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Abstract

Using methods of the theory of analytic functions, in the paper we investigate

the plane problem of statics in the linear theory of elastic mixtures for infinite region

weakened by an curvilinear shape having cuts off with equidurable boundaries at the

vertices.
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1 Some auxiliary formulas and operators

The homogeneous equation of statics of the linear theory of elastic mixture
in the complex form is written as in [4]

∂2U

∂z∂z
+ Ķ

∂2U

∂z 2
= 0, (1)

where z = x1+ix2, z = x1−ix2, ∂
∂z = 1

2

(
∂

∂x1
− i ∂

∂x2

)
, ∂
∂z = 1

2

(
∂

∂x1
+ i ∂

∂x2

)
,

U = (u1+ iu2, u3+ iu4)
⊤, u′ = (u1, u2)

⊤ and u′′ = (u3, u4)
⊤ are the partial

displacements;

Ķ = −1

2
em−1, e =

[
e4 e5
e5 e6

]
, m−1 =

1

∆0

[
m3 −m2

−m2 m1

]
,

∆0 = m1m3 −m2
2, mk = ek +

1
2 e3+k, k = 1, 2, 3, e1 = a2/d2, e2 = −c/d2,

e3 = a1/d2, d2 = a1a2 − c2, a1 = µ1 − λ5, a2 = µ2 − λ5, c = µ3 + λ5,
e1 + e4 = b/d1, e2 + e5 = −c0/d1, e3 + e6 = a/d1, d1 = ab− c20, a = a1 + b1,
b = a2 + b2, c0 = c + d, bq = µ1 + λ2 + λ5 + (−1)qα2ρ3−q/ρ, q = 1, 2,
α2 = λ3−λ4, ρ = ρ1+ρ2, d = µ2+λ3−λ5−α2ρ1/ρ ≡ µ3+λ4−λ5+α2ρ1/ρ.
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Here ρ1 and ρ2 are partial densities (ρ1 > 0, ρ2 > 0) and µk, k = 1, 2, 3,
λp, p = 1, 5, are constants characterizing physical properties of the elastic
mixture and satisfying certain inequalities [7].

In [2] M. Basheleishvili obtained the representations

U = (u1 + iu2, u3 + iu4)
⊤ = mφ(z) +

1

2
ezφ′(z) + ψ(z), (2)

TU =

(
(Tu)2 − i(Tu)1
(Tu)4 − i(Tu)3

)
=

∂

∂s(x)

[
(A− 2E)φ(z) +Bzφ′(z) + 2µψ(z)

]
, (3)

where φ(z) = (φ1, φ2)
⊤ and ψ(z) = (ψ1, ψ2)

⊤ are arbitrary analytic vector-
functions,

A = 2µm, µ =

[
µ1 µ3
µ3 µ2

]
, m =

[
m1 m2

m2 m3

]
,

B = µm, E =

[
1 0
0 1

]
,

∂
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= −n2

∂
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∂

∂x2
,

n1 and n2 are the projections of the unit vector of the normal onto the axes
0x1 and 0x2, (Tu)p, p = 1, 4, are components of the stress vector [2]:

(Tu)1 = r′11n1 + r′21n2, r′11 = aθ′ + c0θ
′′ − 2

∂
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∂
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(Tu)3 = r′′11n1 + r′′21n2, r′′11 = c0θ
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∂
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∂
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, θ′′ = div u′′ =
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+
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,
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.
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Let us now consider the vectors

(1)
τ = (r′11, r

′′
11)

⊤,
(2)
τ = (r′22, r

′′
22), τ =

(1)
τ +

(2)
τ , (4)

(1)
η = (r′21, r

′′
21)

⊤,
(2)
η = (r′12, r

′′
12), η =

(1)
η +

(2)
η , ε∗ =

(1)
η −

(2)
η . (5)

After lengthy but elementary calculations we obtain

τ =
(1)
τ +

(2)
τ = 2(2E −A−B)ReΦ(z), (6)

ε∗ =
(1)
η −

(2)
η = 2(A−B − 2E) ImΦ(z), (7)

(1)
τ −

(2)
τ − iη = 2(BzΦ′(z) + 2µΨ(z)); (8)

here Φ(z) = φ′(z), Ψ(z) = ψ′(z), det(2E −A−B) > 0 [3].

