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Abstract

Bitsadze-Samarskii nonlocal boundary value problem for the second order two-

dimensional elliptic equation is considered. The variational formulation of this problem

is stated. The necessary and sufficient condition, indicating when the function mini-

mizing the specially constructing parametrical functional is a solution of the considered

problem, is given.
Key words and phrases: Second order two-dimensional elliptic equation, non-

local boundary value problem, variational formulation, necessary and sufficient
condition.

AMS subject classification: 35J20, 35J25

1 Introduction

In the known work of A. Bitsadze and A. Samarskii [1], new mathematical
problems with nonlocal boundary conditions are stated and studied. Nu-
merous scientific papers deal with the investigation and numerical solution
of problems considered in [1] and its modifications and generalizations (see,
e.g. [2]-[10] and references therein).

In this article variational formulation of the Bitsadze-Samarskii nonlo-
cal boundary value problem for the second order two-dimensional elliptic
equation in the rectangle is considered. The problem has the following form
[1]: find the function u(x, y) ∈ C(2)(G) ∩ C(G) satisfying the conditions:

Au ≡ − ∂

∂x

[
k(x)

∂u(x, y)
∂y

]
− ∂

∂y

[
p(y)

∂u(x, y)
∂y

]
+

+q(y)u(x, y) = f(x, y), (x, y) ∈ G,

u(x, y) |Γ = 0, u(x, y)
∣∣
Γ−ξ

= u(x, y) |Γ0 ,

(1)
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where G = {(x, y) | −a < x < 0, 0 < y < b} is the rectangle, a and b are
the given positive constants, Γt is the intersection of the line x = t with the
set G = G ∪ ∂G (∂G is a boundary of G), Γ = ∂G\Γ0. We assume that:

f(x, y) ∈ C(G), k(x) ∈ C(1) [−a, 0] , k′(0) = 0,
0 < k0 ≤ k(x) ≤ K0, p(y) ∈ C(1) [0, b] , 0 < p0 ≤ p(y),

q(y) ∈ C [0, b] , q(y) ≥ 0.

Let us denote by D(G) the lineal of all real functions v(x, y) satisfying
the following conditions:

1. v(x, y) is defined almost everywhere on G\Γ0 and the boundary value
v(0, y) is defined almost everywhere on Γ0;

2. v(x, y) ∈ L2(G), v(0, y) ∈ L2(0, b).
We note that the definition of the function v(x, y) ∈ D(G) means the

definition of the pair (v(x, y), v(0, y)), (x, y) ∈ G\Γ0, y ∈ [0, b]. Two func-
tions v1(x, y) and v2(x, y) are assumed as the same element of D(G) if
v1(x, y) = v2(x, y) almost everywhere on G\Γ0 and v1(0, y) = v2(0, y) al-
most everywhere on [0, b].

Let us define on D(G) the operator of symmetrical extension τ as follows

τv(x, y) =
{

v(x, y), (x, y) ∈ G,

−v(−x, y) + 2v(0, y), (x, y) ∈ Q,

where Q = { (x, y) | 0 < x < ξ, 0 < y < b}. Let us note that the operator τ

associates to every function v(x, y) of the lineal D(G) the function
∼
v(x, y) =

τv(x, y). This function is defined almost everywhere on G ∪ Q in such a
way that the function

∼
v(x, y)− v(0, y) is the odd function with respect to

the variable x almost everywhere on [−ξ, ξ] for the almost all y ∈ [0, b].
Let us also introduce on D(G) the operator of even extension Λ as

follows

Λv(x, y =
{

v(x, y), (x, y) ∈ G,

v(−x, y), (x, y) ∈ Q.

It is clear that the function v̄(x, y) = Λv(x, y) is the even function with
respect to the variable x almost everywhere on [−ξ, ξ] for the almost all
y ∈ [0, b].

For two arbitrary functions v(x, y) and w(x, y) from the lineal D(G) we
define the scalar product

[v, w] =

b∫

0

ξ∫

−ξ

1
k̄(x)

x∫

−a

∼
v(s, y)

∼
w(s, y)dsdxdy. (2)
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After the introduction of the scalar product (2) the lineal D(G) becomes
the pre-Hilbert space, which we denote by H(G). The norm originated from
the scalar product (2) in H(G) we denote by ‖·‖H :

‖v‖2
H =

b∫

0

ξ∫

−ξ

1
k̄(x)

x∫

−a

ṽ 2(s, y) dsdxdy.

