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Abstract

In this paper random measures and their nonlinear transformations are considered.

The conditions of absolute continuity for this measures are obtained in case of nonlinear

and random transformation of a space. There is given explicit formula for Radon-

Nikodym derivative. The notion of measurable functional is used and the logarithmic

derivative technique of measures is developed.
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Random measures were defined and studied in [1,2], where the condi-
tions were obtained under which formulas of integration by parts are valid,
an extended stochastic integral was defined and its properties were estab-
lished. Random measures are of great practical importance because they
surely appear as solutions of differential equations in measures (see [3]),
with random coefficients and additive noise.

In the present paper we study the absolutely continuity of distributions
of random measures in the case of their nonlinear transformation. The
Radon-Nykodim density is calculated, the density formula containing an
extended stochastic integral over a random measure.

The terms and notation used here are the same as in [4].

1. {Ω,F , P} is a fixed probability space. Let µ(∆, ω) be a real, random
a.s. σ-additive function of sets on some measurable space {X,B(X)}. As-
sume that Eµ(∆) = 0 and there exists an σ-additive measure β(∆1×∆2) =
Eµ(∆1)µ(∆2) on {X ×X,B(X)×B(X)}. Let H0 be the space of measur-
able function ∆φ on {X,B(X)} with real values and scalar product

(φ,ψ)0 =

∫
X

∫
X
φ(x)ψ(y)β(dx× dy) = E

∫
X
φ(x)µ(dx)

∫
X
ψ(y)µ(dy).
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Following [2], we will construct the conjugate space to H0 and realize
it as a space of measures µ = µφ = Sφ, where S is a unitary operator

S : H0 → H∗
0

and

µφ(∆) =

∫
X
φ(x)β(dx×∆)

so that the pairing of elements from H0 and H∗
0 can be written in the form

⟨ψ, µφ⟩ = ⟨ψ, Sφ⟩ = (ψ,φ)0.

It is obvious that H∗
0 is also a Hilbert space with the scalar product

(νφ, νψ)∗ = (φ,ψ)0.

As follows from [1], we can construct the embedding operator ℑ and
the Hilbert space H+ densely embedded in H0 and being such that ℑ is
the Hilbert-Shmidt operator. Thus we can construct a triple of Hilbert
equipment

H+
ℑ
⊂H0

S
=H∗

0

ℑ∗

⊂ H−, (1)

observing that the distribution µ̃(A) = µ̃∆(A) = P{ν(∆) ∈ A} is concen-
trated in H−. Let L(M,N) denote the space of real functionals defined
on M and differentiated along constant elements N ⊂ M . In the sequel it
will be assumed that the distribution µ̃ is a smooth measure on H− (see
[3]). This means that there exists a measurable function λ : H− → H−
called the logarithmic derivative of the measure µ̃ and being such that the
formula of integration by parts∫

H−

⟨φ, f ′(µ)⟩µ̃(dµ) = −
∫
H−

f(µ)⟨φ, λ(µ)⟩µ̃(dµ)

holds for functions f ∈ L(H−,H−). Recall that the expression ⟨φ, λ(µ)⟩ is
called a stochastic integral. We denote it in a customary way by∫

X
φ(x)λ(µ)(dx). (2)

We can extend this expression to random functions of the form

φ(x, µ) ∈ H+

and write formally
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⟨λ(µ) +D,φ(x, µ)⟩ def=
∫
X
φ(x, µ)λ(µ)(dx) + ⟨λ+D,φ⟩.

The extension of integral (2) to smooth functions φ ∈ H0 is called an
extended stochastic integral and follows:∫

X
φ(x, µ)λ(µ)(dx) = ⟨λ+D,φ⟩.

2. Let us consider the equipped Hilbert space of measures

H+ ⊂ H0 ⊂ H−. (3)

Let the distribution µ̃ of a random measure µ be concentrated in H−.
We reformulate the theorem from [5] in terms of measures for triple (3).
Assume that µ is a smooth measure in a sense as explained in paragraph
1. Therefore there exists a logarithmic derivative λ(µ) along constant di-
rections of elements H+. Then such µ̃ has a logarithmic derivative along
vector fields z(µ) : H− → H+ of the form

ρµ̃(z, µ) = ⟨λ(µ), z(µ)⟩+ trz′(µ).

