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Abstract

I. Vekua has constructed several versions of the refined linear theory of thin and
shallow shells, containing the regular process by means of the method of reduction of
three-dimensional problems of elasticity to two-dimensional ones.

In the present paper by means of the I. Vekua method the system of differential
equations for the nonlinear theory of non-shallow shells is obtained. Using the method
of a small parameter, by means of Muskhelishvili and Vekua-Bitsadze methods, for
any approximations of order N the complex representations of the general solutions
are obtained.

We also consider the well-known Kirsch problems for plates on the basis of Reissner-

Mindlin’s type and of I. Vekua’s refined theories.
Key words and phrases: Non-shallow shells, metric tensor and tensor of cur-

vature, midsurface of the shell.
AMS subject classification: 74K25, 74B20.

1 Shallow and Non-shallow Shells

A complete system of equilibrium equation and the stress-strain relations
of the 3-D nonlinear theory of elasticity can be written as:

∇̂iσ
i + Φ=0, σi =Eijpqepq(Rj + ∂ju), (1)

(i, j, p, q,= 1, 2, 3)

where ∇̂i are covariant derivatives with respect to the space curvilinear
coordinates xi, σi and Φ are the contravariant ”constituents” of the stress
vector and an external force, eij are covariant components of the strain
tensor, u is the displacement vector:

2eij = Ri∂ju + Rj∂iu + ∂iu∂ju, (2)
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Eijpq =λgijgpq + µ(gipgjq + giqgjp), (gij=RiRj)

λ and µ are Lame’s constants, Ri and Ri are covariant and contravariant
basis vectors of surface Ŝ (x3 = const) of the 3-D domain Ω, which are
connected with the basis vectors ri and ri of the midsurface S (x3 = 0) by
the following relations:

Ri = A.j
i.rj , Ri =Ai.

.jr
j , R3 = R3 = r3 = r3 = n

A.β
α. = aβ

α − x3b
β
α, A.3

i. = Ai.
.3 = δi3, (3)

Aα.
.β = ϑ−1[aα

β + x3(bα
β − 2Haα

β)], ϑ=1− 2Hx3 + Kx2
3,

(α, β = 1, 2; −h ≤ x3 = x3 ≤ h)

where aα
β (aαβ , aαβ) and bα

β (bαβ, bαβ) are mixed (covariant, contravariant)
components of the metric tensor and tensor of curvature of the midsurface
S (x3 = 0), x3 is the thickness coordinate and h is the semi-thickness of
the shell Ω, H and K are middle and Gaussian curvatures of S, and n is
unit vector of the normal to S at the point (x1, x2) ∈ S.

The main quadratic forms of the midsurfaces S and Ŝ have the forms:

I = ds2 = aαβdxαdxβ, II = ksds2 = bαβdxαdxβ S(x3 = 0), (4)

I = dŝ2 = gαβdxαdxβ, II = k̂ŝdŝ2 = b̂αβdxαdxβ Ŝ(x3 = const),

where ks and k̂ŝ are the normal curvatures of the surfaces S and Ŝ:

aαβ = rαrβ, bαβ = −rαnβ, ks = bαβsαsβ, sα =
dxα

ds
, S(x3 = 0),

gαβ = RαRβ = aαβ − 2x3bαβ + x2
3(2Hbαβ −Kaαβ), (5)

b̂αβ = (1− 2Hx3)bαβ + x3Kaαβ , Ŝ(x3 = const),

(bγ
αbγβ = 2Hbαβ −Kaαβ).

The unit vectors of the tangent ŝ and tangential normal l̂ are expressed
by the following formulas:

ŝ = [(1− x3ks)s + x3τls]
ds

dŝ
, l̂ = [(1− x3ks)l− x3τss]

ds

dŝ
(6)

dŝ =
√

1− 2x3ks + x2
3(k2

s + τ2
s )ds,

where s and l are the unit vectors of the tangent and tangential normal
of the midsurface S, dŝ and ds are the linear elements of the surfaces Ŝ
and S, respectively, τs = −bαβlαsβ is the geodesic torsion of the surface S,(

l1 =
1√
a
s2, l

2 =
1√
a
s1

)
.
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Under shallow shells we mean 3-D shell-type elastic bodies satisfying
the following conditions

aβ
α − x3b

β
α
∼= aβ

α ⇒ Rα
∼=rα, Rα∼=rα, gαβ

∼= aαβ, b̂αβ
∼= bαβ , (7)

i.e. in the case the interior geometry of the shell does not vary in thickness
and therefore such kind of shells are usually called the shells with non-
varying geometry.

