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Abstract

In the paper an elastic isotropic semi-plane with the crack perpendicular to its
boundary is considered. The crack is affected by transversal effort. The displace-
ment takes place in the direction perpendicular to the possible propagation of the
crack. For solving of the problem integral transformation of Kontorovich-Lebedev is
used.The problem is reduced to the functional equation of Wiener-Hopf and is solved
by the method of factorization.
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In the present article an elastic isotropic semi-plane with the crack per-
pendicular to its boundary is considered. The crack is affected by transver-
sal effort. The displacement takes place in the direction perpendicular to
the possible propagation of the crack. According to the known classification
[1] the considered case belongs to the type III called a pure displacement
or an anti-plane deformation.

Components of displacement are u; = 0, v; = 0, w; = wi(x,y,t).
The components of strain with value different from zero are defined by the
relations 7, = u%, Tyz = Maa—“;.

Components of displacement wy (z,y,t) satisfy differential equation

2 2 2
8w1+8w1:i28w17 (1)
Ox2 dy? & o2

where ¢y = (H)l/ 2 is the velocity of propagation of waves of displacement,

p is density of material and p is modulus of displacement.

Let us consider steady periodic vibrations with circle frequency w and
assume that wi(z,y,t) = w(z,y)e™’. Then the equation (1) will have a
form

w5 + =5 + Fw=0, (2)
€z Yy
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where k = 2.

We assume that the concentrated transversal efforts 7 () are applied
to the point zy of the boundary of the crack. The boundary conditions are
as follows

#667;:7—5(1:0)7 $<l7 y:O,

w(z,0) =0, z>1, y=0, (3)
0

9wy, r=0, 0<y< oo

Ox

Because of the symmetry we consider the upper quarter plane. We write
the equation (2) and (3) by means of polar coordinates

d*w 1 82710 1 ow

g, - 29 k2 =0 4
8r2+r280<2+r0r+ v ’ (4)
8710:7'5(%)7,7 0<r<lil, a=0,
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w =0, r>1, a=0, (5)
ow T

%—0, 0<r<oo, a—g.

For the differential equation (4) and the boundary condition (5) we use
integral transformation of Kontorovich-Lebedev [2].

0o (2
(N = /0 W(r) H)\T(kr) dr,

W(r) = —% /m AB(A) Jy (kr) dA.

(6)
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The first integral (6) has a meaning only in case if W(r) also tends to
zero when r = 0. In order to avoid this difficulty let us introduce function
v instead of the function W. The function v is connected to the function

W by the relation [2] '
v=W —W(0)e *,

where W(0) is the value of the function W when r = 0. Then the differential
equation (4) will have a form

A o 0 .
3#0; +7° 877"12) +r 87:"} + k2r?v = ikr W(0) e, (7)

2
Let us multiply both sides of the equation by 3D are integrate them

T
within the limit from r = 0 to r = oco. Taking into consideration the equa-

tion which is satisfied by the function H /(\2) (kr) and having used integration
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by parts, after carrying out some transformations we will have

v, ik (2
T2 + A U= ikW(O)/O e """ H,” (kr)dr,
where T is an integral transformation of the function v.
We calculate integral
I= /0 e kT H/(\ )(k:r) dr.
We substitute integral representation of the Henkel function [2] for the

expression of the integral 1

iZN poo
H)(\Q) (k’l“) _ 67-; / e—zkrchn*)\ﬂ d,r]

—00

Using the theory of residues for the integral I we obtain
2)\e'zH
BT

Then the differential equation (8) reduces to

@ 2= _ QAW(O) ei%)\ (9)
da?  ksindr

The equation (9) coincides with equation (25) from [2]
The general solution of the equation (9) is
2 (0) '3
E:Acos/\a—i—Bsin/\a—i—&. (10)
tAsin A

The transformed boundary conditions are

JT
v_ iH/(\m(kro) +®, a=0,

da
dik .
7= T(O) e L Dy, =0, (11)
dv T
o= “=3

where @1, ¢o are unknown functions.
Substituting the general solution (10) for the boundary solutions (11)

we will receive the following functional equation

A W (0)e'2* A
O, — Mg ?” o = ZCO(SOQ)i: + 4ik W (0)e ™15 tg ?” . (12)
2
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@, is the function which is analytical in the upper semi-plane and ®_ is

the function which is analytical in the lower semi-plane. We represent the

function tg )‘—2“ in the form of the infinite product

G- - 20+ 2)
1 1

We substitute the expression (13) for the equation (12) and make a factor-
ization [3]

(I+X)

(A+2)

where

4ik W (0)

0 1 :

Il (1+%)

After carrying out some elementary transformations we will have

sl 4RW(0) 1 Ax

V)t

d_ = —4ik W(0)e
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We use the reverse transformation of Kontorovich-Lebedev [2] for the
equation (14).
We will have
- 1
v =8kW (0) < > (=1)"Vou(kr) + o
T I1(1+ )

1

> J2n(kr)>. (15)
1
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