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Abstract

Mathematical modeling of various processes in the nets of gas pipeline, system of

submission and distribution of water, drainpipe, also long current lines and different

types of engineering constructions quite naturally leads to the consideration of partial

differential equations on graphs with the boundary value data on the tops of graphs,

with conditions of conjunctions in the nodes and given initial conditions ([1]-[4]). Not

so it is a lot of papers, devoted to the theoretical investigation of boundary value prob-

lems, considered on graphs (see, for example, [5]-[6] and the references therein). In the

present work boundary value problems for ordinary differential equations on graphs are

investigated; correctness of the stated problem is proved; let’s notice, that the special

attention is given to the construction and research of difference analogues, which is a

little concern in papers of other authors; estimation of precision is given; formulas of

double-sweep method type are suggested for finding the solution of difference scheme

([7],[8]).

Key words and phrases: Tops of graphs, conjunctions in the nodes, difference

scheme, differential equations on graphs, double-sweep method.
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1. Ordinary differential equations of the second order on
graphs

Let us consider a graph G = (V,E), where V = (a0, a1, . . . , an) is a set
of tops of this graph, a0 is a node of graph and E is a set of ribs of graph
{a0a1, a0a2, · · · , a0an} . Denote the rib a0Ai by Γi. On each rib introduce
a local coordinate system with the origin in the node a0 and coordinate
xα ∈ (0, lα) , where lα is length of curve Γα(α = 1, 2, . . . , n).

Let us state the following problem: find the functions V uα(xα)(α =
1, 2, . . . , n), which satisfy the differential equations

d

dxα

(
Kα (xα)

duα (xα)
dxα

)
− qα (xα) uα (xα) = fα (xα) (1.1)
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α = 1, n, xα ∈ (0, lα)

boundary conditions

uα(lα) = u(α), α = 1, n, (1.2)

and conditions of conjunctions

uα(a0) = uβ(a0), α, β = 1, n, (1.3)

n∑

α=1

Kα (xα)
duα (xα)

dxα

∣∣∣∣
xα=0

= b. (1.4)

where (xα) ∈ C1[0, lα], Kα (xα) > C0 = const > 0, qα (xα) ∈ C1[0, lα],
qα (xα) ≥ 0, fα (xα) ∈ C0[0, lα] are the given functions and b, u(α)

(
α = 1, n

)
are the given numbers.

Theorem 1.1. There exists a unique regular solution of problem
(1.1) − (1.4), i.e. exists unique functions uα (xα) ∈ C2]0, lα[∩ ; C1[0, lα],(
α = 1, n

)
, which satisfy equations (1.1), boundary conditions (1.2) and

conditions of conjunctions (1.3), (1.4).
Proof. First we prove the uniqueness of solution of the problem (1.1)-

(1.4). Let the problem (1.1)-(1.4) have two solutions:
(
u

(1)
α (xα)

)n
and(

u
(2)
α (xα)

)n
. Then the difference , wα (xα) = u

(1)
α (xα) − u

(2)
α (xα) , α =

1, 2, . . . , n, is the solution of the following homogeneous equation:

d

dxα

(
Kα (xα)

dwα (xα)
dxα

)
− qα (xα) wα (xα) = 0 (1.5)

α = 1, n, xα ∈ (0, lα) ,

wα(lα) = 0, α = 1, n, (1.6)

wα(0) = wβ(0), α, β = 1, n, (1.7)
n∑

α=1

Kα (0)
duα (xα)

dxα

∣∣∣∣
xα=0

= 0. (1.8)

Multiply equalities (1.5) on wα (xα) , α = 1, 2, . . . , n, and integrate the
obtained equalities accordingly in the interval (0, lα)):

lα∫

0

d

dxα

(
Kα (xα)

dwα (xα)
dxα

)
wα (xα) dxα −

lα∫

0

qα (xα) w2
α (xα)dxα = 0.
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Using the formula of integration by parts we obtain the following equality
(α = 1, n) :

Kα (xα) wα (xα)
dwα (xα)

dxα

∣∣∣∣
lα

0

−
lα∫

0

Kα (xα)
(

dwα (xα)
dxα

)2

dxα−

−
lα∫

0

qα (xα) w2
α (xα)dxα = 0.

