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Abstract

In the present paper we investigate the mixed problem of statics in the linear the-

ory of elasticity mixtures for a rectangle weakened by equally strong holes. Using the

methods of the theory of elastic functions a stressed state of the plate, a form and

mutual location of the hole contours are defined.
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10. The homogeneous equation of statics of the theory of elastic mixture
in the complex form is written as [3]

∂2U

∂z∂z
+K∂2U

∂z2 = 0, (1)

where z = x1 + ix2, z = x1− ix2, ∂
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2
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+ i ∂

∂x2

)
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2
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− i ∂
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)
,

U = (u1 + iu2, u3 + iu4)T , u1 = (u1, u2)T , u′′ = (u3, u4)T are particle
displacements,

K = −1
2
em−1, e =

[
e4 e5

e5 e6

]
, m−1 =

1
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[
m3 −m2

−m2 m1

]
;

∆0 = m1m3 −m2
2, mk = ek +

1
2
e3+k, k = 1, 2, 3, e1 = a2/d2,

e2 = −c/d2, e3 = a1/d2, a1 = µ1 − λ5, a2 = µ2 − λ5, c = µ3 + λ5,

d2 = a1a2 − c2, e1 + e4 = b/d1, e2 + e5 = −C0/d1, e3 + e4 = 1/d1

a = a1 + b1, b = a2 + b2, c0 = c + d, b1 = µ1 + λ1 + λ5 − α2ρ2/ρ,

b2 = µ2 + λ5 + α2ρ1/ρ, d = µ2 + λ3 − λ5 − α2ρ1/ρ ≡ µ3 + λ4 − λ5 + α2ρ2/ρ,

α2 = λ3 − λ4, ρ = ρ1 + ρ2, d = ab− c2
0.

Here ρ1 and ρ2 partial densities, and µ1, µ2, µ3, λp, p = 1, 5, are constants
characterizing physical properties [5].



AMIM Vol.13 No.1, 2008 K. Svanadze +

In [2,3] M. Basheleishvili obtained the representations

U = (u1 + iu2, u3 + iu4)T = mϕ(z) +
1
2

ezϕ′(z) + ψ(z), (2)

TU =
(

(TU)2 − i(TU)1
(TU)4 − i(TU)3

)
=

∂

∂s(x)

[
(A− 2E)ϕ(z) + Bzϕ′(z) + 2µψ(z)

]
,

(3)

where ϕ(z) = (ϕ1, ϕ2)T and ψ(z) = (ψ1, ψ2)T are arbitrary analytic vector-
functions,

A = 2µm, µ =
[
= µ1 µ3

µ3 µ2

]
, m =

[
m1 m2

m2 m3

]
, B = µe, E =

[
1 0
0 1

]
,

∂

∂s(x)
= −n2

∂

∂x1
+n1

∂

∂x2
, n1 and n2 are the projections of the unit vector

of the normal onto the axes ox1 and ox2; (Tu)p, p = 1, 4, are components
of the stresses vector [2]

(TU)1 = r′11n1 + r′21n2, r′11 = aθ′ + c0θ
′′ − 2

∂
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(µ1u2 + µ3u4),

r′21 = −a1ω
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∂

∂x2
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r′′21 = cω′a2 − ω′′ + 2
∂

∂x1
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(TU)4 = r′12n1 + r′′22n2, r′′12 = cω′ + a2ω
′′ + 2

∂

∂x2
(µ3u1 + µ2u3),

r′′22 = c0θ
′ + bθ′′ − 2

∂

∂x1
(µ3u1 + µ2u3);

θ′ = div u′ =
∂u1

∂x1
+

∂u2

∂x2
, θ′′ = div u′′ =

∂u3

∂x1
+

∂u4

∂x2
,

ω′ = rotu′ =
∂u2

∂x1
− ∂u1

∂x2
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∂u4
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.