For the Koiter-Naghdi refined theory of shells these relations have the
form:

Rα∼=(aα
β + x3b

α
β)rβ, Rα

∼=(aβ
α − x3b

β
α)rβ, (8)

gαβ
∼= aαβ − 2x3bαβ , gαβ ∼= aαβ + 2x3b

αβ ,

i.e. in this case only linear part with respect to x3 is retained.
In the sequel, by non-shallow shells we mean 3-D shell-type elastic bod-

ies satisfying the relations (3), (4), (5), (6).
To reduce the 3-D problems of the theory of elasticity to 2-D ones, it

is necessary to rewrite the relation (1), (2) in forms of the bases of the
midsurface S (x3 = 0).

The relation (1) can be written as:

∇α(ϑσα) + ∂3(ϑσ3) + ϑΦ = 0, (9)

σi = Ai
i1A

p
p1,M

i1j1p1q1 [(rq1∂pU) +
1
2
Aq

q1
(∂pU∂qU)](rj1 + Aj

j1
∂jU), (10)

where ∇α are covariant derivatives on the midsurface S (x3 = 0),

M i1j1p1q1 = λai1j1ap1q1 + µ(ai1p1aj1q1 + ai1q1aj1p1) (ai1j1 = ri1rj1) (11)

2 I. Vekua’s reduction method

In the present paper we use I. Vekua’s reduction method for the nonlinear
theory of non-shallow shells (I. Vekua used the method for linear theory of
shallow shells) the essence of which consists, without going into detals, in
the following: since the system of Legendre polynomials Pm(x3

h ) is complete
in the interval [−h, h], for equation (9) the equivalent infinite system of 2-D
equations is obtained

∇α
(m)
σ α − 2m + 1

h

(
(m−1)

σ 3 +
(m−3)

σ 3 + ...

)
+

(m)

F = 0, (12)

where (
(m)
σ i,

(m)

Φ

)
=

2m + 1
2h

h∫

−h

(
ϑσi, ϑΦ

)
Pm

(
x3

h̄

)
dx3,
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(m)

F =
(m)

Φ +
2m + 1

2h

(
(+)

ϑ
(+)
σ 3−(−1)m

(−)

ϑ
(−)
σ 3

)
,

(
(±)

ϑ = 1∓ 2hH + Kh2

)
.

Thus we have obtained the infinite system of 2-D equations (12), for
which the boundary conditions of the face surfaces (x3 = ±h) are satisfied,

i.e.
(±)
σ 3 = σ3(x1, x2,±h) is the preassigned vector field and is entered in

the equilibrium equations.
The equations of the state (10) may be write as:

(m)
σ i =

1
2
M i1j1p1q1

∞∑

m1=0

{(
(m)

A
(m1)

i p
i1p1

rq1 ·Dp

(m1)

U +
(m)

A
(m1)

i q
i1q1

rp1 ·Dq

(m1)

U

)
rj1+

+
∞∑

m1=0

[
(m)

A
(m1,m2)

i pq
i1p1q1

(
Dp

(m1)

U ·Dq

(m2)

U
)
rj1+

+

(
(m)

A
(m1,m2)

ij p
i1j1p1

rq1 ·Dp

(m1)

U +
(m)

A
(m1,m2)

ij q
i1j1q1

rp1 ·Dq

(m1)

U

)
Dq

(m2)

U +

+
∑

m3=0

(m)

A
(m1,m2,m3)

i j p q
i1j1p1q1

(
Dp

(m1)

U Dq

(m2)

U
)
Dj

(m3)

U

]}

(13)
where

(m)

U =
2m + 1

2h

h∫

−h

UPm

(x3

h

)
dx3,

Di

(m)

U = δβ
i ∂β

(m)

U +δ3
i

(m)

U
′;

(m)

U ′ =
2m + 1

h

(
(m+1)

U +
(m+3)

U +...