Let Uts, t, s ∈ (α, β) be an integral flux consistent with the vector field
z(β, t), i.e.

dutsµ

dt
= z(utsµ, t), ; uss = µ

and µ̃t = µ̃u−1
tt0

. The following statement is valid

Theorem 1 ([5]). If z(µ, t) is differentiable with respect to µ and
z′µ(µ, t) : H0 → H0, z(µ, t) ∈ H0 for all t and µ and µ̃ has the logarithmic
derivative along constant fieldsH+ of the form ρµ̃(φ, µ) = ⟨λ(µ), φ⟩, then all
measures µt are equivalent and the Radon-Nikodym density can be written
in the form

dµ̃t
dµ̃τ

(µ) = exp

{
−
∫ t

τ

[
⟨λ(u−1

st0
µ), vs(u

−1
st0
µ)⟩+ tr

dvs
dµ

]
ds

}
(4)

where vt(µ) = −(u′tt0)
−1z(t, µ).

3. In the space H− we consider the equation

ℑ(t, ν, µt) = 0, t ∈ [α, β] (5)

where ν is a constant element (measure) in H− and µ = µt is a curve.
Assuming that ℑ in (5) has the smoothness property, we obtain
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∂ℑ
∂t

+
∂ℑ
∂µ

µ′t = 0, µ′t = −
(
∂ℑ
∂µ

)−1 dℑ
dt

and if we take

z(t, µt) = −
(
∂ℑ
∂µ

)−1 dℑ
dt

as a vector field, then we have

dµt
dt

= z(t, µ).

In that case, µt = u(t, 0, ν) is an integral flux for z. It is also assumed
that (5) is solvable with respect to ν. Then we write

ν = Φ(t, µt)

and calculate

u−1(t, 0, µt) = Φ(t, µ), (u−1)′ =
∂Φ

∂µ
(t, µt),

v(ν) = −(u)−1
t = −Φ−1

µ (t, µt)ℑ′
µ(t, ν, µt)

−1ℑ′
t(t, ν, µt).

But

ℑ(t,Φ(t, µt), µt) ≡ 0

and therefore

∂ℑ
∂ν

· ∂Φ
∂µ

+
∂ℑ
∂µ

= 0.

Hence we obtain

∂ℑ
∂ν

(t, ν, µt)
−1 = −∂Φ

∂µ
(t, µt)

∂ℑ
∂µ

(t, ν, µt)
−1,

v(ν) =

(
∂ℑ
∂ν

)−1 ∂ℑ
∂t
,
∂Φ

∂µ
(t, µt) = −

(
∂ℑ
∂ν

)−1 ∂ℑ
∂µ

.

Moreover

−v′(ν)
(
∂ℑ
∂ν

)−1 ∂ℑ
∂µ

=

(
−∂ℑ
∂ν

)−1 ∂2ℑ
∂ν∂µ

(
∂ℑ
∂ν

)−1 ∂ℑ
∂t

+

(
∂ℑ
∂ν

)−1 ∂2ℑ
∂t∂µ

and therefore
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−v′(ν) =
(
∂ℑ
∂ν

)−1 ∂2ℑ
∂ν∂µ

∂ℑ
∂t

(
∂ℑ
∂µ

)−1

− ∂2ℑ
∂t∂µ

(
∂ℑ
∂µ

)−1

.

Now Theorem 1 gives rise to

Theorem 2. If in equation (5) the function ℑ(t, ν, µt) has the deriva-

tives ∂ℑ
∂ν ,

∂ℑ
∂t ,

∂ℑ
∂µ ,

∂2ℑ
∂t∂µ and ∂2ℑ

∂ν∂µ , while
(
∂ℑ
∂ν

∂2ℑ
∂ν∂µ

∂ℑ
∂t − ∂2ℑ

∂t∂µ

)−1 (
∂ℑ
∂µ

)−1
is a

kernel operator, then measure µ̃t are equivalent and

dµ̃t
dµ̃τ

(µ) = exp{−
∫ t

τ
[⟨λ(Φ(s, µ)),

(
∂ℑ
∂ν

)−1 ∂ℑ
∂t

⟩

−tr
(
∂ℑ
∂ν

∂2ℑ
∂ν∂µ

∂ℑ
∂t

− ∂2ℑ
∂t∂µ

)(
∂ℑ
∂µ

)−1

]ds}.

