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Abstract

. In this work, solutions of boundary-contact problems of statics of thermoelasticity
theory, for multilayer ring and circle are constructed explicitly in the form of series.
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A circle is considered which consists of concentric rings Dy (k = 2,3, ...,1)
and of circle Dy .Each Dy ring is bounded by circumferences Sy_1 and Sy
, which have a common center at the origin of coordinates and Rj_1 and
Ry, are the radii. It is supposed that different rings are filled with different
two-component elastic mixture.

1. First, let us consider a problem, when we have not D; circle - Dy is
empty. Let us find a regular vector U*(z) = (u*(z),u4(x)) in the ring Dy
, which satisfies:

a) the system of equation ([1],[2]) of statics of the theory of thermoelastic
mixture:

ab A(uF) (2) + b graddiv(uF) (z) + FAWF)?(x)
+d*graddiv(u®)?(z) = yFgradul
FA W) (2) + dFgraddiv(uF)(z) + a5 A(uF)? (x) (1)

+b5graddiv(u®)?(z) = v5gradul,
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[Rk(az,n)Uk(z)] . [Rk_l(az,n)Uk‘l(z)] —0,k=3,4,....1:2 € Sp_1:

n n

uk(2)1- w1z
(Wh(2) — (™ (2)* = A7), [2eE) T s T ey,

dn(z) dn(z) ’
k=23,..1;
(3)
¢) boundary conditions on the circumferences S; and S :
(R*(0:,)U?(2)), = f'(2), (u3(2))” =0,z € 8,
(4)
(RY(8:,m)U(2))f = f'(2), (uh(2))" =0,z € S,
u%(zf = f:,}, z € 51,
(5)

+
ué(z) = fé, z € 5],

where u*(z) = ((u")!(2), (u*)*(2)),(u")'(z) = ((u})'(2), (u§)'(x))-is the
partial displacement vector at the point x, x € Dy, i=1,2; u§($)—is the
change of temperature; R¥(0,,n)U*(x) =

([R (0, n)U* ()], [R (02, n)UM(2)]?), [R(05, n)U ()] =

([RF (0, n)U* ()]}, [RF(D, n)U*(x)]})- is the partial thermostres vector in
Dy,

[RE (90, )U* ()]}, = [P(9a, n)u® ()], — v (@) (), (6)

P*(0,, n)u”(x)-is a stress vector of elastic mixture [2], f7 = [(f)!, (f1)?], j=
1,2 i,p=1,2n=(n;,n2), s = (—nz,n1); ak,bf, ¥ d* ak b5 ¥ ~Ak-are
the known constants [1,2] defining elastic and thermal properties in Dy; 4,
and A,- are normal and tangential components of the vector A, respectively.

As we are solving a problem of statics, we cam solve separately problem
[(1)3,(3),(5)]. To find the changes of temperature ug and separately the
problem[(1),(2),(4)]- to find u”*(z) displacement vector.

First we will solve the problem [(1)3,(3),(5)]. Let us suppose that
the functions fj(z) and f}'(z) are expanded into Fourier Series (j =
1,200, k=3,4,..10).

The solution of the equation(1)s in the ring Dy, can be written as follows
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uf(z) = (lank(uoza) + =" (ufy) )+
S Ry_4 rRy_1 _ r R]%_

k m k T \ym 1\my/, k \+
D - (k) + (G - (),
k= 2, 37 7l7

. . (7)
where (lk = m bk = L (Rk_l )2m (ufn:i):t_ is the Fourier
R

coeflicient of the functions given on the boundary Sj_i:
1 2
(uh () =+ [ () *@)cosm(o — v)as,
T
0

z = (Rg,v), y= (R 0), yel0;2n]. Let us consider unknown (uﬁﬁ)Jr .