Theorem 1. The norm ‖·‖ defined on the lineal H(G) by the formula

‖v‖2 = ‖v(x, y)‖2
L2(G) + ‖v(0, y)‖2

L2(0,b)

is equivalent to the norm ‖·‖H .
Proof. It is sufficient to note that

1
K0

b∫

0

ξ∫

−ξ

x∫

−a

ṽ 2(s, y) dsdxdy ≤ ‖v‖2
H ≤ 1

k0

b∫

0

ξ∫

−ξ

x∫

−a

ṽ 2(s, y)dsdxdy

and use the Theorem 1.1 from [8].
Consequence. H(G) is the Hilbert space.
Let the area of definition of the operator A is the lineal DA(G) of

the functions from the space H(G), for the elements v(x, y) of which the
following conditions are fulfilled:

1. v(x, y) ∈ C(2)(G), ∂2v
∂x2 (0, y) = 0, ∀y ∈ [0, b] ;

2. v(x, y)
∣∣
Γ = 0, v(x, y)

∣∣
Γ−ξ

= v(x, y) |Γ0 .

Theorem 2. The lineal DA(G) is dense in the space H(G).
The proof of the Theorem 2 is given in [8].
Hence, the operator A acts from the lineal DA(G) dense in the space

H(G) to the space H(G).
Lemma 1. For an arbitrary function v(x, y) of the lineal DA(G) the

following identities are valid:

˜∂

∂x

[
k(x)

∂v(x, y)
∂x

]
=

∂

∂x

[
k̄(x)

∂ṽ(x, y)
∂x

]
, (3)

˜∂

∂y

[
p(y)

∂v(x, y)
∂y

]
=

∂

∂y

[
p(y)

∂ṽ(x, y)
∂y

]
, (4)

˜q(y)v(x, y) = q(y)
∼
v(x, y). (5)

Proof. For the case (x, y) ∈ G the identities (3)-(5) are trivial. Let us
verify validity of the identities (3)-(5) for the case (x, y) ∈ Q. We have:

˜∂

∂x

[
k(x)

∂v(x, y)
∂x

]
= − ∂

∂x

(
k

∂v

∂x

)
(−x, y) + 2

∂

∂x

(
k

∂v

∂x

)
(0, y) =
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= − ∂

∂x

[
k(−x)

∂v(−x, y)
∂x

]
+ 2k′(0)

∂v

∂x
(0, y) + 2k(0)

∂2v

∂x2
(0, y) =

=
∂

∂x

{
k(−x)

∂[−v(−x, y) + 2v(0, y)]
∂x

}
=

∂

∂x

[
k̄(x)

∂
∼
v(x, y)
∂x

]
,

˜∂

∂y

[
p(y)

∂v(x, y)
∂y

]
= − ∂

∂y

(
p
∂v

∂y

)
(−x, y) + 2

∂

∂y

(
p
∂v

∂y

)
(0, y) =

= − ∂

∂y

[
p(y)

∂v(−x, y)
∂y

]
+ 2

∂

∂y

(
p
∂v

∂y

)
(0, y) =

= − ∂

∂y

[
p(y)

∂v(−x, y)
∂y

]
+

∂

∂y

[
2p(y)

∂v(0, y)
∂y

]
=

=
∂

∂y

{
p(y)

∂

∂y
[−v(−x, y) + 2v(0, y)]

}
=

∂

∂y

[
p(y)

∂ṽ(x, y)
∂y

]
,

˜q(y)v(x, y) = −q(y)v(−x, y) + 2q(y)v(0, y) = q(y)
∼
v(x, y).

Lemma 2. For two arbitrary functions v(x, y) and w(x, y) of the lineal
DA(G) we have

ξ∫

−ξ

∂
∼
v(x, y)
∂x

w̃(x, y)dx = 0, ∀ y ∈ [0, b] .

