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Abstract

The paper deals with the application of the method of boundary elements to the
numerical solution of plane boundary problems in the case of the linear theory of elastic
mixtures. First the Kelvin problem is solved analytically when concentrated force is
applied to a point in an infinite domain filled with a binary mixture of two isotropic
elastic materials. By integrating the solution of this problem we obtain a solution
of the problem when constant forces are distributed over an interval segment. The
obtained singular solutions are used for applying one of the boundary element methods
called the fictitious load method to the solution of various boundary value problems
for both finite and infinite domains.
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introduction

In the present paper we consider the Green-Naghdi-Steel model of the lin-
ear theory of a mixture of two isotropic elastic materials [1], [2]. The Kelvin
problem [3] is solved in the case of plane deformation when concentrated
force is applied to a point in an infinite domain filled with a binary mix-
ture. By integrating the solution of this problem we obtain a solution of
the problem for the infinite domain when constant forces are distributed
over an interval segment. The obtained singular solutions are used for the
application of the boundary element method to the numerical solution of
various boundary value problems for both finite and infinite domains.
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1 Basic relations of the linear theory of elastic
mixtures

In the Cartesian system Oxjxax3, the three-dimensional equations of static
equilibrium of a body consisting of a mixture of two isotropic elastic mate-
rials have the form [4]

31‘0;]- — 7+ plf], =0,

820-;; + 7Tj + prJ,‘/ = 07 Za] = 1> 27 37

while the relations of elasticity are written as follows

Ugj = (-2 + /\1€;ck + )‘3€Ik/k) 0ij + 2/11521- + 2,[1,36;;» — 2X5hij,

(2)

O';/J = (042 + )\48'/“9 + )‘2€/k/k) 5ij + 2/1,36% -+ 2”22’5% + 2/\5hij,

"

/ 1 R— .
where 05y O are the partial stress tensor components, 7; = 0;7 and

Q202 Q201
™= pp 52;]4;_'— pp E%ka P:pl+P2a

p1 > 0, p2 > 0 are the densities of the mixture components; f;, f/' are the
components of the mass force vectors; as, A1, A2, Az, Ag, As, p1, f2, 43

are elasticity constants; az = A3 — A\ €; = €);, €; = €; are the partial
deformation tensor components

/_18/8, //_]'a/la//

Sij_i(iuj_’_ ;) 5ij—§(iuj+ juy) (3)
hij = —hj; are the rotation tensor components

1 / / " "
hij = 5 (&u] — 8jui + 8jui — @u]) , (4)

u o= (uh,uh,uf), " = (uf,uf,uf) are the partial displacement vectors;

0j = 9z,
The Latin indexes take values 1, 2, 3. Summation is assumed to be
performed over the repeated indexes.

For the sake of simplicity we introduce the following notation (column-

matrices)
]DZ/J = 0’2]-—51‘]‘ (7T—CM2), PZ/J/ = Ug,]-—i-(sij (71'—0(2), (5)
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/ ! T / " T / " T
0ij = (Pl-j,Pij) y Uj = (uj,uj) y € 1= (z—:ij,sij) ,

hij = (hij7 hji)T .

Using notation (5), (6), we rewrite relations (1) — (4) as follows

Oioij +¢j =0, (7)
Oij = Aekkéij + QMGU — 2>\5hi]’, (8)
where @; = (p1f}, paf")7,
A — Q202 As — Q201
e T B G |
A+ Q202 Ay + Q201 3 2
p
1 1 1 -1
Gij = — (Bzuj -+ 6Juz) s hij =-5 (&uj — 8Ju,) , S= . (9)
2 2 -1 1
With (9) taken into account, relation (8) can also be written as follows
Oij = A@kukdw + (M — )\55) (%uj' + (M + )\55) (%ul (10)

By substituting (10) into (7) we obtain equations in terms of displace-
ment vector components

AAvy; + B (dkuk) + ¢ =0, (11)

where
A:=M—XS, B:=M+XS+A, A:=0,0

Let us consider the case of plane deformation for a cylindrical body
when v, = u1, uy = uz and @, = @1, Y, = Y2 do not depend on z3, and
uz = 0. @3 = 0. Then o,; = 011, Oyy = 022, Ogy = 012, Oyg = 021 do not
depend on x3 and, moreover, 013 = 093 = 031 = 039 = 0. We have

