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Abstract

The purpose of this work is to investigate the estimation of composite plastic shell’s

carrying ability, for which are adapted such materials of shells, which are subjected to

the ideally plastic-rigid model of diagram ”stress-deformation”.
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Introduction

In the last half century, the efforts of engineers and scientists were directed
toward overcoming shortcomings in the constructions of those concluded
from the basic building materials, the large dead weight and the significant
labor expense of their assembly. The cardinal solution of the problem
concerning reduction in the labor expense of assembly is to come over to the
composite constructions, as far as the decrease of dead weight is concerned,
it is achieved by the use of three-dimensional constructions of the type of
shells.

The wide use of composite shells places to the urgent the research of
the methods of their scientifically substantiated correct calculation both in
the elastic stage and beyond elastic limits.

1 Basic dependencies of plastic-rigid slightly curved
shells

During the investigation of the bearing capacity of composite shells it is as-
sumed that the separate elements are linked by the longitudinal and cross
connections (hinges), the lines of arrangement of which coincide with the
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lines of principal curvatures (Fig.3.1). At the points of the arrangement of
hinges the first-order derivative of sagging undergoes first-kind discontinu-
ity and the bending moments are equal to zero.

The design diagram indicated can occur to the complete casting of the
welds between the composite elements in the process of installation. Dur-
ing determination of the bearing capacity it is used theoretical studies of
M.Sh.Mikeladze on the technical theory of thin ideally-plastic shells [1].

The condition of fluidity of the material of shell has the following form
[2, 3]
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The dependence between the speed of dissipation of the mechanical energy,
in reference to the unit of the area of median surface of a shell, and the
coefficient of plasticity takes the form [1]

D = 2hλ, (1.1)

where 2h is the thickness of a shell:
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(1.2)

From the equality of the powers of works accomplished by external and
internal forces

P
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is being determined the bearing capacity of a shell on top [2]

P =

∫
F

DdF

∫
F

ŻdF
, (1.3)

where Ż is the kinematically permissible field of velocities of displacements
of the points of the middle surface of shells.

The parameters determining deformation speed of median surface of a
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shell will be:
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Assume that the kinematically permissible field of velocities of tangen-
tial displacements equal to zero, then using formulas (1.1), (1.2), (1.3) and
(1.4), the bearing capacity of a shell on top can be written as follows [2]:
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∂y2 + σ2

S2

(
∂2Ẇ
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is the bearing capacity of a plate, which has the same dimensions in the
plan as a slightly curved shell being investigated [4].

The bearing capacity from below is determined by formula
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For convenience in further computations of expression (1.5) let us in-
troduce dimensionless coordinates ξ and, η which are connected with the
basic variables by the following relationships:

x = ξl1 and y = ηl2 = ηkl1 (l2 = kl1),
where l1 and l2 are the lengths of sides of a shell in the plan. Yield

points σS2 and τS are expressed by the following equalities:

σS2 = tσS1 and τS = τσS1 ·
1√
3
.

Then expression (1.5) takes the form:
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(1.9)
During the determination of upper boundary of the shell’s carrying

ability we will use mainly expression (1.9), to which is being added the
constant expressed by the second term of (1.8).

2 The bearing capacity of slightly curved shell
without the intermediate coupling

The bearing capacity of the shell without intermediate ties must be more
than the carrying ability of the shell with ties (when other conditions are
equal). The mentioned circumstance will allow to evaluate the accuracy of
obtained results of the bearing capacity.

Let us determine the bearing capacity of the shell without intermediate
ties (Fig.3.2).

For obtaining the kinematically permissible field of velocities of the
saggings of the shell in the direction of axis ”x” let us consider the fourth
order polynomial

W (ξ) = a0 + a1ξ + a2ξ
2 + a3ξ

3 + a4ξ
4. (2.1)

The conditions, which must be satisfied by expression (2.1) are:

ξ = 0;
{

W (ξ) = 0;
W ′′(ξ) = 0;

ξ =
1
2
;

∂W

∂ξ
= 0; ξ = 1;

{
W (ξ) = 0;
W ′′′(ξ) = 0.

(2.2)

Using conditions (2.2) we have:

W (ξ) = c(2ξ3 − ξ2 − ξ4).

In the given case and afterwards we assume that k = 1 and t = 1, then for
the direction of axis ”y” the sagging is being obtained the same, i.e.

W (η) = c(2η3 − η2 − η4).

The kinematically permissible field of velocities of saggings for the shell
takes the form:

W = W (ξ)W (η) = c2(2ξ3 − ξ2 − ξ4)(2η3 − η2 − η4). (2.3)
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The bearing capacity of the plate is determined according to (1.9) by the
value of the integral of denominator, which is determined easily, it is equal
to 0,000276 s2.

The double integral of numerator is determined from Simpson’s cuba-
ture formula [5] , and it is equal to 0,15 s2.

Thus the upper boundary of carrying ability of the plate is equal

Par = 543, 47 · h2σS1

sl2
kg/cm2

3 The bearing capacity of gently sloping compos-
ite shell

Let us examine a shell, whose elements are connected by two longitudinal
and cross connections (Fig.3.3). For obtaining the kinematically permissible
field of velocities of saggings of the shell we will use Mac Laurin’s generalized
formula [6,7].

The expression of sagging for the case in question takes the form:
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The same form has a sagging in the direction of ”y” axis.

The kinematically permissible field of velocities for the case under con-
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Figure 3.1: The design model of composite shell with longitudinal and
transversal hinges.

sideration will takes the form:
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The values of the integrals of numerator and numerator in formula (1.9)
are respectively equal to:

Jr = 20, 402; J3 = 0, 309.

The bearing ability

Pm = 66, 03
h2σs1

3l2
kg/cm2.
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Figure 3.2: The design model for monolithic shell.

Figure 3.3: The design model of composite shell with two longitudinal and
two transversal hinges.
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