)
, (14)

(m)

A
(m1)

ij
i1j1

=
2m + 1

2h

h∫

−h

ϑAi
i1A

j
j1

Pm1Pmdx3

(m)

A
(m1,m2)

ijp
i1j1p1

=
2m + 1

2h

h∫

−h

ϑAi
i1A

j
j1

Ap
p1

Pm1Pm2Pmdx3, (15)

(m)

A
(m1,m2,m3)

ijpq
i1j1p1q1

=
2m + 1

2h

h∫

−h

ϑAi
i1A

j
j1

Ap
p1

Aq
q1

Pm1Pm2Pm3Pmdx3.
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The passage to finite systems can be realized by various methods one
of which consists in considering of a finite series, i.e.

(ϑσi, U , ϑΦ) =
N∑

m=0

(
(m)
σ i,

(m)

U ,
(m)

Φ

)
Pm

(x3

h

)
,

where N is a fixed nonnegative number. In other words, it is assumed that

(m)

U = 0,
(m)
σ i = 0, if m > N.

Approximation of this type will be called approximation of order N .
The integrals of the type (15) can be calculated, for example

(m)

A
(m1)

αβ
α1β1

=
2m + 1

2h

h∫

−h

ϑ−1Bα
α1

(x3)B
β
β1

(x3)Pm1

(x3

h

)
Pm

(x3

h

)
dx3 =

2m + 1
2
√

Eh

[
Bα

α1
(hy)Bβ

β1
(hy)

(
Pm1(y)Qm(y), m1 ≤ m
Qm1(y)Pm(y), m1 ≤ m

)]y2

y1

+
Lα

α1
Lβ

β1

K
σm

m1
, (16)

if E 6= 0 K 6= 0 and equals aα
α1

aβ
β1

δm
m1

, if E = H2 −K = 0; where Qm(y)
is the Legendre function of the second kind, E is the Euler difference,
Bα

β (x) = aα
β + xLα

β , Lα
β = bα

β − 2Haα
β . Under the square brackets we mean

the following:

[f(y)]y2
y1

= f(y2)− f(y1), y1,2 = [(H ∓
√

E)h]−1.

Note that for Koiter-Naghdi’s non-shallow shells the following expres-
sion

(m)

A
(m1)

αβ
α1β1

∼= aα
α1

aβ
β1

δm
m1

+ h(aα
α1

bβ
β1

+ aβ
β1

aα
α1

)× (17)

×
( m

2m− 1
δm
m1−1 +

m + 1
2m + 3

δm
m1+1

)

is obtained.
For the integrals containing the product of three Legendre polynomials

we have

(m)

A
(m1,m2)

α1α2α3
β1β2β3

=
2m + 1

2h

h∫

−h

Bα1
β1

Bα
β2

Bα
β3

1− 2Hx3 + Kx3
Pm1Pm2Pmdx3 =

2m + 1
K2h4

×

×
min(m1,m2)∑

r=0

γm1m2r

3∑

n=0

n
Cα1α2α3

β1β2β3
hn ∂2

∂y1∂y2

[
yn

y1 − y2

(
Ps(y)Qm(y), s ≤ m

Qs(y)Pm(y), s ≥ m

)]y2

y1

,
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where s = m1 + m2 − 2r,

γpqr =
Ap−rArAq−r

Ap+q−r

2(p + q)− 4r + 1
2(p + q)− 2r + 1

, Ap =
1.3 · · · 2p− 1

p!
,

Bα1
β1

(x)Bα2
β2

(x)Bα3
β3

(x) =
3∑

n=0

n
Cα1α2α3

β1β2β3
xn.

For the integrals containing the product of four Legendre polynomials
the corresponding presentations can be written similarly.

3 Introduce a small parameter

To introduce a small parameter ε =
h

R
, where R is a certain radius of

curvature of the midsurface S, from (12) will be obtained the following
finite system of 2-D equations (approximation of order N):

h∇α

(m)

σαβ − εbβ
α

(m)

σα3R− (2m + 1)
((m−1)

σ3β +
(m−3)

σ3β + · · ·
)

+
(m)

F β = 0,

h∇α

(m)

σα3 + εbαβ

(m)

σαβR− (2m + 1)
((m−1)

σ3
3 +

(m−3)

σ3
3 + · · ·

)
+

(m)

F 3 = 0, (18)

(
(m)

σij =
(m)

σirj , m = 0, 1, ...)