Ozzax + Oyzy + Pz = 0,

Oaya + Oyyy + 0y =0,

Ope = NO+2Muy o, 0yy = A0+ 2Muy ),

Opy = Aty o + (B — Mgy, 0yz = Augy + (B — Ay a,

(12)
0 = gz + tyy, ():c ===, () v =

r1=x, T2=1Y.
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Relation (11) can now be written in the form

ADguy + B, + 0, =0,
(13)
AAguy, + B, + o, = 0,

Where A2 () = ()732.1‘ + (')7yy *
On the Ozy-plane we introduce the complex variable z = x + ¢y. Then
system (13) can be written in the complex form

4A (ug +iuy) - +2B0z + ¢ =0, (14)

(e =] (z= 510 +i0)w],

N |

where z = z — iy, ()),,=

Pt = Pu +ipy.
A general solution of system (14) is represented by the following analog
of the Kolosov-Muskhelishvili formula [5]:

2(ug +iuy) = A*p(2) — 2¢/ () — ¥(2), (15)

where o(2) = (¢1(2), 02(2))7,  ¥(2) = (¥1(2),¥2(2))T are column-matrices
consisting of arbitrary analytic functions of the complex variable in the con-
sidered domain, A* = I + 2B~ A, where I is the 2 x 2 unit matrix.

For complex combinations of the stress tensor components, by formulas
(12) and (15) we obtain the expressions

Oyy — Ozz + 1 00y + 0yz) = 2M [29' (2) + ¥ (2)],
(16)

Gaw + Oyy + i (Oay — Oya) =2 [(A — AsSAY) D (2) + M (z)} ,
where

®(2)= (4 (2), Wh(2)". T(2)= (W] (2), ¢h(2) .

2 The Kelvin problem for a binary mixture in the
case of plane deformation

It is assumed that we have an infinite domain with a circular hole of radius
R and center at the origin. We consider the case of plane deformation for a
binary mixture. Let stresses damp at infinity and stresses of constant value
and direction (z = re'®) [6] be applied to the circular contour:

1

1 T T
R o= gty B=ELE) By= ()T

Org =
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where Fy, Fy, Fy/, )/ are constant values. On the circular hole contour (r
= R) the formula

1
21 R

is valid for the polar components of the stress tensor. Using the introduced
analytic functions the latter boundary condition can be rewritten as follows:

(F, —iF,)e"

Opr — 10p9 = —

M® (2) + (A= X\sSA*) D (2) — M [2 (2) + U (2)] ¥V =
(17)
= _ﬁ (Fp —iFy) e on r=R.

Since there are no stresses at infinity, the expansions of the functions
®(z) and ¥(z) into power series do not contain free terms

o0 oo

B(z)=) e W(x)=) Re (18)
n=1 n=1

where a, = (a’,a"), b, = (b),,b")" are the values we want to define.

Substituting expansions (18) into the boundary conditions (17) and
taking into account the condition of displacement uniqueness

A*ay + a =0,
we obtain the coefficient values:

1
a == ([+A) AN (F +iF), b= AT, by =2R%.
s

All other coefficients are equal to zero. Therefore

a1 bi | b3
@(z)—z, \I/(z)—z—l-z3.
Substituting the obtained values of ®(z) and W¥(z) into formulas (15) and
(16), we obtain the values for the displacement vector and stress tensor
components. Let now R— 0, and 0,4, 04y increase infinitely, but the prin-
cipal vector remain invariable. Then
B (2) = % v = Aa

z z

In that case, by virtue of formula (15) we obtain

1
Uy + iy = =A™ (I + AP ATY(E, +iF) Inzz+

(19)

(A At (B —iR) 2

47 * vz
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Separating the real and the imaginary parts of formula (19), we have

1
Uy = (AG = 0G ) Fr+ (—yGa) Fy — .- (I + AN AT R,

(20)
1 _
wy = (—2Gy) By + (A'G —yGy) Fy = - (I + A") LA,
where the following notation has been introduced:
1 x\—1 4—1 2 2 1/2

Discarding in formula (20) the constant values corresponding to a rigid
displacement, we obtain

Uy = (A"G — 2G y) Fy + (—yG z) Fy,
(22)
uy = (—2Gy) Fy + (A"G — yG ) Fy.