(1.9)

Summing up the equalities (1.9) and taking into account relations (1.6)-
(1.8), we obtain:

n∑

α=1

lα∫

0

[
Kα (xα)

(
dwα (xα)

dxα

)2

+ qα (xα) w2
α (xα)

]
dxα = 0. (1.10)

As the functions Kα (xx) > 0, qα (xx) ≥ 0
(
α = 1, n

)
, from the equal-

ity (1.10) it follows, that
dwα(xα)

dxα
= 0, i.e. wα(xα) = const.

Taking into account, that wα (lx) = 0, finally we obtain wα (xx) ≡
0, α = 1, n. Thereby, the uniqueness of solution (1.1)-(1.4) is proved.

To prove the existence of solution of the problem (1.1)-(1.4) it is suf-
ficient to prove the existence of solution of the corresponding problem for
homogeneous equation:

d

dxα

(
Kα (xα)

dwα (xα)
dxα

)
− qα (xα) wα (xα) = 0. (1.11)

α = 1, n, xα ∈ (0, lα) ,

wα(lα) = u(α), α = 1, n, (1.12)

wα(0) = wβ(0), α, β = 1, n, (1.13)
n∑

α=1

Kα (0)
duα (xα)

dxα

∣∣∣∣
xα=0

= 0. (1.14)

Denote by wα1(xα) the solution of equation (1.11), which satisfies the
boundary conditions

wα1(0) = 1, wα1(lα) = 0, α = 1, n, (1.15)

and by wα2(xα) the solution of equation (1.11), which satisfies the boundary
conditions

wα2(0) = 0, wα2(lα) = 1, α = 1, n. (1.16)
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It is known, that solutions of these problems exist and belong to the class
C2]0, lα[ ∩ C1[0, lα]. Represent the solution of problem (1.11)-(1.14) in the
following form

wα(xα) = aα1wα1(xα) + aα2wα2(xα), α = 1, n, (1.17)

where aα1 and aα2 are constants yet unknown. It is obvious, that these func-
tions are solutions of the equation (1.11). Choose constants aα1, aα2

(
α = 1, n

)
,

such, that the conditions (1.12)-(1.14) be fulfilled.
From the conditions (1.12),(1.13) it follows, that

aα1 = a = const, aα2 = u(α)
(
α = 1, n

)
.

Inserting these values in the equality (1.17), we obtain

wα(xα) = awα1(xα) + u(α)wα2(xα), α = 1, n, xα ∈ [0, lα] , (1.18)

where a is an arbitrary constant. To define this constant we use the con-
dition (1.14) Differentiating equality (1.18) and inserting it in (1.14), we
obtain

n∑

α=1

Kα (0)
(

a
dwα1 (0)

dxα
+ u(α) dwα2 (0)

dxα

)
= 0.

From this equality it follows, that

a =
−

n∑
α=1

Kα (0)u(α) dwα2(0)
dxα

n∑
α=1

Kα (0) dwα1(0)
dxα

, (1.19)

if
n∑

α=1

Kα (0)
dwα1 (0)

dxα
6= 0. Therefore, to prove the existence of the solution

(1.11)-(1.14), it is sufficient to prove that the denominator of expression
(1.19) is not equal to zero.

It is easy to show, that the solution of problem (1.11),(1.15) is monotonoūsly
decreasing function. Then

dwα1 (0)
dxα

< 0. (1.20)

Let us prove, that at xa = 0 the strict inequality holds

dwα1 (0)
dxα

< 0. (1.21)
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As Kα (xα) > 0, from the inequality (1.20) we obtain that

Kα (xα)
dwα1 (xα)

dxα
≤ 0, xα ∈ [0, lα] , α = 1, n. (1.22)

Taking into account, that and from the equation(1.11) it follows

d

dxα

(
Kα (xα)

dwα1 (xα)
dxα

)
≥ 0.

This means, that Kα (xα)
dwα1 (xα)

dxα
is monotonously increasing function.

Further assume that the inequality (1.21) does not hold, i.e. the equality
takes place

dwα1 (0)
dxα

= 0.

Then we will have Kα (0)
dwα1 (0)

dxα
= 0. In this case there exists εα ∈ (0, lα) ,

such that Kα (εα)
dwα1 (εα)

dxα
> 0, that contradicts to the condition (1.22).

