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Abstract

The paper deals with the boundary value problem for a nonlinear integro-differential
equation modeling the dynamic state of the Berger rectangular plate. To approximate
the solution with respect to the spatial variables, the Galerkin methid is used, the error
of which is estimated.
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1 Statement of the problem

By using the approach due to Berger [1] it was shown by Wah [4] that the
vibration of rectangular plates Q = {(z,y) | 0 < z < a, 0 < y < b} with
large amplitudes may be described by the nonlinear differential equation

0w 9 w2 ow\ >
8t2+aAw_B[/Q<<8x> +<8y) dx dy

(r,y) €Q, 0<t<T,

Aw =0, (1)

in which w(z,y,t) is lateral deflection and a and 3 are some positive con-
stants.
Consider equation (1) under the following initial boundary conditions

oP

%w('%y?()) = wp(x7y>v p= 07 17 w(a:,y,t)]ag = 07
(2)

0? 0?
W w(-rayvt)bfh =0, 87y2 w(x>y7t)|392 =0,
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where w®(z,y) and w'(z,y) are the given functions, 9 is the boundary of
the domain © and 99 = {(z,y) € 9N | v =0V z =a}, 0 = {(z,y) €
0N y=0Vy=b}.

Note that in [2] the existence and uniqueness of a generalized solution
of the Cauchy problem is proved for the equation

(I 4+ hA)u" + A%u+ [N+ M(|AYV?u?)]Au = f

a particular case of which is equation (1). Therefore, according to [2], if
f(z,y,t) € L*(0,T;L%*0,9)), wP(z,y) € ngp(Q), p = 0,1, then there
is a unique function w = w(x,y,t), w € L>(0,T;W2(0,Q)), %—%’ €

L>®(0,T; W(0,€)), such that w(z, y, t) is a weak solution of problem (1), (2).
We can write the solution in the form

(x,y,t) Z Z w;(t) sin e sin ‘% , (3)

a
=1 j=1

where the coefficients w;;(t) satisfy the system of equations

with the initial conditions

dp »
%wij(()):aij, p=0,1, (5)
i=1,2,..., j=1,2,...,
where
ij ab/wpxy smﬁsm%dajd

2 Galerkin method

Let us perform approximation of the solution of problem (1), (2) with re-
spect to the variables x and y. For this, we use the Galerkin method. A

40



The Accuracy of a Method for ... AMIM Vol.17 No.1, 2012

solution will be sought in the form of the series
Wi (T, Y, T ;jzlw smﬂ sin % (6)

where the coefficients w7 "(t) are the solution of the system of differential
equations

3 Method’s error

Now our aim is to estimate the error of the Galerkin method. We apply
the technique developed in [3] for a one-dimensional problem. Let us give
the definition of the error. By the coefficients of decomposition (3) we form
the function

TmnW(T, Y, t) ZZU}U sm? sin% (9)
=1 j=1

By the error of the Galerkin method we understood the difference between
the functions wy,(z,y,t) and maw(x,y,t)

Smn (T, Y, 1) = Winn (2, Y, 1) — Tmnw (2, Y, 1). (10)
From (10), (6) and (9) follows

Omn(x,y,1t) ZZ(S’”” &nﬂ& %,

=1 j=1
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where
(1) = wfy (1) — wis (1) (1)

Let us derive the equations for §77"(¢). In system (4) and the initial con-
ditions (5) we consider the equations and conditions which correspond to
1=1,2,...,mand j =1,2,...,n. We subtract them from the correspond-
ing equations of system (7) and conditions (8). As a result, applying (11),

we get
mi\? ) 2\ ?
o (t) + o <a> + (b) 03" (t) + o1v1 — oavg

= pmn(t) ((?)2 + (?)2) wi;(t), (12)

i=1,2,....m, j=12....n,

55‘"(0) =0, 5?}”’(0) =0 (13)
i=1,2,....m, j=12,...,n,
where
o 4 k=1 l=1 a b . ,
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Taking into consideration (12)—(14) and equality

)
=%
N———
no
i
\_/
[N}
N——
S
El\')
-
N—
v

o — ooy = = ((01 — 02) (11 + 12) + (01 + 02) (11 — 1)),

| =

42



The Accuracy of a Method for ... AMIM Vol.17 No.1, 2012

we obtain

(15)

57™(0) =0, &7™(0) =0, (16)
i=1,2,....m, j=12,...,n.