Substitution of formulas (22) into formulas (12) gives the expressions
for stresses

Ozz = [(A+2M) (A" = I) Gz — 2MzG ;) Fp+
+[A(A*—1T) Gy— 2MyG7m] Fy;
Oyy = [A(A* —1T) G, — 2MxG’yy] Fo+
(23)
+[(A+2M) (A* —1) Gy — 2MyG,yy] Ey;
Opy = [A0G y — 2M G 4y Fy + [BoG o — 2MyG 4y] Fy;
Oyz = [B()Gy — QMJ’G@y] F, + [A()G@ — 2MyG,$y] Fy.

Here we employ the notation

Ap = (M + AsS) A* — M + A58 = (B — A) A* — A,
By = (M—)\5S)A*—M—)\5S:AA*—B—|—A
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From formula (21) we derive

1 11 7 1 “1-1_ Y
Gy,=—7—(I+A"""A Gy=——(I+A")" A7 ——
L 277'( + ) $‘2+y27 Y 27T( + ) ZL‘2+y2’
1 1 4-1 2wy
Gay=—— (I+AH AT Y
Y 27_‘_( + ) ($2+y2)27
_ _ 1 \—1 A —1 x2_y2
G?Z’Z‘ = _G7yy - _%(I"’_A ) A (m2+y2)2’

On the basis of the solution of the Kelvin problem we obtain a solution
of the problem for an infinite domain when constant forces t, = P, =
(P, P) and t, = P, = (P, P}/) are applied to the interval | z |< a, y =
0. Let us divide the interval into segments of length d¢. Then the total
force applied to an element centered at the point z=¢£, y=0 is equal to
F, (&) = P,d§, where the subscript « is lither z or y. The solution of the
considered problem is obtained if in formulas (22), (23) we introduce the
value Fy,(§), replace z by the expression z —¢ and integrate the solution of
(22) and (23) from —a to +a. For displacements we obtain

Uy = (A*F +yFy) Pe + (—yFz) Py,
(24)
uy = (—yFy) Py + (A'F —yF,) P,.
Let us introduce the notation

So=T+A) 1AL S =(A+2M)A* — A, Sy=2M —A(A*—1),

Sy= g (Ao Bo) +2M, Sy=(A+2M)(A"~ 1), S5=_(Ao+Bo),
Se=M(I+A*), S;=By+2M, Ss=Ao+2M, Sog=M (A" -1I).
Then stresses are expressed by the formulas
Oze = (S1Fz + 2MyFay) P + [A (A" = 1) Fiy + 2MyF | Py,
oy = (=S2Fz = 2MyF 4y) Pr + (SaFy — 2MyFy,) Py,
Oay = (SsFy + 2MyFy,) P+ (BoF.x — 2MyF o) Py,

oy = (S7Fy + 2MyF ) Py + (AoFy — 2MyF 4y) Py,
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where the function F(x,y) (2 x 2 matrix) has the form

T—a r+a

F(z,y) = ffaG(az —&,y)dE = —%SO [y (arctan Y arctani> -

—(z—a)lny/(z—a)? +92+ (z+a)ln (:U+a)2+y2] +C,

where C' = (C1,C3)T, C1, and Cy are the constants corresponding to rigid
displacement (further they are discarded). For the derivatives F(z,y) we
have

Fo =55 [ln\/(ﬂz—a)Q—}— 2—ln\/(:c+a)2+y2],

1
F,=—-—5 {arctan Y _ arctan —2 } ,
’ 27 T —a r+a

(26)
1 y y ]
F., = =35 — ,
™ [(x—a)2+y2 (z +a)” +17
1 r—a xr+a
F.. = _ = S — .
, LT Yy 21t |:($ . G)2 + yg (.’E + a)2 + y2:|