Thus, we obtain, that
dwα1 (0)

dxα
< 0, α = 1, n. This means, that the

denominator of expression (1.19) is not equal to zero. Thereby, the exis-
tence of the solution of problem (1.11)-(1.14) is proved. Theorem 1.1 is
completely proved.

2. Difference scheme for numerical solution of problem (1.1)-
(1.4)

On Γα (α = 1, 2, . . . , n) we introduce an uniform mesh with step hα:

ω̄
(α)
h =

{
x(iα)

α = iαhα, iα = 0, 1, 2, . . . , Nα; x(0)
α = 0 ; hαNα = lα

}
α = 1, n .

If on mesh we substitute differential operator by the difference operator,
we obtain the following difference scheme:

(Kαyα,x̄α)(iα)
xα

− q(iα)
α y(iα)

α = f (iα)
α , iα = 1, Nα − 1, a = 1, n, (2.1)

y(Nα)
α = u(α), α = 1, n, (2.2)

y(0)
α = y

(0)
β , α, β = 1, n, (2.3)

n∑

α=1

K(1)
α

y
(1)
α − y

(0)
α

hα
= 0, (2.4)

where y(iα)
α = yα (iαhα) , yα,x̄α =

y
(iα)
α − y

(iα−1)
α

hα
, yα,xα =

y
(iα+1)
α − y

(iα)
α

hα
.
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Theorem 2.1. Difference scheme (2.1) − (2.4) has no more then one
solution.

Proof. Let us assume, that problem (2.1) − (2.4) has two solutions:
ȳα

(
x

(iα)
α

)
and yα

(
x

(iα)
α

)
, α = 1, 2, . . . , n. From the relations (2.1)−(2.4)

it follows, that the difference wα

(
x

(iα)
α

)
= ȳα

(
x

(iα)
α

)
− yα

(
x

(iα)
α

)
is a

solution of the following difference scheme:

(KαWα,x̄α)(iα)
xα

− q(iα)
α W (iα)

α = 0, ıα = 1, Nα − 1, iα = 1, Nα − 1, (2.5)

W (Nα)
α = 0, α = 1, n, (2.6)

W (0)
α = W

(0)
β , α, β = 1, n, (2.7)

n∑

α=1

K(1)
α W (0)

α,xα
= 0. (2.8)

Introduce the scalar products

(vα, zα) =
Nα−1∑

iα=1

v(iα)
α z(iα)

α hα, (vα, zα] =
Nα∑

iα=1

v(iα)
α z(iα)

α hα

and the following norms introduced by these scalar products:

‖yα‖ = (yα, yα)1/2 , ‖yα‖ = (yα, yα] .

Multiply the equalities (2.5) on W
(iα)
α hα

(
α = 1, n

)
and sum up the

obtained equalities by Iα accordingly from 1 to Nα−1. Using the Green first
difference formula [4] and taking into account boundary conditions (2.6),
we obtain:

− (KαWα,x̄α , Wα,x̄α ]−K(1)
α W

(1)
α,x̄α

W (0)
α −

Nα−1∑

iα=1

q(iα)
α

(
W (iα)

α

)2
hα = 0. (2.9)

Further, sum up these equations by from 1 to n and take into account
relations (2.7), (2.8). Then we obtain:

n∑

α=1

{(
Kα, ( Wα,x̄α)2

]
+

Nα−1∑

iα=1

q(iα)
α

(
W (iα)

α

)2
hα

}
= 0 (2.10)

As Kα (xα) > 0 and qα (xα) ≥ 0 from the equality (2.10) immediately
follows that

Wα (xα) ≡ 0, xα ∈ ωα
h ,

(
α = 1, n

)
.

The theorem is proved.
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Theorem 2.2. There exists a solution of difference scheme (2.1)-(2.4).
Proof. To prove the existence of the solution of difference scheme it is

sufficient to show, that the corresponding homogeneous difference scheme
has only trivial solution. The homogeneous difference scheme corresponding
to difference scheme (2.1)-(2.4) has the form (2.5)-(2.8). The fairness of
the statement of the theorem directly follows from the equality (2.10). The
theorem is proved.