The proof of the Lemma 2 is also given in [8].
Lemma 3. The operator A is symmetric on the lineal DA(G).
Proof. We have:

[Av,w] =

b∫

0

ξ∫

−ξ

1
k̄(x)

x∫

−a

Ãv(s, y)w̃(s, y)dsdxdy =

=

b∫

0

ξ∫

−ξ

1
k̄(x)

x∫

−a

{
− ∂

∂s

[
k̄(s, y)

∂ṽ(s, y)
∂s

]
− ∂

∂y

[
p(y)

∂ṽ(s, y)
∂y

]
+

+q(y)ṽ(s, y)} w̃(s, y)dsdxdy =

b∫

0

ξ∫

−ξ

1
k̄(x)

[
−k̄(s, y)

∂ṽ(s, y)
∂s

w̃(s, y)
∣∣x−a +

+

x∫

−a

k̄(s)
∂ṽ(s, y)

∂s

∂w̃(s, y)
∂s

ds


 dxdy−
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−
ξ∫

−ξ

1
k̄(x)

x∫

−a

b∫

0

∂

∂y

[
p(y)

∂ṽ(s, y)
∂y

]
w̃(s, y)dydsdx+

+

b∫

0

ξ∫

−ξ

1
k̄(x)

x∫

0

q(y)ṽ(s, y)
∼
w(s, y)dsdxdy =

=

b∫

0

ξ∫

−ξ

1
k̄(x)

x∫

0

k̄(s)
∂
∼
v(s, y)
∂s

∂w̃(s, y)
∂s

dsdxdy+

+

b∫

0

ξ∫

−ξ

1
k̄(x)

x∫

0

p(y)
∂ṽ(s, y)

∂y

∂w̃(s, y)
∂y

dsdxdy+

+

b∫

0

ξ∫

−ξ

1
k̄(x)

x∫

0

q(y)ṽ(s, y)w̃(s, y)dsdxdy =

=

b∫

0

ξ∫

−ξ

1
k̄(x)

x∫

0

[
k̄(s)

∂
∼
v(s, y)
∂s

∂w̃(s, y)
∂s

+ p(y)
∂ṽ(s, y)

∂y

∂w̃(s, y)
∂y

+

+q(y)ṽ(s, y)w̃(s, y)
]
dsdxdy = [Aw, v] = [v,Aw] .

Theorem 3. The operatorA is positively defined on the lineal DA(G).
Proof. We have

[Av, v] ≥ k0

K0

b∫

0

ξ∫

−ξ

x∫

0

(
∂
∼
v(s, y)
∂s

)2

dsdxdy+

+
p0

K0

b∫

0

ξ∫

−ξ

x∫

0

(
∂ṽ(s, y)

∂y

)2

dsdxdy.

(6)

The following Poincare-Friedrichs type inequalities take place [8]:

b∫

0

ξ∫

−ξ

x∫

−a

ṽ 2(s, y)dsdxdy ≤ (ξ + a)2

2

b∫

0

ξ∫

−ξ

x∫

−a

(
∂ṽ(s, y)

∂s

)2

dsdxdy , (7)

b∫

0

ξ∫

−ξ

x∫

−a

ṽ 2(s, y)dsdxdy ≤ b2

2

b∫

0

ξ∫

−ξ

x∫

−a

(
∂ṽ(s, y)

∂y

)2

dsdxdy. (8)
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Taking into account (7) and (8) from (6) we receive

[Av, v] ≥
(

k0

K0
· 2
(ξ + a)2

+
p0

K0
· 2
b2

)
[v, v] .

So, the proof of theorem 3 is over.
We have thereby obtained a standard situation: A is a positively defined

operator on the lineal DA(G), which is dense in the Hilbert space H(G).
We follow the well-known scheme [11]. Let us consider the problem of
minimization of following quadratic parametrical functional

J(v) =

b∫

0

ξ∫

−ξ

1
k̄(x)

x∫

−a

[
k̄(s)

(
∂ṽ(s, y)

∂s

)2

+ p(y)

(
∂
∼
v(s, y)
∂y

)2

+

+q(y)ṽ 2(s, y)− 2Φ̃(s, y)
∼
v(s, y)

]
dsdxdy ,

(9)

where the function Φ(x, y) ∈ H(G) is defined by the following form

Φ(x, y) =
{

f(x, y), (x, y) ∈ G\Γ0,
f0(y), (x, y) ∈ Γ0.

For every function f0(y) ∈ L2(0, b) there exists a unique function in the
energetic space HA(G), which minimizes the quadratical functional J(v).
The space HA(G) consists of all elements of the Sobolev space W 1

2 (G) which
satisfies boundary conditions of the problem (1).