Let us now consider the vectors:
(1)
= τ(r′11, r

′′
11)

T ,
(2)
= τ(r′22, r

′′
22)

T , τ =
(1)
τ +

(2)
τ , (4)

(1)
η = (r′21, r

′′
21)

T , η(2) = (r′12, r
′′
12)

T , η =
(1)
η +

(2)
η , ε∗ =

(1)
η − (2)

η . (5)
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After lengty but elementary calculations we obtain

τ =
(1)
τ +

(2)
τ = 2(2E −A−B) ReΦ(z), (6)

ε∗ =
(1)
η − (2)

η = 2(A−B − 2E) ImΦ(z), (7)
(1)
τ − (2)

τ − iη = 2(Bzφ′(z) + 2µΨ(z)), (8)

here Φ(z) = ϕ′(z), Ψ(z) = ψ′(z); det(2E −A−B) > 0, [4].
Now we consider the right orthogonal coordinate system (nS). By n

we denote the outer normal vector to L at point t = t1 + it2, and by
S the tangent vector. Suppose that n = (n1, n2)T = (cosα, sinα)T and
S = (−n2, n1)T = (− sinα, cosα)T , where α = α(t) is size of the angle
made by the outer normal n and the ox1 axis.

Next we construct the vectors:

σn =
(

(Tu)1n1 + (Tu)2n2

(Tu)3n1 + (Tu)4n2

)
=

(1)
τ cos2 α +

(2)
τ sin2 α + η sinα cosα, (9)

σs =
(

(Tu)2n1 − (Tu)1n2

(Tu)4n1 − (Tu)3n2

)
=

1
2
(
(2)
τ − (1)

τ ) sin 2α +
1
2
η cos 2α− 1

2
ε∗, (10)

σ∗s = σs +
1
2
ε∗, (11)

σt =
(

[r′21n1 − r′11n2, r′22n1 − r′12n2]T S
[r′′21n1 − r′′11n2, r′′22n1 − r′′12n2]T S

)
=

=
(1)
τ sin2 α +

(2)
τ cos2 α− η sinα cosα (12)

From (8)–(12) and (6)–(8) we obtain on L

σn + σt =
(1)
τ +

(2)
τ = 2(2E −A−B)Re Φ(t), (13)

σn − iσs = (2E −A)Φ(t)−BΦ(t) + (BtΦ′(t) + 2µΨ(t))e2iα(t), (14)

and with elementary calculation we get on L

σn + 2µ
(∂Us

∂s
+

Un

ρ0

)
+ i

[
σs − 2µ

(∂Un

∂s
− Us

ρ0

)]
= 2Φ(t), (15)

where 1/ρ0 is the curvature of the curve L at the point t = t1 − it2,

Un =
(

u1n1 + u2n2

u3n1 + u4n2

)
, Us =

(
u2n1 − u1n2

u4n1 − u3n2

)
. (16)

(2), (3), (6), (8) and (13)-(15) represent analogues to Kolosov-Muskhelishvili
formulas in the theory of elastic mixtures.
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20. In the present work we consider the similar problem which have
been investigated in the plane theory of elasticity by R. Bantsuri and Sh.
Mzhavanadze in [1].

Let a middle surface of an elastic isotropic of the mixture occupy on the
plane z = x1 + ix2 the (n + 1) connected domain whose outer boundary is
formed by straight lines x1 = ±x0

1 and x2 = ±x0
2, and inner boundary is a

union of simple closed smooth contours (a rectangle with holes).
Suppose that on the outer boundary of the domain D the value of the

vector (10) is equal to zero, i.e. σs = 0, the vector Un (see (161)) on the
rectangle sides take constant values, and the inner boundary the value of
the vector (9) i.e. σn = p = const.

Consider the problem: Find a stressed state of the plate, a form and
mutual location of the hole contours so as the vector (12), i.e. σt, on them
to take constant value.

For solving of the problem we use method given in [1].
In the case under consideration we assume that the domain D is sym-

metric with respect to the ox1-axis. This allows us to consider a part of
the domain D lying in the upper half-plane. We denote it by D1.

Owing to the symmetry, for the domain D1 we have the same boundary
conditions as for D. The mathematical ground of this fact can be found in
[4] and [7].

Thus for the domain D1 we obtain the following boundary conditions:

σs = 0, ; Un = U0(t) on L1 + L2,

σs = 0, σn = P, σt = K0, on L0,
(17)

where U0(t) is the given piecewise constant vector-function, where P =
(P1, P2)T is the given and K0 = (K0

1 ,K0
2 )T is an unknown constant. The

value K0 will be defined later in solving the problem. L0 is a union of
unknown arcs, L1 and L2 are the unions of segments which are parallel
with respect to the ox1 and ox2-axes.