Remark 1. This formula can be simplified by writing it in the terms of Φ.
In that case

ℑ(t, ν, µ) = ν − Φ(t, µ),
∂ℑ
∂ν

= 1,
∂ℑ
∂t

= −∂Φ
∂t

(t, µ),

∂2ℑ
∂ν∂µ

= 0,
∂2ℑ
∂t∂µ

= − ∂2Φ

∂t∂µ
,
∂ℑ
∂ν

= −∂Φ
∂ν

and we obtain

dµ̃t
dµ̃τ

(µ) = exp

{
−
∫ t

τ
[⟨λ(Φ(s, µ)),Φ′

t(s, µ)⟩+ trΦ′′
tµ(Φ

′
µ)

−1]ds

}
. (6)

4. In the triple of spaces

H+ ⊂ H0 ⊂ H−.

Let us consider the measure µ̃ on H− which has the logarithmic deriva-
tive along constant directions from H+ of the form ⟨λ(µ), φ⟩, λ(µ) : H− →
H−, φ ∈ H+, and investigate the problem of nonlinear transformations of
µ̃ in H−.

Theorem 3. Let us have the Hilbert-Schmidt triple (3) of the space
of measures. Let µ̃ be a smooth measure from H− with the logarithmic
derivative

ρµ̃(φ, µ) = ⟨λ(µ), φ⟩.

Let f : H− → H− be an invertible transform, the inverse of which is
given b the formula
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f (−1) : µ→ ν = µ+ F (µ)

when the following conditions are fulfilled:
1) F : H− → H+ is a continuously differentiable mapping;
2) The inverse of the linear operator I + tF ′(µ) is bounded for 0 ≤ t ≤

1, µ ∈ H0.
Then the measures µ̃ and ˜̃µ = µ̃f ( − 1) are equivalent and the Radon-

Nykodim derivative has the form

d ˜̃µ

dµ̃
(µ) = det(I + F ′(µ))) exp

{⟨∫ 1

0
λ(µ+ tF (µ))dt, F (µ)

⟩}
. (7)

Proof. Consider the homotopy

Φ(t, µ) = µ+ tF (µ) 0 ≤ t ≤ 1,

which connects µ with µ+F (µ). Applying Theorem 2 and formula (6), we
obtain

∂Φ

∂t
= F (µ),

∂2Φ

∂t∂µ
= F ′(µ),

(
∂Φ

∂µ

)−1

= [I + tF ′(µ)]−1.

In the conditions of the theorem ˜̃µ ∼ µ̃ and (6) implies

d ˜̃µ

dµ̃
(µ) = exp

{⟨∫ 1

0
λ(µ+ tF (µ))dt, F (µ)

⟩
+

∫ 1

0
trF ′(µ)[I + tF ′(µ)]−1dt

}
.

Using well-known Goursat-Wronski formula by which∫ 1

0
tr(I + tR)−1Rdt = ln det(I +R).

we obtain (7). The theorem is proved.
Example 1. If µ̃ is a canonical Gauss measure H−, then λ(µ) = −µ

and from (7) we obtain

d ˜̃µ

dµ̃
(µ) = det(I + F ′(µ))) exp

{
−⟨µ, F (µ)⟩ − 1

2
∥F (u)∥20

}
. (8)

Remark 2. Let µ̃ be a Gauss measure with zero mean and correlation
kernel operator R in H0,

R =

∫
X

∫
X
Eµ(t)µ(z)β(dt× dz).
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Then λ(µ) = −R−1µ. Now the expression

(f(µ), S(µ))0 − TrS∗f ′(µ)R,

where S is a linear bounded operator, can be written also when the operator
f ′(µ) is bounded and RS∗ is the Hilbert-Schmidt type operator. More

specifically, taking S = R− 1
2 , we denote

l(R)(f)(µ) = (f(µ), R− 1
2µ)− trf ′(µ)R

1
2 .

As has been shown in Subsection 1, this expression can be continued up to
an extended stochastic integral. Thus in the conditions of the theorem we
can write

d ˜̃µ

dµ̃
(µ) = d̃et(I + F ′(µ)) exp

{
lR(f)(µ)− 1

2
∥F (u)∥20

}
, (9)

where d̃et(I + T ) is the regularized determinant (see [6]) defined by the
relation

d̃et(I + T ) =
∞∏
k=1

(1 + λk)e
−λk ,

and T is a Hilbert-Schmidt operator with eigenvalues {λk}.
Theorem 3 and formulas (7),(8),(9) can be used when studying distri-

butions of measures of solutions of differential equations in measures with
random summands.
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