After some transformations, functional (9) may be rewritten in the fol-
lowing form

J(v) = 2

0∫

−ξ

dx

k(x)

b∫

0

0∫

−a

[
k(x)

(
∂v(x, y)

∂x

)2

+ p(y)
(

∂v(x, y)
∂y

)2

+

+ q(y)v2(x, y)− 2f(x, y)v(x, y)
]
dxdy−

−4

0∫

−ξ

xdx

k(x)

b∫

0

[
p(y)

(
∂v(0, y)

∂y

)2

+ q(y)v2(0, y)− 2f0(y)v(0, y)

]
dy−

−4

b∫

0


p(y)

∂v(0, y)
∂y

0∫

−ξ

1
k(x)

0∫

x

∂v(s, y)
∂y

dsdx+ (10)

+q(y)v(0, y)

0∫

−ξ

1
k(x)

0∫

x

v(s, y)dsdx−

−v(0, y)

0∫

−ξ

1
k(x)

0∫

x

f(s, y)dsdx− f0(y)

0∫

−ξ

1
k(x)

0∫

x

v(s, y)dsdx


 dy.
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Suppose that u(x, y) is a solution of problem (1). Let us introduce the
notation

ϕ0(y) = − ∂

∂y

[
p(y)

∂u(0, y)
∂y

]
+ q(y)u(0, y) .

Theorem 4. The function v(x,y) which minimizes the functional (10),
is a solution of problem (1) if and only if the following condition is fulfilled

− ∂

∂y

[
p(y)

∂v(0, y)
∂y

]
+ q(y)v(0, y) = f0(y) . (11)

Proof. At first let us proof sufficiency of the equality (11). Let f0(y)
be such that minimization function v(x, y) of the functional (10) satisfies
condition (11). Let us show that function v(x, y) is the solution of problem
(1). The variation of a functional J(v) for all functions h(x, y) ∈ HA(G)
has the form:

δJ(v) = 4

0∫

−ξ

dx

k(x)

b∫

0

0∫

−a

[
k(x)

∂v(x, y)
∂x

∂h(x, y)
∂x

+ p(y)
∂v(x, y)

∂y

∂h(x, y)
∂y

+

+q(y)v(x, y)h(x, y)− f(x, y)h(x, y)] dxdy − 4

0∫

−ξ

xdx

k(x)
×

×2

b∫

0

[
p(y)

∂v(0, y)
∂y

∂h(0, y)
∂y

+ q(y)v(0, y)h(0, y)− f0(y)h(0, y)
]

dy−

−4

b∫

0


p(y)

∂h(0, y)
∂y

0∫

−ξ

1
k(x)

0∫

x

∂v(s, y)
∂y

dsdx +

+p(y)
∂v(0, y)

∂y

0∫

−ξ

1
k(x)

0∫

x

∂h(s, y)
∂y

dsdx+

(12)

+q(y)h(0, y)

0∫

−ξ

1
k(x)

0∫

x

v(s, y)dsdx+

+q(y)v(0, y)

0∫

−ξ

1
k(x)

0∫

x

h(s, y)dsdx− h(0, y)

0∫

−ξ

1
k(x)

0∫

x

f(s, y)dsdx−

−f0(y)

0∫

−ξ

1
k(x)

0∫

x

h(s, y)dsdx


 dy = 0 .
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Let us take in (12) any function h(x, y) ∈ HA(G), which satisfies con-
dition: h(x, y) ≡ 0 for x ∈ [−ξ, 0] . We get

b∫

0

−ξ∫

−a

[
k(x)

∂v(x, y)
∂x

∂h(x, y)
∂x

+ p(y)
∂v(x, y)

∂y

∂h(x, y)
∂y

+

+q(y)v(x, y)h(x, y)− f(x, y)h(x, y)] dxdy = 0 .

(13)

From (13) it is clear that v(x, y) is a weak solution [11] of the equation
Au = f(x, y) on the rectangle ]−a,−ξ]× ]0, b].

Analogously, if we take h(x, y) ≡ 0 for x ∈ [−a,−ξ] and keeping in
mind that h(−ξ, y) = h(0, y) = 0 , , then we get that v(x, y) is a solution
of the equation Au = f(x, y) on the rectangle ]−ξ, 0]× ]0, b], too.