L1 =
n+2∪
k=0

A2kA2k+1, L2 = A1A2 ∪A2n+3A2n+4,

L0 =
n∪

k=1
A2k+1A2k+2, A0 = A2n+5 = ix0

2, A1 = x0
1 + ix0

2,

A2 = −x0
1, A2n+3 = x0

1, A2n+4 = x0
1 + ix0

2.

The points and their affixes are denoted by one and the same symbols.
By virtue of (13)-(15) and the conditions (17) the stressed state of

the body is described by two analytic vector-functions φ(z) = (φ1, φ2)T

and Ψ(ζ) = (ψ1, ψ2)T which on the boundary of the domain satisfy the
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conditions

ReΦ(t) =
1
2
(2E −A−B)−1(K0 + P ), t ∈ L0, (18)

ImΦ(t) = 0, t ∈ L1 + L2, (19)

(BtΦ′(t) + 2µΨ(t))e2iα(t) = P + BΦ(t) + (A− 2E)Φ(t), t ∈ L0, (20)

where α(t) is the angle between the outer normal to the boundary of the
domain D1 at the point t and the ox1-axis. In our case α(t) = 0 or α(t) = π,
if t ∈ L2, α(t) = π

2 or α(t) = −π
2 , if t ∈ L1 and α(t) is unknown if t ∈ L0.

The functions Φj(z) and Ψj(z), j = 1, 2, satisfy in neighborhoods of the
points Ak, k = 1, 2n + 4 the following conditions:

|Φj(z)|<const |z − c|−δ, |Ψj(z)|<const |z − c|−δ, j =1, 2, 0≤δ≤1.
(21)

Let the functions z = ω(ζ) map conformally the upper half-plane of the
complex variable ζ = ξ+iξ2 onto the domain D1. Here we use the following
notation: ω−1(Ak) = ak, k = 0, 2n + 5, ω−1(Lk) = lk, k = 0, 1, 2. We may
assume that a0 = −∞, a2n+5 = +∞, a2 = −1 and a2n+3 = 1.

Since the contours of the hole are smooth, the function ω(z) in the
neighborhoods of the points (k = 1, 2n + 4) is representable in the form [1]

ω(ζ) = (ζ − c)1/2ω0(ζ) + ω(c), (22)

where ω0(ζ) is the function, holomorphic in the neighborhood of the point,
and ω(c) 6= 0 (c denotes any of the points k = 1, 2n + 4). In the neighbor-
hood of the point ζ = ∞ we have

ω(ζ) = c0 +
c1

ζ
+

c2

ζ2
+ · · · , (23)

where ck (k = 0, 1, 2, . . . ) are the constants.
The change of the variable ζ = ω(ζ) results in

e2iα(t) = −ω′(ξ1)/ω′(ξ1). (24)

Taking into account the fact that z = ω(ζ) and also the condition (17),
from (18) and (19) we easily obtain

ImΦ0(ξ1) = 0, on l1 + l2; Re Φ0(ξ1) = H, on l0; (25)

where Φ(z) = Φ(ω(z)), H = 1
2(2E −A−B)−1(K0 + p), Φ0 = (Φ01,Φ02).

Taking into consideration (21)-(23), we establish that φ0(ζ) is bounded
as ζ →∞ and in the neighborhood of the points ak, k = 1, 2n + 4, satisfies
the conditions

|Φoj(ζ)| < const |ζ − c|−δ, 0 ≤ δ <
1
2
, i = 1, 2.

123



AMIM Vol.13 No.1, 2008 K. Svanadze +

Consider the vector-function F (ζ) = Φ0(ζ)−H. To define F (ζ), in view
of (25), we get

Im F (ξ1) = 0 on l1 + l2, ReF (ξ1) = 0 on l0. (26)

F (ζ) has the same estimates as Φ0(ζ).
(26) is, in fact, the homogeneous Keldysh-Sedov’s problem for the half-

plane and under the above conditions this problem has only a trivial solu-
tion F (z) = 0. Therefore

Φ0(ζ) = H. (27)

Tasking into account (27) and (24), the boundary condition (20) takes
the form

hω′(ξ1) + ω′(ξ1)Ψ0(ξ1) = 0 on l0, (28)

and by virtue of (17) we have (see (14))

ImΨ0(ξ) = 0 on l1 + l2; (29)

where Ψ0(ζ) = Ψ(ω(ζ)), h =
µ−!