Theorem 2.3. Let uα ∈ C3[0, lα], α = 1, n. Then the solution of
the difference scheme (2.1) − (2.4) uniformly converges to the solution of
problem (1.1)− (1.4) at the rate of O(h) when h → 0, where h = max

1≤α≤n
hα.

Proof. Introduce the mesh function of error

zα(x(iα)
α ) = yα(x(iα)

α )− uα(x(iα)
α ), iα = 1, Nα, α = 1, n, (2.11)

where yα(x(iα)
α ) is a solution of the difference scheme (2.1)-(2.4) and function

uα(x(iα)
α ) is a solution of differential equation (1.1)-(1.4). Define from the

equality (2.11) yα(x(iα)
α ) = uα(x(iα)

α ) + zα(x(iα)
α ) and substitute it in the

difference scheme (2.1)-(2.4). Then for the error function we obtain the
following problem:

(Kαzα,x̄α)(iα)
xα

− q(iα)
α z(iα)

α = −Ψ(iα)
α , iα = 1, Nα − 1, α = 1, n, (2.12)

where
Ψ(iα)

α = (Kαuα,x̄α)(iα)
xα

− q(iα)
α u(iα)

α , (2.13)

z(iα)
α = 0, α = 1, n. (2.14)

z(0)
α = z

(0)
β , α, β = 1, n. (2.15)

n∑

α=1

K
(1)
α

hα

(
z(1)
α − z(0)

α

)
= −Θ0, (2.16)

where

Θ0 =
n∑

α=1

K
(1)
α

hα

(
u(1)

α − u(0)
α

)
. (2.17)

It can be easily shown, that if uα (xα) ∈ C3 (Γα) , α = 1, n, then
∥∥∥Ψ(iα)

α

∥∥∥ = O (h) , |Θ0| = O (h) , iα = 1, Nα − 1, α = 1, n . (2.18)

Multiply the equalities (2.13) on z
(iα)
α hα, α = 1, n, and sum up the ob-

tained equalities w.r.t iα from 1 to Nα − 1. Taking into account conditions
(2.14) and using the first difference formula of Green we obtain:

−
(
Kα, (zα,x̄α)2

]
−K(1)

α z
(1)
αx̄α

z
(0)
1 −

(
qα, (zα)2

)
= (Ψα, zα) .
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Further sum up these equalities w.r.t α and take into account conditions
(2.15, (2.16). We will have

n∑

α=1

{ (
Kα, (zα,x̄α)2

]
+

(
qα, (zα)2

) }
=

n∑

α=1

(Ψα, zα) + z
(0)
1 Θ0. (2.19)

Introduce the following notation

qα,min = min
1≤iα≤Nα−1

q(iα)
α ≥ 0, Kα,min = min

1≤iα≤Nα−1
K(iα)

α > 0,

then we will have
n∑

α=1

{ (
Kα, (zα,x̄α)2

]
+

(
qα, (zα)2

) }
≥

n∑

α=1

{
Kα,min ‖zα,x̄α‖2 + qα,min ‖zα‖2

}
.

Further, using the inequality [7], from the equality (2.19) we obtain

n∑

α=1

{
Kα,min ‖zα,x̄α‖2 + qα,min ‖zα‖2

}
≤

≤
n∑

α=1

(
εα ‖zα,x̄α‖2 +

1
4εα

‖Ψα‖2

)
+ ε0 ‖z1‖2 +

1
4ε0

|Θ0|2 . (2.20)

We choose constants εi (i = 0, 1, . . . , n) in the following way:
a) qα,min > 0, α = 1, 2, . . . , n, then

ε0 + ε1 = q1,min, εα = qα,min, α = 2, 3, . . . , n.

In this case from the inequality (2.20) we obtain

n∑

α=1

Kα,min ‖zα,x̄α‖2 ≤ M1 |Θ0|2 + M2

n∑

α=1

‖Ψα‖2, (2.21)

where M1 > 0, M2 > 0 are some constants. Further we use the following
embedding theorem [9]. For any mesh function v(x), x ∈ [0, l], given on the
arbitrary nonuniform mesh ω̄ and being equal to zero only at x = 0 or at
x = l, the inequality is fair

‖v‖2
C ≤ l ‖vx̄‖2 .