To find components of the displacement vector
(m)
u and stress tensor

(m)

σij

we take of following series expansions with respect to the small parameter
ε:

(
(m)
u ,

(m)

σij ,
(m)

F
)

=
∞∑

n=1

(
(m,n)
u ,

(m,n)

σij ,
(m,n)

F
)
εn.

Substituting the above expansions into the (13) and (18) than equalizing
the coefficients of expansions for εn we obtain the following 2-D finite system
of equilibrium equations with respect to components of displacement vector
in the isometric coordinates a11 = a22 = Λ(z, z̄), which has the following
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complex form:

4µ∂z

(
Λ−1∂z

(m,n)
u+

)
+ 2(λ + µ)∂z

(m,n)

θ + 2λ∂z

(m,n)

u′3 − (2m + 1)µ

[
2∂z

(
(m−1,n)

u3 +
(m−3,n)

u3 + · · ·
)

+
(m−1,n)

u′+ +
(m−3,n)

u′+ + · · ·
]

+
(m,n)

F+ = 0, (19)

µ
(
∇2(m,n)

u3 +
(m,n)

θ′
)
− (2m + 1)

[
λ
((m−1,n)

θ +
(m−3,n)

θ + · · ·
)

+

(λ + 2µ)
((m−1,n)

u′3 +
(m−3,n)

u′3 + · · ·
)]

+
(m,n)

F3 = 0,

where u+ = u1 + iu2, θ = Λ−1
(
∂zu+ + ∂zu+

)
, z = x1 + ix2,2∂z = ∂1− i∂2,

∇2 =
4
Λ

∂2

∂z∂z
.

Obviously, in passing from the n-th step of approximation to the (n+1)-
th step only the right-hand side of equations are changed.

Below the upper index n will be omitted.
The general solution of the homogeneous system (19) we can find the

form

(m)
u+ = ∂z

(m)

V + +
( 1

π

∫∫

S

ϕ′0(ζ)− æ1ϕ
′
0(ζ)

ζ − z
dSζ − ψ′0(z)

)
δ0m −

( 1
π

∫∫

S

ϕ′1(ζ) + ϕ′1(ζ)
ζ − z

dSζ + η1ϕ′′1(z)− 2ψ′1(z)
)
δ1m + (20)

æ2ϕ′′0(z)δ2m + η2ϕ′′1(z)δ3m,

(m)
u3 =

(m)

V3 −
( 1

π

∫∫

S

(ϕ′1(ζ) + ϕ′1(ζ))ln|ζ − z|dSζ − ψ1(z)− ψ1(z)
)
δ0m

−3
2
æ2

[
(ϕ′0(z) + ϕ′0(z))δ1m − (ϕ′1(z) + ϕ′1(z))δ2m

]
, (m = 0, 1, ..., N)

(0)

V1 =
(0)

V2 = 0,
(0)
u3 = ψ1(z) + ψ1(z), if N = 0,(

dSζ = Λ(ζ, ζ)dξdη, ζ = ξ + iη,
(m)

V+ =
(m)

V1 + i
(m)

V2

)
.

where ϕ′0(z),ϕ′1(z),ψ′0(z),ψ′1(z) are holomorphic functions of z and express
the biharmonic solution of the system (19). Then æ1, æ2, η1, η2 are known
constants.

Note that for a plate (i.e. Λ = 1) the expression of
(0)
u+ coincides with

25
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the well-known representation of Kolosov-Muskhelishvili [1]
(0)
u+ =

λ + 3µ

λ + µ
ϕ0(z)− zϕ′0(z)− ψ0(z).

Substituting expressions (20) into (19) the matrix equations for
(m)

Vi are
obtained

∇2V + AV = X, ∇2Ω + BΩ = Y, (21)

where V and Ω are column-matrices of the form

V =
((0)

V1,
(1)

V1, ...,
(N)

V1 ,
(0)

V3,
(1)

V3, ...,
(N)

V3

)T
, Ω =

((0)

V2,
(1)

V2, ...,
(N)

V2

)T
,

and A and B are block-matrices 2N + 2 × 2N + 2 and N + 1 × N + 1
respectively.