Now, let us show that if the condition (11) is fulfilled, then v(x, y) is
a solution of problem (1) (the equation is also fulfilled in points (−ξ, y) ,
y ∈ ]0, b]). The restrictions of the function on rectangles [−a,−ξ] × [0, b]
and [−ξ, 0]× [0, b] we denote by v1(x, y) and v2(x, y), respectively. Keeping
in mind that the functions v1(x, y) and v2(x, y) are solutions of the equation
Au = f(x, y) on the suitable rectangles, the variation of a functional J(v)
for all functions gives

4

0∫

−ξ

dx

k(x)




b∫

0

k(−ξ)
∂v1

∂x
(−ξ, y)h(−ξ, y) + k(0)

∂v2

∂x
(0, y)h(0, y)−

−k(−ξ)
∂v2

∂x
(−ξ, y)h(−ξ, y)

]
dy−

−4

b∫

0

0∫

−ξ

1
k(x)

0∫

x

{
− ∂

∂y

[
p(y)

∂v(s, y)
∂y

]
+ q(y)v(x, y)−

−f(s, y)}h(0, y)dsdxdy − 4

b∫

0

0∫

−ξ

1
k(x)

0∫

x

{
− ∂

∂y

[
p(y)

∂v(0, y)
∂y

]
+

+q(y)v(0, y)− f0(y)}h(s, y)dsdxdy =

= 4

0∫

−ξ

dx

k(x)




b∫

0

k(−ξ)
∂v1

∂x
(−ξ, y)h(−ξ, y) + k(0)

∂v2

∂x
(0, y)h(0, y)−

−k(−ξ)
∂v2

∂x
(−ξ, y)h(−ξ, y)

]
dy−

−4

b∫

0

0∫

−ξ

1
k(x)

0∫

x

∂

∂s

[
k(s)

∂v(s, y)
∂s

]
h(0, y)dsdxdy =
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= 4

0∫

−ξ

dx

k(x)

b∫

0

{[
k(−ξ)

∂v1

∂x
(−ξ, y)− k(−ξ)

∂v2

∂x
(−ξ, y)

]
h(−ξ, y)+

+k(0)
∂v2

∂x
(0, y)h(0, y)− k(0)

∂v

∂x
(0, y)h(0, y)

}
dy =

= 4

0∫

−ξ

dx

k(x)

b∫

0

k(−ξ)
[
∂v1

∂x
(−ξ, y)− ∂v2

∂x
(−ξ, y)

]
h(−ξ, y)dy = 0 .

From this we easily get
∂v1

∂x
(−ξ, y) =

∂v2

∂x
(−ξ, y) , ∀y ∈ [0, b] . (14)

Finally, from (14) we conclude that v(x, y) is a solution of problem (1).
Now, let us show necessity of the condition (11). Let f0(y) be such

that minimization function v(x, y) of the functional (10) is the solution of
the problem (1). We shall show that the condition (11) is fulfilled. Using
formula of integrating by parts we get

δJ(v) = 4

0∫

−ξ

dx

k(x)

b∫

0



 k(0)

∂v

∂x
(0, y)h(0, y)−

−
0∫

−a

∂

∂x

[
k(x)

∂v(x, y)
∂x

]
h(x, y)dx



 dy+

+4

0∫

−ξ

dx

k(x)

b∫

0

0∫

−a

{
− ∂

∂y

[
p(y)

∂v(x, y)
∂y

]
+ q(y)v(x, y)−

−f(x, y)}h(x, y)dxdy − 4

0∫

−ξ

xdx

k(x)
· 2

b∫

0

{
− ∂

∂y

[
p(y)

∂v(0, y)
∂y

]
+

+q(y)v(0, y)− f0(y)}h(0, y)dy−

−4

b∫

0

0∫

−ξ

1
k(x)

0∫

x

{
− ∂

∂y

[
p(y)

∂v(s, y)
∂y

]
+ q(y)v(s, y) −

−f(s, y)}h(0, y)dsdxdy − 4

b∫

0

0∫

−ξ

1
k(x)

0∫

x

{
− ∂

∂y

[
p(y)

∂v(0, y)
∂y

]
+

+q(y)v(0, y)− f0(y)}h(s, y)dsdxdy =

= 4

0∫

−ξ

dx

k(x)

b∫

0

k(0)
∂v

∂x
(0, y)h(0, y)dy−
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−4

0∫

−ξ

xdx

k(x)
· 2

b∫

0

{
− ∂

∂y

[
p(y)