Let L be a smooth curve and O1 ∈ L. Consider the right orthogonal
coordinate system (nO1s). By n we denote the outer normal vector to L
at the point O1 and by s the tangent vector. Suppose that n = (n1, n2)

⊤ =
(cosα, sinα)⊤ and s = (−n2, n1)⊤ = (− sinα, cosα)⊤, where α = α(t) is
the angle between the outer normal n to the contour L at the point O1 and
the 0x1 axis.

Next we construct the vectors

σn =

(
(Tu)1n1 + (Tu)2n2
(Tu)3n1 + (Tu)4n2

)
=

(1)
τ cos2 α+

(2)
τ sin2 α+ η sinα cosα, (9)

σs =

(
(Tu)2 − i(Tu)1
(Tu)4 − i(Tu)3

)
=

1

2
(
(2)
τ −

(1)
τ ) sin 2α+

1

2
η cos 2α− 1

2
ε∗, (10)

σ∗s = σs +
1

2
ε∗, (11)

σt =

(
[r′21n2 − r′11n2, r

′
22n1 − r′12n2]

⊤s
[r′′21n1 − r′′11n2, r

′′
22n1 − r′′12n2]

⊤s

)
=

(1)
τ sin2 α+

(2)
τ cos2 α− η sinα cosα. (12)

From (9)–(12) and (6)–(8) we obtain

σn + σt = τ =
(1)
τ +

(2)
τ = 2(2E −A−B)ReΦ(t), (13)

σn − iσs = (2E −A)Φ(t)−BΦ(t) +
(
BtΦ(t) + 2µΨ(t)

)
e2iα(t), (14)

on L and with elementary calculation we get

σn + 2µ

(
∂Us

∂s
+
Un

ρ0

)
+ i

[
σs − 2µ

(
∂Un

∂s
− Us

ρ0

)]
= 2Φ(t), (15)
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Figure 1:

on L where 1/ρ0 is the curvature of the curve at the point t = t1 + it2,

Un =

(
u1n1 + u2n2
u3n1 + u4n2

)
, Us =

(
u2n1 − u1n2
u4n1 − u3n2

)
. (16)

(2), (3), (6), (8) and (13)–(15) represent analogues to Kolosov–Muskhelishvili
formulas in the theory of elastic mixtures.

2 Statement of the problem and the method of it
solve

Let an infinite elastic plate occupy on the z = x1 + ix2 the exterior of
the rectangle with cuts off at the vertices and with holes located along the
coordinate axes. Suppose that unknown contours of the holes and cuts off
are smooth and the region occupied by the plate is symmetric with respect
to the 0x1 and 0x2 axis (Figure 1).

Suppose that the contours of the cuts off and holes are free from external
forces and, moreover, vectors σs and Un on the sides of the rectangle equal
to zero. The constant field of contracting stresses acts at infinite

(1)
τ ∞ = p,

(2)
τ ∞ = q, η∞ = 0, (17)
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where p = (p1, p2)
⊤ and q = (q1, q2)

⊤ are real known constant vectors and
satisfying the conditions

(p1 − q1)(p1 + q1)
−1 = (p2 − q2)(p2 + q2)

−1 = γ, γ ̸= 1. (18)

We are seeking both the state of stress in the plate and shape of the
contours of the holes and cuts off such that the vector (12) (σt) on them
would take the constant value σt = k0, k0 = (k01, k

0
2) = const will be defined

later in the course of solving the problem.
Such kind of problem for equations of statics in the plane theory of

elasticity has been considered in [6].
By the phisical and geometric symmetry of the problem we consider

only the first quadrant x1 > 0, x2 > 0, which we denote by D and its
boundary by L = L0 +L1 +L2. L0 denotes a set of unknown arcs, L1 and
L2 are the sets of rectangular parts of the boundary which are parallel to
the 0x1 and 0x2 axis respectively:

L0 = A0C0 +

n∪
j=1

A0
jB

0
j +

m∪
j=1

C0
jD

0
j , L1 = D0C0 +

n∪
j=0

B0
jA

0
j ,

A0
n+1 = ∞, L2 = B0A0 +

m∪
j=0

D0
jC

0
j , C0

m+1 = ∞.