As seen from formulas (24), displacements u, and u, are unbounded at
infinity. From formulas (25) it follows that stresses are defined everywhere
except for the segment ends (x = +a, y = 0). Their values on the axis
y = 0 can be obtained if in formulas (25) and (26) y is assumed to be equal
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to zero

1 2
Opim ——S5150P; In (a: + a)_
47

r—a

—5=A(A* = 1) SoP, yl_lg:l (arctan - — arctan mf@) ,

1 2
Oy = 1=5250P; In <m * “) -

T —a
_%S@S’OPy y1_1>11i1 (arctan —— — arctan x+a> ,
(27)
1 .
Oy = _%SSSOPI ylgf_tlo (arctan - g o arctan . j/_ a> -

2
— £ BoSoP,In (££2)°,

— arctan

1 .
Oyz = —55’7503c yl_lgzlo (arctan

Yy Yy _
T —a r+a

— L 4SoP,In (w+a)2

For the limits contained in formulas (27) the following formula is valid:

0, |z|>a, y=0yany=0_,
lim (arctan — arctan > =1 +7, |z|<a, y =04,
y—0 —

—-m |z| <a, y=0_.

Taking the latter formula into account, we consider three different cases:

1) ’:E‘ > G’?yzoﬂ:?

1 z+a)?
Oy (ZE,O) = —EslSon In <$ a) s

Oy (,0) = £5550P, In (HG)Q,

1 z+a)?
Oxy (.73,0) = _EBOSOPZJ In ( > s

r—a
Oya (2,0) = _7AOS()P In <x+a>2
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2) ‘x’ <a,y= 0+7

1 z+a\? 1
Oxx (l’,OJr) = —ESlSonln (1‘—(1) —§A(A*—I) S()Py,
1 T+ a S|
Oyy (z,04) = ESQSQPQC In <l‘ — a) — §S4SDPy, (28)

1 1 z4a\?
Oxy (.CC,O+) = _§S850Px - EBOSOPy In < ) y

Tr—a

1 1 T +a 2
Oyx (x,0+) = —§S7SOPm — EAOSOPy In ( > .

r—a

3) |zl <a,y=0-,

1 z+a\? 1
Orx (33,0_) = —EslSonln <x_a> +§A(A*—I) S()Py,
1 z4+a\® 1
Oyy (f]f, 0_) = ESQSOPJ; In (H) + §S4S[)Py, (29)

1 1 T +a 2
Oxy (.%',0_) = §SSSQPZ — EBOSOPy In < > s

1 1 r+a 2
Oyx (ZE,Of) = §S7SQPI - EAOSOPy In ( > .

As seen from formulas (28) and (29), when being transferred from one side
of the segment to the other side, stresses undergo discontinuity

Oz (€,0-) — 0 (2,04) = (A" — 1) So Py,
oyy (2,0-) — oy (2,04) = 5150 P,
Oy (2,0-) — 04y (2,04) = S250 P,

Oyx (.T, 0_) — Oyx (IL’,O+) = S7S()Pz.
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3 Coordinate transformation and the influence co-
efficients

Let the local coordinate system T, § be obtained from the system z, y as
a result of its transfer onto (cs,cy) and counterclockwise rotation by the

angle [ .

Using the coordinate transformation formulas [6], displacements and
stresses produced by the action of loads Pz, Py on the segment [Z| < a, § =
0 can be written in terms of the local coordinate system. Displacements
have the form

uz = (A*F1 +3F3) Pz + (—yF2) Py,

Uy = (—yfg) P+ (A*Fl — yfg,) Py,

Stresses are expressed by the formulas

o3z = [S1F2 + 2MyF4] Ps + [(S2 — 2M) F3 — 2MyF'5] Py,
ogg = [~ SoFa — 2MYF4] Py + [S4F5 + 2MyF5] Py,

ozy = [SsF3 — 2MyF's| Pz + [BoFo — 2MyF,] Py,

ogz = [S7F3 — 2MyF5| Py + [AoF2 — 2MyF4] Py.
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where