Colomn-matrices V and Ω are expressed by 3N−1 metaharmonic func-
tions Wi and χi:

W =
(
W1,W2, ...,W2N−1

)T
, Q =

(
χ1, χ2, ..., χN

)T
,

which satisfy the following matrix equations

∇2W − CW = 0, ∇2Q− DQ = 0, (22)

where C = {cij}2N−1,2N−1 and D = {dij}N,N .
Using now the formulae Vekua-Bitsacze for the homogenous matrix

equations (21) we obtain the following complex representation of the gen-
eral solutions

W = 2Re{f(z) +
C
4

z∫

z0

z∫

z0

Λ(t, t)R(z, z, t, t)f(t)dtdt},

Q = 2Re{g(z) +
D
4

z∫

z0

z∫

z0

Λ(t, t)r(z, z, t, t)g(t)dtdt},

where R and r are the Riemann’s matrix functions of the equations (22),
f(z) and g(z) are holomorphic column-matrices:

f(z) = (f1(z), ···, fN (z), fN+1(z), ···f2N−1(z))T , g(z) = (g1(z), ···, gN (z))T .

Then particular solutions of the matrix equations (21) have the form

∧
V (z, z) =

1
4

z∫

z0

z∫

z0

Λ(t, t)R(t, t, z, z)X(t, t)dtdt,

∧
Ω(z, z) =

1
4

z∫

z0

z∫

z0

Λ(t, t)r(t, t, z, z)Y (t, t)dtdt.
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where

R(z, z, t, t) = E +
C
4

z∫

t

z∫

t

Λ(t1, t1)dt1dt1 +

(C
4

)2
z∫

t

z∫

t

Λ(t1, t1)
( t1∫

t

t1∫

t

Λ(t2, t2)dt2dt2

)
dt1dt1 · ··,

r(z, z, t, t) = E +
D
4

z∫

t

z∫

t

Λ(t1, t)dt1dt1 +

(D
4

)2
z∫

t

z∫

t

Λ(t1, t1)
( t1∫

t

t1∫

t

Λ(t2, t2)dt2dt2

)
dt1dt1 + · · ·.

4 The refined theories of plates and
the Kirsch’s problem

Now we consider various refined theories of plates and the kizsch’s problem
for the concentration of stresses near the hole.

The system of Reissner-Mindlin’s equations for tension-pressure coin-
cides to the classical theory of generalized plane stress.

For bending of plates the system of Reissner-Mindlin equation can be
written in complex form [3]:

∂z(M11 −M22 + 2iM12) + ∂z̄(M11 + M22)−Q+ = M+,
∂zQ+ + ∂z̄Q̄+ = M3, (Q+ = Q1 + iQ2), (2∂z = ∂1 − i∂2),

(23)

where

M11 −M22 + 2iM12 =
8µh3

3
∂z̄V+, (V+ = V1 + iV2),

M11 + M22 =
4(λ2 + µ)

3
h3ρ, (ρ = 2Re∂zV+),

Q+ =
5µh

3
(2∂z̄V3 + V+), (Reissner)

Q+ =
4µh

3
(2∂z̄V3 + V+). (Mindlin)

(24)

The system of equilibrium equations with respect to components of
displacement vector has the complex form:

µ∆V+ + 2(λ∗ + µ)∂z̄ρ− 5µ

h2
(2∂z̄V3 + V+) =

3
2h3

M+,

µ(∆V3 + ρ) =
3
5h

M3.
(25)
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The general solution of the homogenous system (24) have the complex
form

V+ = i∂z̄ω + ϕ(z) + zϕ′(z) +
8(λ∗ + 2µ)h2

5µ
ϕ′′(z)− 2ψ′(z),

V3 = −1
2
(z̄ϕ(z) + ¯ϕ(z)) + ψ(z) + ¯ψ(z),

∆ω − 5
2h2

ω = 0,

(26)

where ϕ(z) and ψ(z) are analytic functions of z.
The boundary conditions for Cirsch’s problem on the hole’s contour Γ

have the form

Mll + iMls = 0, Qln = 0 (27)

and in infinite we have

M∞
11 = M1, (M12 = M22 = Q+)∞ = 0.

