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Lemma 3. Approximations of the iteration method (7) satisfy the in-
equality

∥uk(x)∥1 ≤ c2, k = 1, 2, . . . , (18)

where

c2 =
ℓ√
2

( 2

ℓ2
+ α

)−1
∥f(x)∥. (19)

Proof. We multiply equation (11) by uk(x) and integrate the resulting
relation with respect to x from 0 to ℓ. Taking (12) into account, we get

∥uk(x)∥22 +m
(
∥uk−1(x)∥21

)
∥uk(x)∥21 =

(
f(x), uk(x)

)
,

k = 1, 2, . . . .

Applying (3) and (15) we have( 2

ℓ2
+ α

)
∥uk(x)∥21 ≤

ℓ√
2
∥f(x)∥ ∥uk(x)∥1,

which implies (18). ⊓⊔
Let us compare the parameters c, c1 and c2. By (5), (17), (3) and (19)

c1 ≤ c2 =
√
c . (20)

5 Convergence of the Method

Multiplying (13) by δuk(x), integrating the resulting equality with respect
to x from 0 to ℓ and using (14), we come to the relation

∥δuk(x)∥22 +
1

2

((
m
(
∥uk−1(x)∥21

)
+m

(
∥u(x)∥21

))
∥δuk(x)∥21+

+
(
m
(
∥uk−1(x)∥21

)
−m

(
∥u(x)∥21

))(
u′k(x) + u′(x), δu′k(x)

))
= 0.

Using (3), (4), (5) together with (16), (18) and (20) we obtain

∥δuk(x)∥22 + α∥δuk(x)∥21 ≤

≤ 1

2
L

1∏
p=0

∣∣∣(u′k−p(x) + u′(x), δu′k−p(x)
)∣∣∣ ≤

≤ 1

2
L

1∏
p=0

(
∥uk−p(x)∥1 + ∥u(x)∥1

)
∥δuk−p(x)∥1.

14
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By (15), (16) and (18) we get

∥δuk(x)∥1≤
1

2
L
( 2

ℓ2
+α
)−1

∥δuk−1(x)∥1
1∏

p=0

(
∥uk−p(x)∥1+∥u(x)∥1

)
≤

≤ q∥δuk−1(x)∥1,

where

q =
1

2
L
( 2

ℓ2
+ α

)−1
(c1 + c2)

2.

Taking (10), (15), (17) and (19) into consideration, we come to the
following result.

Theorem. Let the assumptions (3) and formulated in Section 2 be
fulfilled and besides

q =
1

2
L
( 2

ℓ2
+ α

)−1
(
max z +

ℓ√
2

( 2

ℓ2
+ α

)−1
∥f(x)∥

)2

< 1,

where

0 <

√
2

ℓ
z
( 2

ℓ2
+m(z2)

)
≤ ∥f(x)∥.

Then approximations of the iteration method (7) converge to the exact so-
lution of problem (1), (2) and for the error the following estimate

∥uk(x)− u(x)∥p ≤
( ℓ√

2

)1−p
qk∥u0(x)− u(x)∥1,

k = 1, 2, . . . , p = 0, 1,

is true.
In conclusion, note that since relations (11), (12) do not necessarily lead

to (7), the theorem will also be valid in the case of another extension of
(11), (12), for instance, when the current iteration approximation in (11),
(12) is defined by finite difference, finite element or other methods.
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