— 1
Fa(e.9) = Fx.9) = 550 [iny/(w - 0P + 72— i+ o + 7]
Fa@p) = Fy @1 = ~5-50 | -ty -

’ v 27 Z—a)’+72 (T+a)’+72]’
. 1 7
Fy(Z,y) = Fay (z,7) = — 50 [arctan — arctan ] ,

™ r—a x a

Fis(5.3) = P (@,1) = ~Fi (5.5) = 5o [aretan -7
—arctan%

Using the coordinate transformation formulas [6], the results obtained above
can be written in terms of a global coordinate system. Displacements have
the form:

Uy = [A* cos BF1 +7 (Sin BEF9 + cos Bfg)] P+
+ [—A* sin 3F| — 75 (cos BFy — sin Bfg)] Py,

Uy = [A* sin le -7 (cos BEQ —sin 623)] Pz
+ [A* cos fF1 — 7 (sin BE5 + cos ﬁFg)] Py.

Stresses are written as follows:
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Opz = [Sl cos? fFy — Sy sin? BF9 — S3sin 28F 3 + 2My (cos 2B F 4+
+ sin 25?5)] P+ [(ZM — S5) cos? BF3 + Sysin? BF3
—S5sin28F9 4+ 2M7y (sin 2BF 4 — cos 25?5)} Py,

Oyy = [5’1 sin? fFy — Sy cos® BFo + S3sin2BF3 — 2M7y (cos 2B F 4+
+sin28F5)] Py + [(2M — S)sin® BF5 + Sy cos® BF3+
+S5sin28Fy — 2M7 (sin 28F, — cos 25?5)} Py,

Oye = [Sﬁ sin 26F5 + Sy cos? BF5 — Sgsin® fF3 4+ 2M7y (sin 2BF,
— Cos 25?5)] Pr+ [(AO cos? 3 — By sin? ﬁ) Foy — MSgsin28F3
—2M7y (cos28F 4 + sin28F5)| Py,

Opy = [Sﬁ sin 26F5 + Sg cos? BF5 — S7sin? fF3 4+ 2M7y (sin 2BF,
— cos 26F5)} Pr+ [(Bo cos® B — Agsin? B) Fy — Sgsin23F3

—2M7y (cos 28F, + sin 25?5)] Py

The obtained solutions form the basis for applying one of the boundary
element methods called the fictitious load method to the solution of various
plane boundary value problems of the binary mixture theory in the case of
both finite and infinite domains. To solve these problems the boundary of a
given domain is divided sequentially into N segments. If the length of each
of these segments is sufficiently small, then we obtain good approximation
of the contour. To each boundary element we put into correspondence the
concentrated force continuously distributed over this element. For example,
to the j-th element there correspond the tangential stress Pl = (Pg ,, Pl ”)T

and the normal stress P,]L' = Pﬁl, PTJL'//)T continuously distributed over this
element. In addition to the fictitious stresses P/ and P}, on the j-th element

j/ j//)T

we also consider the true tangential and normal stresses o} = (04,03
and o, = (O'j /, ol ”)T, which are produced by the action of stresses applied
to all elements of the boundary.

Using formulas (30), (31) and the coordinate transformation formulas

[4], displacements and stresses at the midpoint of the i-th element can be
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expressed as a function of fictitious loads st and PT]L' on all NV elements of
the boundary (i, j = 1,...,N). Thus we obtain the equalities

N1 Nl
ol =0l =S (ALPI+ ALPY), oh=oi =Y (AUP]+ ALPI)
Jj=1 Jj=1
ui=ul = 0 (BEPI+ BEPL), i =i = S0 (BAP + Bi.PI)
i=1,2,..., N,
where A?;, R Bﬁfn are the boundary influence coefficients. For example,

the coefficient A;/s gives the normal stress o,; at the center of the i-th
segment produced by the action of the unit tangential load on the j-th
segment. ' '

Thus the problem is reduced to finding the fictitious loads P and P}
using the above boundary conditions, i.e. to the solution of a system of lin-
ear algebraic equations, where P/ and P} are the unknowns. Having solved
this system and using formulas (30), (31) and the coordinate transforma-
tion formulas at an arbitrary point of the considered domain we obtain the
values of the displacement vector and stress tensor components.