If we take into consideration (3) and (5) and put (7) into (3)2 for each m,
we obtain an system equations for (u¥3)*. When m = 0, we obtain:

(a® + a®)(ufs) ™ — a®(uls) ™ = Rofdy — a® fgs + a*fis, k=3,
—af M (ufz )t 4 (@ a) (ufy )T - dF(ufy)t =

Reafor ' +a" s —ab fly, k=4,5,..,1-1, (8)
—al Y (ul?)* l+1(al71 + all)(uézsl)i -

a'flg+ Rioafog + a7 g2 —d' fogt, k=1

and when m = 1,2, ..., we have:

(53, + 50wy ) = 0 ()" =

2 5,131 3 2m3
_RQfm4+U m3_5mfm3’ k:3’

k — k—
_Um ( m32) + (an ! + S?ﬁl)(umiil)—i_ - Uk (uk )+ =

Kol k—1pk=2 _ b phel " (9)
_Rk—lfm4 +0m f m3 _Smfm37 k:4757"'7l_17
—Ufnl( 57132)++( H+8 )(liniil)+_

where s — bem[l + (R’“ Lam) o gk = opp(RRlym o g =
Rx R

k
2,3, ...,1. By direct computation, it is proved that the determinants of the
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systems (8) and (9) differ from zero. If we substitute the solutions of the
systems (8) and (9) into (7), we obtain solutions of problems [(1)s, (3), (5)]
for each k. Let us solve the problem [(1),(2),(4)]. Let us introduce the
functions in the domain Dy, [5]:

vi (@) = r(uy)'(z) = 21 (uf) () + z2(uf)' (),

. , , (10)

vio(a) = r(uf)'(x) = —wa(uf)' () + 21 (uf)’ (2),
Xf (@) = r?[PH(0p, n)ut ()], Xfyo(2) = r?[PH 0z, n)ut(2)]5, 0= 22)
11

By means of vf (j =1,2,3,4) the functions Xf rewrite:

X’“( ) = eir?07 (x) + e5r?05 (x) — efof (x) — ebvb () — 260y 05 (2)—
25581#”4( T);

X5 (z) = ebr?07 (x) + ebr205 (z) — 5 (x)of () — ef(z)vh (x)—
2eE 0yl () — 2e§ 0y 0 (z);

(12)
the conditions (2) :
() (2) = (Wf )T (z) =0,
(vi2)~(2) = 0, (v5) 7 (2) = 0, k=3,4,..0;
(13)
(X~ (2) = (X1 *(2) = Rp_yf ()~ (2)—
RZ_ I%k l(ulg Dt(z) = ‘Illg_li(z), z€ 8k, k=3,4,...,1
and the conditions (4):
(X7)~(2) = RI(f1)'(2) + RivP(ud) ™ (2) = @i (2),
(Uz'2+2)_(z) =0, z¢€ 517
(14)

(XD*(2) = RE(f1)'(2) + Rivi(ub) ™ (2) = ¢i(2),
(vl " (:) =0, ze S,

where ef = af + 0k, & =k +dF, b = ab + 05, & = abf + N
k _ Lk k k _ k k k _ 1 k 1 k 2 _ .2 2
€5 = Cc" — )\5, 66 = GQ + )\5, 01 = ;67-'[)1' + ﬁawvi+2, rT = -’L’l + 1'2,

x = (r,). v}],f values are to be sought. Let us suppose that functions v;f

expanded into the Fourier Series

1 o0
(p)* = S6) " + D (vhyp)*, p=1234 k=121
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We should seek the solution of the problem in each ring Dy, in the form [6]:

vi () = a®(r) (vf;) ™ + B*(r) (ui) ™ + R () ((ufiy) ™ — (uds) P+

[ (7)o, )~ () + Th () () ()] + 32 () (r) ()~ ()4

1 m=1

(L)' (1) () T () + (HR2)' (1) (vm2) ™ (9) + (Li2)' () (vm) * (#)],

e

oh(r) = R (el + V() + 3 (KA () (k) (0)+

Th(r) (o) ()] + 21[%[( KD ) ()™ () + (Lh) () (0)+

(Hpal (M (1) + (Ligl (1) () * ()],

1=1,2, j=i4+2, k=12,..,0—1,
(15)
where
Rl%—1 —r?
2(Ry — R )’

r?— Ry 1

ak(r) = bE(r) = ) a®(Ryp_1) = b"(Ry,) = =

i)

F(Rp) = b"(Ri—1) =0, hF(r) = —
@ (Ry) = 0" (Ri-1) ) = S iy —nfy)