Now we consider this problem by I. Vekua’s refined theory of plates.
I. Vekua’s first method (so called ”simplified scheme” )

∂z

(
(m)
σ11 −

(m)
σ22 + 2i

(m)
σ12

)
+ ∂z̄

(
(m)
σ11 +

(m)
σ22

)
−(m)

σ+ +
(m)

F+ = 0,

∂z
(m)
σ+ + ∂z̄

(m)
σ̄+ −

(m)
σ33 +

(m)

F3 = 0,

(
(m)
σ+ =

(m)
σ13 + i

(m)
σ23

) (28)

where

(m)
σ11 −

(m)
σ22 + 2i

(m)
σ12 = 4µ∂z̄

(m)
u +,

(
(m)
u + =

(m)
u 1 + i

(m)
u 2

)

(m)
σ11 +

(m)
σ22 = 2(λ + µ)

(m)

θ + 2λD3
(m)
u 3,

(
(m)

θ = 2Re∂z
(m)
u +

)

(m)
σ+ = µ

(
2∂z̄

(m)
u 3 + D3

(m)
u +

)
,

(m)
σ33 = λ

(m)

θ + (λ + 2µ)D3
(m)
u 3,

(29)

(m)
σ3 =

2m + 1
h

(
(m−1)

σ3 +
(m−3)

σ3 + · · ·
)

, D3
(m)
u

2m + 1
h

N∑
s=m

1− (−1)s+m

2
(s)
u ,

(m)
σ i =

2m + 1
2h

h∫

−h

σiPm

(
x3

h̄

)
dx3,

(m)

F =
(m)

Φ +
2m + 1

2h

(
(+)
σ3 − (−1)m(−)

σ3

)
.
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II. Vekua’s second method (so-called ”normed moments method”)
The sistem of equilibrium equations coincides with (27), then

(m)
σ11 −

(m)
σ22 + 2i

(m)
σ12 = 4µ∂z̄

(m)
u +,

(m)
σ11 +

(m)
σ22 = 2(λ + µ)

(m)

θ + 2λD3
(m)
u 3−

2εN,m

N∑

s=0

(1− (−1)s+m)
(

λ2

λ + 2µ

(s)

θ + λD3
(s)
u 3

)
,

(m)
σ+ = µ

(
2∂z̄

(m)
u 3 + D3

(m)
u + − εN,m

N∑

s=0

(1− (−1)s+m)
(

2∂z̄
(s)
u3 + D3

(s)
u+)

)
,

(m)
σ33 = λ

(m)

θ + (λ + 2µ)D3
(m)
u 3 − εN,m

N∑

s=0

(1− (−1)s+m)
(

λ
(s)

θ + (λ + 2µ)D3
(s)
u3

)
,

(30)

εN,m =
2m + 1

N(N + 1)

(
1− (−1)N+m

N + 1

)
.

It is easy to see that equations (27), (29) constitute a normal system of
6N + 6-th order if the conditions

1− 2εN,m 6= 0, (m = 0, 1, ..., N) (31)

are satisfied. These conditions are violated when N = 0, 1, 2 and they are
satisfied when N > 2. For N = 3 we have

ε3,0 =
1
12

, ε3,1 =
3
20

, ε3,2 =
5
12

, ε3,3 =
7
20

.

The system of equilibrium equations for N = 3 takes the complex form

∆
(0)
u+ + 2(λ∗ + µ)∂z̄

(0)

θ = 0,

∆
(1)
u+ + 2(λ∗ + µ)∂z̄

(1)

θ − µ

2h

[
2∂z̄

(
5
(0)
u3 −

(2)
u3

)
+

5
h

(1)
u+

]
= 0,

∆
(2)
u+ + 2(λ∗ + µ)∂z̄

(2)

θ − µ

2h

[
2∂z̄

(
7
(1)
u3 − 3

(3)
u3

)
+

5
h

(2)
u+

]
= 0,

∆
(3)
u+ + 2(λ∗ + µ)∂z̄

(3)

θ = 0,

∆
(
5
(0)
u3 −

(2)
u3

)
+

5
h

(0)

θ = 0, ∆
(
7
(1)
u3 − 3

(3)
u3

)
+

21
h

(2)

θ = 0,

λ
(
7
(1)

θ − 3
(3)

θ
)

+
21(λ + 2µ)

h

(2)
u3 = 0,

λ
(
5
(0)

θ −
(2)

θ
)

+
5(λ + 2µ)

h

(1)
u3 = 0.