Here 2n and 2m are numbers of holes along the 0x1 and 0x2 axis, respec-
tively. The points of the plane affixes of these points are denoted by one
and the same symbols.

From the conditions of the problem it follows that

σn = 0, σs = 0, σt = k0 on L0, (19)

Un = 0, σs = 0 on L1 + L2. (20)

By virtue of (13)–(15) and the conditions (17), (19) and (20) the stressed
state of the body D is described by two analytic vector-functions Φ(z) and
Ψ(z).

In our case

α(t) =
π

2
(3j − 4), t ∈ Lj , j = 1, 2, (21)

but the angle α(t) on the contour L0 is unknown because contour L0 itself
is unknown.

The vector-functions Φ(z) = (ϕ1, ϕ2)
⊤ and Ψ(z) = (Ψ1,Ψ2)

⊤ for large
|z| can be represented in the form (see (6), (8) and (17))

Φ(z) =M +O(z−2), M =
1

2
(2E −A−B)−1(p+ q), (22)
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Ψ(z) = h+O(z−2), h =
1

4
µ−1(p− q), (23)

and the boundaries in the neighborhood of angular points satisfy the con-
ditions

|ϕj(z)|, |ψj(z)| < M0
j |z − c|−δ, 0 ≤ δ < 1, j = 1, 2. (24)

By condition (20) from (15) we obtain ImΦ(t) = 0, t ∈ L1 +L2. Equa-
tion (13) yields (see (19))

ReΦ(t) =
1

2
(2E −A−B)−1k0, t ∈ L0.

Relying on the above results we obtain [1]

Φ(z) =M, k0 = p+ q. (25)

Substituting (25) into (14) and taking into account (13) and (20), for
boundary value of Ψ(z) we have

e2iα(t)Ψ(t) = H, t ∈ L0, (26)

ImΨ(t) = 0, t ∈ L1 + L2, (27)

where

H = −1

4
µ−1k0 = −1

4
µ−1(p+ q). (28)

It can easily be shown that

Re e−iα(t)t = A∗(t), t ∈ L1 + L2, (29)

where A∗(t) is the piecewise constant function.
Let the function z = ω(ζ) map conformally the half-plane Im ζ > 0

(ζ = ξ1+iξ2) onto the region D in such a way that ω(∞) = ∞, ω(aj) = A0
j ,

ω(bj) = B0
j , j = 0, n; ω(cj) = C0

j , ω(dj) = D0
j , j = 0,m, where aj , bj , cj

and dj are points of the real axis of the half-plane Im ζ > 0,

−∞ < dm < cm < · · · < d0 < c00 < 0 < a0 < b0 < · · · < an < bn < +∞.

Here we can fix three points and the remaining ones we have to define.
Denote by ℓ0, ℓ1 and ℓ2 the images of the lines L0, L1 and L2, respec-

tively. We have

ℓ0 =

m∪
j=1

(dj , cj) + (c0, a0) +

n∪
j=1

(aj , bj),
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ℓ1 = (d0, c0) +
n∪

j=0

(bj , aj+1), an+1 = ∞,

ℓ2 = (a0, b0) +

m∪
j=1

(dj+1, cj), dm+1 = −∞.