As an illustration, in the next section we give examples of the numerical
realization of some boundary value problems for a binary mixture and also
present the corresponding diagrams.

5. Examples

Below, using the boundary element method (BEM), we give solutions
of two static boundary value problems for an elastic body consisting of a
binary mixture. The first of them is an external problem for an infinite
domain with a circular hole when the contour is stress-free and unilateral
shearing stresses is applied at infinity. The second problem concerns a cir-
cular semi-ring when stresses are given at two opposite semi-circles and the
symmetry and antisymmetry conditions are given on two opposite interval
segments [7].

Problem 1 We consider a boundary value problem, in the domain

Q={r;1 <r<oo, 0<a<2r} with the following boundary conditions::

when r =7 . = (0,001, 0.4 =(0,0)%,

when 7 — 00 Opp=p= (p’,p")T, Oyy = Oy = Oyz = (0, O)T.
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—

= 64, /P (BEM)
~€ g, /P" (BEM)
= G ha/P (hnal)
B > o lha/P (Anal |
—— const |

-

-2.5 -2 -1.5 -1 =0.5 0 0,5 1 1.5 2 2.5

Figure 1: Tangential stresses on the hole boundary

Since the problem has two symmetry axes, the numerical solution can
be found by dividing a quarter of the circular boundary into 50 elements;
in this case A1 = 0,1; Ao = 0,2; A3 =0,3; Ay = 0,4; A5 = 0,5; u3 = 0,6;
p2 =0,7; u3 =0,8; p1 = 0,15; po = 0,25; p’/E' =10~3; p” /E" = 15.107 4,
r1 =175, 0<a < 2m.

An analytic solution for stresses acting along the circular hole boundary
has the form [8]

when r =711 opa = {I — [I +M (A - /\5SA*)_1] cos Qa}p,
Oor = — { [I —M(A - )\5SA*)_1} sin 2a}p,

where the angle a is counted from the z-axis. These functions are shown
in Fig.1 together with numerical results.

The comparison of the results obtained by the boundary element method
with the exact solution values shows a high degree of their coincidence (see
Fig.1). We can therefore conclude that the application of the BEM has
proved to be correct for solving the boundary value problems considered in
this paper.

Problem 2 Now let us consider the boundary value problem considered

in the domain Q = {r; < r < 19,0 < a < 7w} with the following boundary
conditions:
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= Oy
—&- oy "

a)

-_— r L
Tar'p

—0— ol

335

ra
P
in
[

)

= o

—0- oy

d)

Figure 2: a) Tangential, b), ¢) shearing and d) normal stresses in the ring

(1<r<4)fora=mr/3

a) when r=ry: 0. = (p’ cos §,p" cos %)T, Ora = (O,O)T,
b) when r=ry: oy = (O,O)T, ora = (0, O)T,

¢) when a=0: v= (O,O)T, ora = (0, )T,

d) when a=m.: u=(0,0, 0aa=(0,07

The formulated problem is solved by the method of boundary ele-

ments.

At the characteristic points of the considered domain we have

obtained the stress values for the following data: Ay = 0.1; Ao = 0,2;
)\3 = 0.3; )\4 = 0.4; )\5 = 0.5; M1 = 0.6; Ho = 0.7; 3 = 0.8; p1L = 0.15;
p2 = 0.25; p//E' = 1073; p”"/E” = 1073; 11 = 1; 7o = 4. The semi-
circles r = ry and r = ro are divided into 180 equal arcs, while the linear
parts of the boundary are divided into 40 equal segments. The diagrams
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for the stresses oaa/p = (0ha/00ua/P")"s Oar/p = (00 /0 00 /D")T,
ora)p = (ol /0,0l /0", o /p = (0l /p o /p")T are shown in Fig.2
form <r <rg9, a=m/3.

By solving the problems corresponding to Fig. 2 we obtain the picture
of distribution of internal stresses throughout the body. In particular, using
the BEM we have calculated the distribution of stresses oqa, 0ra, Tars O

T
along the radius r when a = —.

3
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