[ (r) + 2nf],

n} =15 +b5) — 95 (c" +d¥),  nf=F(a} +bf) —Af(c" +d),

’I’L§ = [R%lan — szllan—l — (R% — R%il)]w,
k k—1

BE(Rio1) = WE(Re) =0, (1)~ = o, (uh)* — s, (uh)~+
Ry,
Rica(th)” + 50 (thiam) ) (he)* = goloh(eh)” b+
k (0k \+ k 0 +
Sm(Umi) +Rk(tmz) aw( z+2m) ]7
0

(thi) ™ = —efim(cﬁz(@b)[gpﬁ(r)]r:& Dy, (1/))[ Qm( )r=R,),
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0 0
(th) T = —ekm(CE ()= Pk (M)]i=r, — D () [5- Q% (r)]r=r,);
or or
[ S S A A A A S S Sy
p=k—L1k ef= 3(66271 —c'yg), €5 = ﬁ(am — ),
1 1
— Ri_1.,, + + Ri—1.,, _
Ok = brfuks™ — (Fo)™uly ], DE, = bF[uk, " — (S (k) 7,
Rk Rk
R2 — R2
db = akak — (F)?2 >0, ok = —FE _HFL = ML PR =
1 _( k—1 )Qm
Ry,
1 Ri_qr Ry
T )"+ B = —al) (5 m=2.8.
k
Qk.(r) = ! ok (Ri*l)m —(R2_, =+ ab) (=)™
m 4(m+1) m Rir k—1 m Ry, )

m=1,2,.. k=12 .1

Let us put (13) into (15) and at the same time, take into consideration
(12) and (14). Lo obtain a system of linear algebraic equations for each m
for (vF )% . The determinant of this system differs from zero, because the
above formulated problem has the unique solution. If we solve this system,
then the values (vF.)~ will be determined from the conditions (13). By
means of the values (v )™ and (vF,)~,i = 1,2 , we will find the values
of the functions v(’;’(q =1,2,3,4) , from (15) and from (10) finally we will
obtain:

- 1
(U]f)l = 772(96171? - xzvﬁrz),

1 .
(ub)’ = ﬁ(szvf +ayvf,), i=1,2.

So, by (16) and (7) formulae for each ring D), we will obtain the solution of
raised problem - U*(z) = ((u})!, (ub)!, (u})?, (ub)?, ub) vector value. We
will conclude from (15) and (7) formulae that:

((Wh )l < — |(Wha)F < —, m=1,2,..,¢=1,23,4; k=12,..L
(16)
For the absolute and uniform convergency of series (15) and (7) and their

first and second order derivatives it is sufficient(including the boundary)
to fulfill the inequality : fP(2) € C4(S,), fN(z) € C3(Sk), fF(2) €
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02(Sk’)7
p=11 k=12 ..,1

2. The problems for compound circle may be solved analogously, i.e.
when circle D; is not empty and is filled with elastic mixture.Representation
of the harmonic function ui(x) in the domain D; is known [4]:

o0
uz(z) = U03 )+ Z

. Rl L) Tz € Dy,
where
2
(ups) T (2) = 1 /(ué)*(&)cosmw —)df,m =0,1,...,z = (R, ),z € Si,
" 0
the functions vjl- (x) in the domain D; we can represent as:
1 00
vé(r7w)=§( 001++Z T+
m=1

Zm(r) [H%n(ﬁzﬂJr + Lim’(%lmﬁ - e}xm@ln(%ln:a)ﬂ],

1 r

1
Uj (T7 1/]) 2 ( Rl /UOj + Z Rl /Umj +

1
EZm(T)[MTInj(’VTInl) + NlﬂmQ + ezmdy, (up3) 1],

where the values

R2 . T‘2
Zm(r) = mazm(Rl) =0, 65, =(2+e)(2+e3) — eseg,
2(m + 1) 10
’lem' = T%[(Umi)—i_ + E%(Umjfr - 6i+3(um3)+},

1 1
b = 1(ajt} ), b= (adat -~ b, =
1 1

1 1
ey = d—%(a%dl — ), Al =el = —(ald' - c'bd).

H%W L}m, M%w, Nﬁlj—are depending on elastic and thermal constants of the
mixture and on the radius Ry, j =i+ 2,9 =1,2.

7
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