By the change of variable z = ω(ζ) conditions (26)–(29) take the form

Ψ0(ξ1)ω
′(ξ1) +Hω′(ξ1) = 0, ξ1 ∈ ℓ0,

ImΨ0(ξ1) = 0, ξ1 ∈ ℓ1 + ℓ2,

Reω(ξ1) = A∗
0(ξ1), ξ1 ∈ ℓ2,

Imω(ξ1) = B∗(ξ1), ξ1 ∈ ℓ1,

(30)

where A∗
0(ξ1) and B

∗(ξ1) are piecewise constant functions, the vector func-
tion Ψ0(ζ) = Ψ(ω(ζ)) is analytic in the region Im ζ > 0 which for large |ζ|
can be represented in the form

Ψ0(ζ) = h+O(ζ−1),

ω(ζ) in the neighborhood of the points aj , bj , cj , dj the function ω(ζ)is
represented as

ω(ζ) = (ζ − c)δω0(ζ) + ω(c), 0 < δ ≤ 1

2
,

where ω0(ζ) is the holomorphic function in the neighbohood of the point c

and ω0(c) ̸= 0. For large |ζ| the function ω(ζ) behaves ζ
1
2 .

In the region Im ζ > 0 we introduce analytic vector-functions W (ζ) and
Ω(ζ) which are defined as follows:

W (ζ) =
1

2
ω′(ζ)(Ψ0(ζ) +H), Ω(ζ) =

1

2
ω′(ζ)(Ψ0(ζ)−H). (31)

It follows from (24) and (30) that the above vector-functions have at
infinity zero of order 1

2 and at the endpoints of the lines ℓ0, ℓ1 and ℓ2 they
have singularity of order less than unity.

Differentiating the last two formulas (31), for determination of the
vector-functions W (ζ) and Ω(ζ) we obtain

ReW (ξ1) = 0, ξ1 ∈ ℓ0 + ℓ2, ImW (ξ1) = 0, ξ1 ∈ ℓ1, (32)

ImΩ(ξ1) = 0, ξ1 ∈ ℓ0 + ℓ1, ReΩ(ξ1) = 0, ξ1 ∈ ℓ2. (33)

Problems (32) and (33) are, in fact, the Keldysh–Sedov problems for a
half-plane. The solutions of these problems satisfying the above-mentioned
conditions are given by the following formulas (see [5]):

W (ζ) =
1

2
(h+H)χ1(ζ)Pn+1(ζ), Ω(ζ) =

1

2
(h−H)χ2(ζ)Qm+1(ζ), (34)
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χ1(ζ) =

[
(ζ − d0)(ζ − c0)(ζ − b0)

n∏
j=1

(ζ − aj)(ζ − bj)

]− 1
2

, (35)

χ2(ζ) =

[
(ζ − d0)(ζ − a0)(ζ − b0)

n∏
j=1

(ζ − dj)(ζ − cj)

]− 1
2

, (36)

where

Pn+1(ζ) =
n+1∑
k=0

αkζ
k, Qm+1(ζ) =

m+1∑
q=0

βqζ
q, (37)

αk, k = 0, n+ 1, βq, q = 0,m+ 1, are real constants, αn+1 = βm+1 = 1.
Moreover, from (18), (23) and (28) we have

h = −γH. (38)

On the basis of (31), (33) and (38) we define ω′(ζ) and Ψ0(ζ) as follows:

ω(ζ) =

∫ ζ

ζ0

[(1− γ)χ1(ξ1)Pn+1(ξ1)− (1 + γ)χ2(ξ1)Qm+1(ξ1)] dξ1 +
(1)
c ,

(39)

Ψ(ω(ζ))

= h

∫ ζ

ζ0

[(1− γ)χ1(ξ1)Pn+1(ξ1)− (1 + γ)χ2(ξ1)Qm+1(ξ1)] dξ1 +
(2)
c . (40)

Moreover, from (25) we get

φ(ω(ζ)) =Mω(ζ) +
(3)
c , (41)

where ζ0 is an arbitrary point of the half-plane, and
(j)
c = (

(j)
c 1,

(j)
c 2)

⊤,
j = 1, 2, 3, are the constant vectors.

Having the function we can define the equation of the unknown part
of the boundary L, and by formulas (40) and (41) we can investigate the
stressed state of the body.
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