(32)

The general solution of equation (31) is expressed by the formulas
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a) for the tension-pressure of plates

(0)
u+ =

5λ + 6µ

3λ + 2µ
ϕ0(z)− zϕ′0(z)− ψ′0(z),

(2)
u+ =

ih

21
∂z̄ω +

λ + 2µ

3λ + 2µ

(
ϕ2(z) + zϕ′2(z)

)
+ ψ′2(z),

(
∆ω − 21

h2
ω = 0

)
,

(1)
u3 =

4h

5
λ

3λ + 2µ
Re

[
ϕ′2(z)− 5ϕ′0(z)

]
,

(3)
u3 =

7
h

Re
[
f1(z) +

λ + 2µ

3λ + 2µ
z̄ϕ′2(z)

]
,

b) for, the bending of plates

(1)
u+ =

ih

5
∂z̄w +

λ + 2µ

3λ + 2µ

(
ϕ1(z) + zϕ′1(z)

)
+ ψ′1(z),

(
∆w − 5

2h2
w = 0

)
,

(3)
u+ =

5λ + 6µ

3λ + 2µ
ϕ3(z)− zϕ′3(z)− ψ′3(z),

(0)
u3 = 2Re

[
f2(z)− λ + 2µ

2(3λ + 2µ)
z̄ϕ′1(z)

]
,

(2)
u3 = −4h

21
λ

3λ + 2µ
Re

[
7ϕ′1(z)− 3ϕ′3(z)

]
,

where ϕk(z), ψk(z), (k = 0, 1, 2, 3) and fα(z), (α = 1, 2) are arbitrary ana-
lytic functions of z = x1 + ix2.

Th Cirsch’s problem for these cases can be written as:
a) boundary conditions in infinite:

(0)
σ11

∞
= P1,

(0)
σ22

∞
= P2,

(
(0)
σ12 =

(0)
σ3i

)∞
= 0, (tension− pressure)

or
(1)
σ11

∞
= M1,

(1)
σ22

∞
= M2,

(
(0)
σ12 =

(0)
σ3i

)∞
= 0, (bending)

(i = 1, 2, 3)

and
b) boundary conditions on the circular hole (|z| = R):

(m)
σrr + i

(m)
σrϑ = 0,

(m)
σr3 = 0,

(m = 0, 1, 2, 3)

P1, P2,M1,M2-are constants.
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Conclusion

1. a) I. Vekua’s approximation of order N = 0 (first method) gives the sys-
tem of plane deformation equations. The coefficient of stress concentration
K, considers with well-known meaning

K =
max

(0)
σϑϑ

P
= 3, (P1 = P, P2 = 0).

b)I. Vekua’s approximation of order N = 0 (second method) and Reiss-
ner’s method describe the generalized plane stress, i.e. K = 3.

2. a) I. Vekua’s approximation of order N = 1 (first method) for the
tension-pressure of plates gives the following formula for K

K = 1 + 2
2κK0(κ) + [4 + 5(1− σ2)κ2]K1(κ)

2(1− σ2)κK0(κ) + [4 + (1− σ2)κ2]K1(κ)
,

where κ2 =
σ

1− σ

R2

h2
, i.e. K = K(h,R, σ) depends on h,R, σ (Poisson’s

coefficient), and when h
R → 0 or h

R → ∞ ⇒ K = 3 (because Kn(x) =√
π

2x
e−x(1 + O(

1
x

))).

b) for the plate’s bending I. Vekua’s approximation N = 1 and Reiss-
ner”s method give us:
(I. Vekua’s N = 1)

K = 1 + 2
K2(κ)

K2(κ) + 2(1− σ)K0(κ)
, κ =

3R2

h2

and when h
R → 0 we have K = 5−2σ

3−2σ

(E. Reissner)

K = 1 + 2
(1 + σ)K2(κ)

(1 + σ)K2(κ) + 2σK0(κ)
κ =

5R2

2h2

and when h
R → 0, then Reissner’s coefficient K coincides with classical

results, (Kcl =
5 + 2σ

3 + 2σ
).

3. a) I. Vekua’s approximation of order N = 2 (first and second meth-
ods) for the tension-pressure solves 3-D problems, when P1 = P2 = const.

b) for bending of plate coincides with Reissner result.
4. a) I. Vekua’s approximation of order N = 3 solves 3-D problems for

the tension-pressure when P1 = const, P2 = 0, (II-method).
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b)I. Vekua’s approximation of order N = 3 (II-method) for bending of
plate solves 3-D problems, when M1 = const, M2 = 0.
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