Using this theorem from the inequality (2.21) we obtain the following esti-
mate:

n∑

α=1

Kα,min

lα
‖zα‖2

C ≤ M1 |Θ0|2 + M2

n∑

α=1

‖Ψα‖2, (2.22)
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Taking into account, that ‖Ψα‖ = O (h) , |Θ0| = O (h) , α = 1, n ,
finally we obtain:

|zα| = O (h) , where h = max
1≤α≤n

hα,

that implies the uniform convergence of the difference scheme (2.1)-(2.4),
when h → 0.

b) Some of qa,min are equal to zero. If q1,min = 0, then constants ε0 and
ε1 can be chosen in the following way:

εα0 <
Kα0,min

lα
.

If qα0,min = 0, 2 ≤ α0 ≤ n, then the corresponding value εa0 can be chosen
in the following way

εα0 <
Kα0,min

lα
.

The theorem is proved.
Remark. Let uα ∈ C3[0, lα]

(
α = 1, n

)
. Then

∥∥∥Ψ(iα)
α

∥∥∥ = O
(
h2

)
, iα =

1, Nα − 1, α = 1, n . Instead of condition (2.4) we consider the following
approximation of the conjunction conditions:

n∑

α=1

Kα (0.5hα)
y

(1)
α − y

(0)
α

hα
− 0.5

n∑

α=1

hα

[
q(0)
α y(0)

α + f (0)
α

]
= 0 (2.23)

Then the error approximation

Θ0 =
n∑

α=1

Kα (0.5hα)
u

(1)
α − u

(0)
α

hα
− 0.5

n∑

α=1

hα

[
q(0)
α y(0)

α + f (0)
α

]

will have the order O(h2).
Indeed,

Θ0 =
n∑

α=1

{
Kα (0)

duα

dxα

∣∣∣∣
xα=0

− 0.5hα

(
K ′

α (0)u′α (0)+Kα (0)u′′α (0)
)−

−0.5hα

(
q(0)
α u(0)

α + f (0)
α

)}
+ O

(
h2

)
= O

(
h2

)
,

as
n∑

α=1

Kα (0)
duα

dxα

∣∣∣∣
xα=0

= 0 (conjunction condition) and

K ′
α (0) u′α (0) + Kα (0) u′′α (0)− q(0)

α u(0)
α − f (0)

α =
∂

∂x

(
Kα

duα

dxα

)∣∣∣∣
xα=0

−
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−qαu(0)
α − fα = 0.

Therefore, ‖Ψα‖ = O
(
h2

)
, α = 1, n , |Θ0| = O

(
h2

)
, if uα ∈ C3[0, lα].

The a priori estimate for difference scheme (2.1)-(2.3), (2.23) may be
obtained using the techniques by means of which the a priori estimate (2.22)
was obtained. But in this case we will obtain the uniform convergence of
the difference scheme (2.1)-(2.3), (2.23) at rate O(h2) when h → 0.

3. Variant of double-sweep method for difference equations
(2.1)-(2.4)
Let us write the difference scheme (2.1)-(2.4) as a system of linear algebraic
equations:

K
(iα−1)
α

h2
α

y(iα−1)
α −

(
K

(iα−1)
α + K

(iα)
α

h2
α

+ q(iα)
α

)
y(iα)

α +
K

(iα)
α

h2
α

y(iα+1)
α = f (iα)

α ,

iα = 1, Nα − 1, α = 1, n.

y(Nα)
α = u(α), α = 1, n,

(3.1)
n∑

α=1

K
(1)
α

hα

(
y(1)

α − y(0)
α

)
= 0.

Introduce the following denotations:

a(iα)
α =

K
(iα−1)
α

h2
α

, b(iα)
α =

K
(iα)
α

h2
α

, c(iα)
α =

K
(iα−1)
α + K

(iα)
α

h2
α

, mα =
K

(0)
α

hα

.

iα = 1, Nα − 1, α = 1, n.