∂v(0, y)
∂y

]
+

+q(y)v(0, y)− f0(y)}h(0, y)dy−

−4

b∫

0

0∫

−ξ

1
k(x)

0∫

x

∂

∂s

[
k(s)

∂v(s, y)
∂s

]
h(0, y)dsdxdy−

(15)

−4

b∫

0

0∫

−ξ

1
k(x)

0∫

x

{
− ∂

∂y

[
p(y)

∂v(0, y)
∂y

]
+ q(y)v(0, y)− f0(y)

}
×

×h(s, y)dsdxdy = −8

0∫

−ξ

xdx

k(x)

b∫

0

{
− ∂

∂y

[
p(y)

∂v(0, y)
∂y

]
+

+ q(y)v(0, y)− f0(y)}h(0, y)dy − 4

b∫

0

0∫

−ξ

1
k(x)

0∫

x

{
− ∂

∂y

[
p(y)

∂v(0, y)
∂y

]
+

+q(y)v(0, y)− f0(y)}h(s, y)dsdxdy = 0.

The equality (15) is true for all h(s, y), thereby we conclude that (11)
is fulfilled. For this reason it is sufficient to take the following function

h(s, y) = s(s + ξ)
{
− ∂

∂y

[
p(y)

∂v(0, y)
∂y

]
+ q(y)v(0, y)− f0(y)

}
.

Remark. It is interesting to consider the question about existence of
such function f0(y) for which corresponding minimization function v(x, y)
of the functional (10) is the solution of problem (1). The answer is positive.
Especially, taking f0(y) = − ∂

∂y

[
p(y)∂u(0,y)

∂y

]
+ q(y)u(0, y), where u(x, y) is

the solution of problem (1) and computing variation of the functional J for
this f0(y), we obtain δJ(u) = 0. So, the function u(x, y) is the minimization
function. Problem (1) has an unique solution. Thereby the function f0(y)
is unique too.

References

1. Bitsadze A.V., Samarskii A.A. On some simplified generalization of
the linear elliptic problems. Dokl.AN SSSR, Vol. 185 (1969), N4,
739-740 in Russian).

2. Gordeziani, D.G. A method for solving the Bitsadze-Samarskii bound-
ary value problem. Rep. Sem. Inst. Appl. Math., N2 (1970), 39-41
(in Russian).

64



+ On Variational Formulation of ... AMIM Vol.13 No.1, 2008

3. Gordeziani D.G. On the methods of a solution for one class of non-
local boundary value problems. University Press, Tbilisi (1981) (in
Russian).

4. Jangveladze T. On one iterative method of solution of Bitsadze-Samarskii
boundary value problem. Thesis Rep. Stud. Sc. Conf. TSU. (1975)
(in Georgian).

5. Kiguradze Z. Domain decomposition and parallel algorithm for Bitsadze-
Samarskii boundary value problem. Enl. Sess. of. Sem. I. Vekua Inst.
Appl Math. Vol. 10 (1995), 49-51.

6. Lobjanidze G. Remark on the variational formulation of Bitsadze-
Samarskii nonlocal problem. Enl. Sess. of. Sem. I. Vekua Inst.
Appl. Math., Vol. 16 (2001), N3, 102-103.

7. Jangveladze T., Kiguradze Z. Domain decomposition for Bitsadze-
Samarskii boundary value problem. Enl. Sess. of. Sem. I. Vekua
Inst. Appl. Math., Vol. 16 (2001), N1, 16-19.

8. Lobjanidze G. On the variational formulation of Bitsadze-Samarskii
problem for the equation −∆u + λu = f . Enl. Sess. of. Sem. I.
Vekua Inst. Appl. Math., Vol. 18 (2003), N1, 39-42.

9. Jangveladze T., Kiguradze Z. Domain decomposition method for Bitsadze-
Samarskii boundary value problem. Trudy Tbiliss. Univer. Mat.
Mekh. Astronom., Vol. 354 (2005), N34-35, 225-236 (in Russian).

10. Lobjanidze G. On variational formulation of some nonlocal boundary
value problems by symmetric continuation operation of a function.
Appl. Math., Inf. and Mech., Vol. 11 (2006), N2, 15-22.

11. Rektorys K. Variational methods in Mathematics.
textitScience and Engineering. Prague (1980).

65