4
(P −K0), Ψ0 = (Ψ01,Ψ02)T .

Obviously,

Reω(ξ1) = A(ξ1) on l2; Imω(ξ1) = B(ξ1) on l1, (30)

where A(ξ1) and B(ξ1) are the piecewise constant vector-functions, in
particular, A(ξ1) = x0

1, for ξ1 ∈ (a2n+3, a2n+4), A(ξ1) = −x0
1, for ξ ∈

(a1, a2), B(ξ1) = x0
2, for, ξ1 ∈ (−∞, a1) ∪ (a2n+4,∞), B(ξ1) = 0, for

ξ1 ∈
n+1∪
k=1

(a2k, a2k+1).

Introduce the notation

W (ζ) =
1
2

ω′(ζ)(Ψ0(ζ) + h), Ω(ζ) =
1
2

ω′(ζ)(Ψ0(ζ)− h). (31)

It is not difficult to state that |ζ| → ∞, as

W (ζ) = O(ζ−2), Ω(ζ) = O(ζ−2) (32)

and in the neighborhood of the points ak, k = 1, 2n + 4, satisfy the condi-
tions

|Wj(ζ)|<const |ζ−c|−δ, |Ωj(ζ)|≤const |ζ−c|−δ, 0≤δ≤ 1
2
, j =1, 2. (33)

Taking into account (28)-(33), to find W (ζ) and Ω(ζ), we obtain the
boundary problem: Find the W (ζ) and Ω(ζ), analytic in the upper half-
plane (Im ζ > 0), which on the axis ξ2 = 0 satisfy the boundary conditions

ReW (ξ1) = 0 on l0 + l2, ImW (ξ1) = 0 on l1, (34)
Im Ω(ξ1) = 0 on l0 + l1, ReΩ(ξ1) = 0 on l2, (35)
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and also the conditions (32) and (33) in the neighborhoods of the point
ζ = ∞ and ak (k = 1, 2n + 4).

The problems (32)-(35) are, in fact, the homogeneous Keldysh-Sedov’s
problem for a half-plane. The solution of the problems is given by the
formulas ([5])

W (ζ) = hχ1(ζ)Pn(z), Ω(ζ) = hχ2(ζ)D0, (36)

where

χ1(ζ) =
[2n+4∏

k=1

(ζ − ak)
]− 1

2

,

χ2(ζ) =
[
(ζ − a1)(ζ − a2)(ζ − a2n+3)(ζ − a2n+4)

]− 1
2 ;

(37)

Pn(ζ) =
n∑

k=0

Ckζ
k, h =

1
4
µ−1(P − K0); D0, C0, C1, . . . , Cn are the real

constants, under χ1(ζ) and χ2(ζ) are understood one-valued branches sat-
isfying the conditions χk(ζ) < 0, k = 1, 2, when ξ2 = 0 and ξ1 > a2n+4.

From (31) and (36) we find

ω(z) =
∫ ζ

ζ0

(χ1(ξ1)Pn(ξ1)−D0χ2(ξ1))dξ1 + ω(z0). (38)

Taking into account the fact that Ψ0(ζ) = Ψ(ω(ζ)) = Ψ′(ω(ζ)) and
Φ0(ζ) = Φ(ω(ζ)) = ϕ′(ω(ζ)) from (31), (36) and (27) we obtain

ψ(ω(ζ)) = h

∫ z

ζ0

(χ1(ξ1)Pn(ξ) + D0χ2(ξ1))dξ1 + ψ(ζ0)), (39)

ϕ(ω(ζ)) = Hω(ζ) + C, (40)

where ζ0 is an arbitrary point of the domain Im z ≥ 0, C is a constant to
be defined and H = 1

2(2E −A−B)−1(P + K0).
The above-formulated problem we can solve by the formulas (38)-(40).
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