Then the system of equations (3.1) can be rewritten in the following form:

a(iα)
α y(iα−1)

α − c(iα)
α y(iα)

α + b(iα)
α y(iα+1)

α = f (iα)
α (3.2)

y(Nα)
α = u(α), α = 1, n, (3.3)

y(0)
α = y

(0)
β , α, β = 1, n, y(0)

α = y
(0)
β , α, β = 1, n, (3.4)

n∑

α=1

mα

(
y(1)

α − y(0)
α

)
= 0. (3.5)

Suppose, that for the solution of difference equation (3.2) the relation holds:

y(iα+1)
α = ξ(iα+1)

α y(iα)
α + η(iα+1)

α , iα = 0, Nα − 1, α = 1, n. (3.6)

then
y(iα)

α = ξ(iα)
α y(iα−1)

α + η(iα)
α , (3.7)
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Substituting expression (3.6) in the equation (3.2) we obtain

a(iα)
α y(iα−1)

α − c(iα)
α y(iα)

α + b(iα)
α

(
ξ(iα+1)
α y(iα)

α + η(iα+1)
α

)
= f (iα)

α .

From this equation we define y
(iα)
α :

y(iα)
α =

a
(iα)
α

c
(iα)
α − b

(iα)
α ξ

(iα+1)
α

y(iα−1)
α +

b
(iα)
α η

(iα+1)
α − f

(iα)
α

c
(iα)
α − b

(iα)
α ξ

(iα+1)
α

(
c(iα)
α − b(iα)

α ξ(iα+1)
α 6= 0

)
.

Comparing this equality with the equality (3.7) we obtain:

ξ(iα)
α =

a
(iα)
α

c
(iα)
α − b

(iα)
α ξ

(iα+1)
α

, η(iα)
α =

b
(iα)
α η

(iα+1)
α − f

(iα)
α

c
(iα)
α − b

(iα)
α ξ

(iα+1)
α

. (3.8)

Using the boundary conditions (3.3) to define ξ
(Nα)
α and η

(Nα)
α , we obtain:

ξ(Nα)
α = 0, η(Nα)

α = u(α), α = 1, n. (3.9)

Recurrent relations (3.8), (3.9) allow to define coefficients ξ
(iα)
α and η

(iα)
α

(iα = Nα − 1, Nα − 2, . . . , 1 α = 1, n.), if c
(iα)
α − b

(iα)
α ξ

(iα+1)
α 6= 0.

As
∣∣∣c(iα)

α

∣∣∣ ≥
∣∣∣a(iα)

α

∣∣∣ +
∣∣∣b(iα)

α

∣∣∣ , iα = 1, Nα − 1, α = 1, n, therefore repeat-
ing the reasoning from [4], it can be proved, that

∣∣∣ξ(iα)
α

∣∣∣ < 1 and
∣∣∣c(iα)

α − b(iα)
α ξ(iα+1)

α

∣∣∣ ≥
∣∣∣a(iα)

α

∣∣∣ .

Thus, we have proved that by means of recurrent formulas (3.8), (3.9)
uniquely can be defined values of the coefficient ξ

(iα)
α , η

(iα)
α (iα = Nα −

1, Nα − 2, . . . , 1, α = 1, n).
Write out formulas (3.6) in case of iα = 0 :

y(1)
α = ξ(1)

α y(0)
α + η(1)

α , α = 1, n.

Insert these equalities in (3.5) and take into account relations (3.4), then
we obtain:

n∑

α=1

mα

(
ξ(1)
α y(0)

α − η(1)
α − y(0)

α

)
= 0.

As
∣∣∣ξ(1)

α

∣∣∣ < 1, from the last equality we obtain:

y
(0)
1 = y(0)

α =

n∑
α=1

mαη
(1)
α

n∑
α=1

mα −
n∑

α=1
mαξ

(1)
α

, α = 2, 3, . . . , n. (3.10)
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Collect all formulas of double-sweep method and write them down in order
of application:

ξ(iα)
α =

a
(iα)
α

c
(iα)
α − b

(iα)
α ξ

(iα+1)
α

, η(iα)
α =

b
(iα)
α η

(iα+1)
α − f

(iα)
α

c
(iα)
α − b

(iα)
α ξ

(iα+1)
α

iα = Nα − 1, Nα − 2, . . . , 0, α = 1, n.

ξ(Nα)
α = 0, η(Nα)

α = u(α), α = 1, n.

y(iα+1)
α = ξ(iα+1)

α y(iα)
α + η(iα+1)

α , iα = 0, Nα − 1, α = 1, n.

y(0)
α =

n∑
α=1

mαη
(1)
α

n∑
α=1

mα −
n∑

α=1
mαξ

(1)
α

, α = 1, 2, 3, . . . , n.
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