System (15) and conditions (16) are the starting point of the investigation
of the problem of method accuracy estimation. We will need several a priori
estimates.

Multiply (4) by 2wj;(t) and sum the obtained expression over i =
1,2,..., 7 = 1,2,... . The result is written as ®'(t) = 0, 0 < ¢t < T,
where

B =Y ulB +aY Y ((”) v (“j)z)Qw%j(t)

i=1 j=1 i=1 j=1

s SE((E) (3) ) wto)

After some transformations we obtain
Lemma 1. The estimate

LS 5 () 4 (7)) vt <

i=1 j=1 i=1 j=1
1=1,2, m=12,..., n=12,...., 0<t<T,
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where
o= abf \ max(a, b) 8a? T ’
1
=—d(0
T1 a ( )a
1s valid.

In a similar manner, using system (7) and the function

b= £ S0 E5 (2 4 (7)) v

we come to
Lemma 2. The inequality

m n m n i 2 ] 2 !
(- DY > w2 () + ) (<a> + <b> wiA(t) < 1,
=1 j=1 i=1 j=1
l:1727 m:172) b n:]‘727 ) O<t§T7
where
Je" T 2 14 abp ( max(a,b) 4(1) (0) 3 )
Ty = —— =5 -
>~ abB \ max(a, b) 8a? T " ’
1
T3 = *(I)mn(o)a
1s valid.
We denote by Y > the operation of summation over the indexes ¢ and
L]
7 which take the values
1=1,2,....m, j=n+1n+2 ...,
ti=m+1m+2,..., 7=12...,n,
t=m+1m+2,..., j=n+1n+2,....
Using system (4), we prove
Lemma 3. The estimate
pmn(t) S Emn
m=12..., n=12..., 0<t<T,
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where )
Emn = 1ab564\1/5“b570T<maX(a’ b))
8 s
12 mi\” 5\ ’ 02
22 a2 2 ((5) +(F) ) )
A J 1 J
18 fulfilled.

Let us formulate the main result. Multiplying equation (15) by 25;7}”’ (t)
and summing the obtained expressionover: =1,2,...,mand j =1,2,...,n,
we obtain

F () = 1abﬂ —2§:Zn: d 2 + J 2 (W™ () +wqii (1)) 65" ()
mn - ] po a b wij ] ij
AU mi\? ] 2
Y (() +(7) ) (™ (6 + wig (D)3 (1)
i=1 j=1
g T m
Y (() (%) ) (™) + (1))
=1 j=1
xi S (T 4 (Y 52 (1)
: a b K
i=1 j=1
AU mi\? )
+ 2pmn(t) Z <<a) + (b) ) U)z‘j(t)(sg?n/(t)’
i=1 j=1
where
Fuut = 3 e o33 () + (7)) o
i=1 j=1 i=1 j=1

S ()

We perform some transformations and apply Lemmas 1-3 together with
the Gronwall inequality. Let |- || be the norm in the space Ly(€2). We denote
by A the operator g—; + aa—;?. As a result we come to

Theorem. The inequality

1
(H5mnt($,y7t)||2 + QHA(smn(377yat)|’2) * < coEmn,s
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where

1
1 1 1 2
—— _ C1
—2T<abﬁ(2—|—\/§>> e,
k
1 max(a, b
=g+ fabﬂTchH (”) ,

2 =2(yT0 +VR) (VT +VT), = (1= V2)(n + 1),
1s fulfilled for the error of the Galerkin method.
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