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Abstract

In the paper an elastic isotropic semi-plane with the crack perpendicular to its

boundary is considered. The crack is affected by transversal effort. The displace-

ment takes place in the direction perpendicular to the possible propagation of the

crack. For solving of the problem integral transformation of Kontorovich-Lebedev is

used.The problem is reduced to the functional equation of Wiener-Hopf and is solved

by the method of factorization.
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In the present article an elastic isotropic semi-plane with the crack per-
pendicular to its boundary is considered. The crack is affected by transver-
sal effort. The displacement takes place in the direction perpendicular to
the possible propagation of the crack. According to the known classification
[1] the considered case belongs to the type III called a pure displacement
or an anti-plane deformation.

Components of displacement are u1 = 0, v1 = 0, w1 = w1(x, y, t).
The components of strain with value different from zero are defined by the
relations τxz = µ∂w1

∂x , τyz = µ∂w1
∂y .

Components of displacement w1(x, y, t) satisfy differential equation

∂2w1

∂x2
+

∂2w1

∂y2
=

1
c2
2

∂2w1

∂t2
, (1)

where c2 = (µ
ρ )1/2 is the velocity of propagation of waves of displacement,

ρ is density of material and µ is modulus of displacement.
Let us consider steady periodic vibrations with circle frequency ω and

assume that w1(x, y, t) = w(x, y)eiωt. Then the equation (1) will have a
form

∂2w

∂x2
+

∂2w

∂y2
+ k2w = 0, (2)



+ The Problem of Vibration of ... AMIM Vol.13 No.2, 2008

where k = ω
c2

.
We assume that the concentrated transversal efforts τ δ(x0) are applied

to the point x0 of the boundary of the crack. The boundary conditions are
as follows

µ
∂w

∂y
= τ δ(x0), x < l, y = 0,

w(x, 0) = 0, x > l, y = 0, (3)
∂w

∂x
= 0, x = 0, 0 < y < ∞.

Because of the symmetry we consider the upper quarter plane. We write
the equation (2) and (3) by means of polar coordinates

∂2w

∂r2
+

1
r2

∂2w

∂α2
+

1
r

∂w

∂r
+ k2w = 0, (4)

∂w

∂α
=

τ δ(x0)
µ

r, 0 < r < l, α = 0,

w = 0, r > l, α = 0, (5)
∂w

∂α
= 0, 0 < r < ∞, α =

π

2
.

For the differential equation (4) and the boundary condition (5) we use
integral transformation of Kontorovich-Lebedev [2].

Φ(λ) =
∫ ∞

0
W (r)

H
(2)
λ (kr)

r
dr,

W (r) = −1
2

∫ i∞

−i∞
λΦ(λ) Jλ(kr) dλ.

(6)

The first integral (6) has a meaning only in case if W (r) also tends to
zero when r = 0. In order to avoid this difficulty let us introduce function
v instead of the function W . The function v is connected to the function
W by the relation [2]

v = W −W (0) e−ikr,

where W (0) is the value of the function W when r = 0. Then the differential
equation (4) will have a form

∂2v

∂α2
+ r2 ∂2v

∂r2
+ r

∂v

∂r
+ k2r2v = ikr W (0) e−ikr. (7)

Let us multiply both sides of the equation by H2
λ(kr)
r are integrate them

within the limit from r = 0 to r = ∞. Taking into consideration the equa-
tion which is satisfied by the function H

(2)
λ (kr) and having used integration
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by parts, after carrying out some transformations we will have

d2 v

dα2
+ λ2 v = ikW (0)

∫ ∞

0
e−ikr H

(2)
λ (kr) dr, (8)

where v is an integral transformation of the function v.
We calculate integral

I =
∫ ∞

0
e−ikr H

(2)
λ (kr) dr.

We substitute integral representation of the Henkel function [2] for the
expression of the integral I

H
(2)
λ (kr) = −ei π

2
λ

πi

∫ ∞

−∞
e−ikrchη−λη dη.

Using the theory of residues for the integral I we obtain

I = − 2λei π
2
λ

k sinλπ
.

Then the differential equation (8) reduces to

d2 v

dα2
+ λ2 v =

2λW (0) ei π
2
λ

k sinλπ
. (9)

The equation (9) coincides with equation (25) from [2].
The general solution of the equation (9) is

v = A cosλα + B sinλα +
2W (0) ei π

2
λ

iλ sinλπ
. (10)

The transformed boundary conditions are

d v

dα
=

τ

µ
H

(2)
λ (kr0) + Φ1, α = 0,

v =
4ikW (0)

λ
e−i π

2
λ + Φ2, α = 0, (11)

d v

dα
= 0, α =

π

2
,

where Φ1, φ2 are unknown functions.
Substituting the general solution (10) for the boundary solutions (11)

we will receive the following functional equation

Φ+ − λ tg
λπ

2
Φ− =

iW (0)ei π
2
λ

cos2 λπ
2

+ 4ikW (0)e−i π
2
λ tg

λπ

2
. (12)

30



+ The Problem of Vibration of ... AMIM Vol.13 No.2, 2008

Φ+ is the function which is analytical in the upper semi-plane and Φ− is
the function which is analytical in the lower semi-plane. We represent the
function tg λπ

2 in the form of the infinite product

tg
λπ

2
=

λ(λ + 2)
∞∏
1

(
1− λ

2n

) ∞∏
1

(
1 + 1

n + λ
2n

)

(1− λ2)
∞∏
1

(
1 + 1

2n − λ
2n

) ∞∏
1

(
1 + 1

n + λ
2n

) . (13)

We substitute the expression (13) for the equation (12) and make a factor-
ization [3]

(1 + λ)
∞∏
1

(
1 + 1

2n + λ
2n

)

(λ + 2)
∞∏
1

(
1 + 1

n + λ
2n

) Φ+ −
λ2

∞∏
1

(
1− λ

2n

)

(1− λ)
∞∏
1

(
1 + 1

n − λ
2n

) Φ− =

=
iW (0) ei π

2
λ

cos2 λπ
2

(1 + λ)
∞∏
1

(
1 + 1

2n + λ
2n

)

(λ + 2)
∞∏
1

(
1 + 1

n + λ
2n

) +

+ 4ik W (0)e−i π
2
λ

λ
∞∏
1

(
1− λ

2n

)

(1− λ)
∞∏
1

(
1 + 1

n − λ
2n

) .

According to the generalized theorem of Liouville

λ2
∞∏
1

(
1− λ

2n

)

(1− λ)
∞∏
1

(
1 + 1

n − λ
2n

) Φ− =

= 4ikW (0)e−i π
2
λ

λ
∞∏
1

(
1− λ

2n

)

(1− λ)
∞∏
1

(
1 + 1

n − λ
2n

) + Cλ,

where
C =

4ik W (0)
∞∏
1

(
1 + 1

2n

) .

After carrying out some elementary transformations we will have

Φ− = −4ik W (0) e−i π
2
λ 1

λ
+

4ikW (0)
∞∏
1

(
1 + 1

2n

) 1
λ

ctg
λπ

2
. (14)

31



AMIM Vol.13 No.2, 2008 G. Baghaturia +

We use the reverse transformation of Kontorovich-Lebedev [2] for the
equation (14).

We will have

v =8kW (0)
( ∞∑

1

(−1)nY2n(kr) +
1

∞∏
1

(
1 + 1

2n

)
∞∑

1

J2n(kr)
)

. (15)
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